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Preface

Environmental Fluid Mechanics (EFM) is the study of motions and transport processes in earth’s

hydrosphere and atmosphere on a local or regional scale (up to 100 km). At larger scales, the

Coriolis force due to earth’s rotation must be considered, and this is the topic of Geophysical

Fluid Dynamics. Sticking purely to EFM in this book, we will be concerned with the interaction

of flow, mass and heat with man-made facilities and with the local environment.

This text is the first Part in a two-part book to accompany a two-semester course in Envi-

ronmental Fluid Mechanics. In this Part, Mixing and Transport Processes in the Environment,

passive diffusion is treated by introducing the transport equation and its application in a range

of unstratified water bodies. Passive diffusion refers to mixing processes that occur due to ran-

dom motions and that have no direct feedback on the dynamics of the fluid motion. The second

Part, Stratified Flow and Buoyant Mixing, covers the dynamics of stratified fluids and transport

under active diffusion. Active diffusion relates to mixing processes that have a direct feedback on

the equations of motion due to changes in the density of the carrier fluid. This first Part is ap-

propriate for senior level undergraduate students; whereas, the second Part is more appropriate

for first-year graduate students.

The text is designed to compliment existing text books in water quality, air quality, and

transport. A unique feature of this text is that most of the mathematics is written out in

sufficient detail that all of the equations should be derivable (and checkable!) by the reader.

This fifth edition adds more homework problems to each chapter and expands the text and

explanations in each chapter.

The chapters are all organized in a similar fashion. Following the chapter heading, the first

two paragraphs orient the chapter in the context of the other chapters and outline the material

to be covered. In the first section of the chapter, general, background information is covered

that is needed to fully understand the contents of the chapter. The middle sections develop

the appropriate theory and present the mathematical derivations. The final section in each

chapter presents applications of the material to engineering practice. At the end of each chapter,

a summary section highlights the key points and a set of exercises are presented as possible

homework problems. The book contains a single references section and index.

This book was compiled from several sources, including the lecture notes developed by Ger-

hard H. Jirka for courses offered at Cornell University and the University of Karlsruhe, lecture

notes developed by Scott A. Socolofsky for courses taught at the University of Karlsruhe and

Texas A&M University, and notes taken by Scott A. Socolofsky in various fluid mechanics courses

offered at the Massachusetts Institute of Technology (MIT), the University of Colorado, and the

Copyright c© 2004 by Scott A. Socolofsky and Gerhard H. Jirka. All rights reserved.



VIII Preface

University of Stuttgart, including courses taught by E. Eric Adams, Helmut Kobus, Ole S. Mad-

sen, Chiang C. Mei, Heidi M. Nepf, Harihar Rajaram, Joe Ryan, and Ain Sonin. Many thanks

goes to these mentors who have taught this enjoyable subject.

Comments, questions, and corrections on this script can always be addressed per E-Mail to

the address: socolofs@tamu.edu.

College Station, Scott A. Socolofsky

January 2005 Gerhard H. Jirka
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1. Concepts, Definitions, and the Diffusion

Equation

Environmental fluid mechanics is the study of fluid mechanical processes that affect the fate and

transport of substances through the hydrosphere and atmosphere at the local or regional scale1

(up to 100 km). In more layman’s terms, environmental fluid mechanics studies how fluids

move substances through the natural environment as they are also transformed. In general,

the substances we may be interested in are mass, momentum or heat. More specifically, mass

can represent any of a wide variety of passive and reactive tracers, such as dissolved oxygen,

salinity, heavy metals, nutrients, and many others. This course and textbook discusses passive

processes affecting the transport of species in a homogeneous natural environment. That is, as

the substance is transported, its presence does not cause a change in the dynamics of the fluid

motion. The book for part 2 of this course, “Stratified Flow and Buoyant Mixing,” incorporates

the effects of buoyancy and stratification to deal with active mixing problems where the fluid

dynamics change in response to the transported substance.

This chapter introduces the concept of mass transfer (transport) and focuses on the physics

of diffusion. Because the concept of diffusion is fundamental to this part of the course, we

single it out here and derive its mathematical representation from first principles through to an

important solution of the governing partial differential equation. The mathematical rigor of this

section is deemed necessary so that the student gains a fundamental and complete understanding

of diffusion and the diffusion equation. This foundation will make the complicated processes

discussed in the remaining chapters tractable and will start to build the engineering intuition

needed to solve problems in environmental fluid mechanics.

1.1 Concepts, Significance and Definitions

Stated simply, environmental fluid mechanics is the study of natural processes that change

concentrations.2

These processes can be categorized into two broad groups: transport and transformation.

Transport refers to those processes which move substances through the hydrosphere and atmo-

sphere by physical means. As an analogy to the postal service, transport is the process by which

a letter goes from one location to another. The postal truck is the analogy for our fluid, and

1 At larger scales we must account for the Earth’s rotation through the Coriolis effect, and this is the subject of
geophysical fluid dynamics.

2 A glossary at the end of this text provides a list of important terms and their definitions in environmental fluid
mechanics (with the associated German term) to help orient the reader to a wealth of new terminology.

Copyright c© 2004 by Scott A. Socolofsky and Gerhard H. Jirka. All rights reserved.
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the letter itself is the analogy for our chemical species. The two primary modes of transport in

environmental fluid mechanics are advection (transport associated with the flow of a fluid) and

diffusion (transport associated with random motions within a fluid). The second process, trans-

formation, refers to those processes that change a substance of interest into another substance.

Keeping with our analogy, transformation is the paper recycling factory that turns our letter

into a shoe box. The two primary modes of transformation are physical (transformations caused

by physical laws, such as radioactive decay) and chemical (transformations caused by chemical

or biological reactions, such as dissolution and respiration).

In engineering practice, environmental fluid mechanics provides the tools to (1) assess the

flow of nutrients and chemicals vital to life through the ecosystem, (2) limit toxicity, and (3)

minimize man’s impact on global climate.

1. Ecosystem Dynamics. Nutrients are food sources used by organisms to generate energy.

Engineers need to know the levels of nutrients and their transformation pathways in order to

predict species populations in freshwater ecosystems, such as the growth and decay of algal

blooms in response to phytoplankton and zooplankton dynamics. Some common nutrients

and vital chemicals are oxygen, carbon dioxide, phosphorus, nitrogen, and an array of heavy

metals, among others.

2. Toxicity. For toxic chemicals, engineers need to understand natural transport and trans-

formation processes to design projects that minimize the probability of occurrence of toxic

concentrations while maintaining an affordable budget. Some common toxic chemicals are

heavy metals (such as iron, zinc, and cadmium), radioactive substances (such as uranium

and plutonium), and poisons and carcinogenic substances (such as PCBs, MTBE, carbon

monoxide, arsenic, and strong acids).

3. Global Climate Change. Some chemical species are also of interest due to their ef-

fects on the global climate system. Some notable substances are the chlorofluorocarbons

(CFCs) which deplete the ozone layer, the greenhouse gases, in particular, carbon dioxide

and methane, which maintain a warm planet, and other substances, such as sulfate aerosols

that affect the Earth’s reflectivity through cloud formation.

It is important to remember that all chemicals are necessary at appropriate levels to sustain

life and that anthropogenic input of chemicals into the hydrosphere is a necessary characteristic

of industrialization. Engineers use environmental fluid mechanics, therefore, to avoid adverse

impacts and optimize the designs of engineering projects and to mitigate the effects of accidents.

1.1.1 Example Problems

Although environmental fluid mechanics addresses basic processes that we are all familiar with

through our natural interaction with the environment (e.g. sensing smoke in a crowded bar),

its application in engineering is not frequently taught and students may find a steep learning

curve in mastering its concepts, terminology, and significance. This problem is compounded by

the fact that a whole new set of equations must be mastered before meaningful design problems

can be addressed. Here, we pause to introduce several typical problems and their relationship
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Fig. 1.1. Schematic of the mixing processes in an enclosed space. A point source of substance is released in the
lower left corner of a room. Mixing is caused by flow into and out or the room through the ventilation system and
by random motions in the circulating air.

to environmental fluid mechanics to whet the appetite for more detailed study and to give a

context for the derivations that follow.

Indoor air pollution. Chemicals that we come in contact with the most readily are transported

through the air we breath. The two important transport processes are advection (movement

with the air currents generated by wind or by air distribution systems) and diffusion (gradual

spreading of the substance by random motions in the air). This is depicted schematically in

Figure 1.1.

When the anthrax problems in the U.S. Postal Service surfaced shortly after 9/11, there

was a lot of discussion about “weapons grade” anthrax which could be dispersed by the air.

Typical anthrax spores are too heavy to be carried very far by air. However, if anthrax can be

transported by aerosol particles (particles small enough that they have no appreciable settling

velocity), then the threat is much greater. Diffusion, especially turbulent diffusion, as we will

see in Chapter 3, is very efficient at distributing aerosols throughout an enclosed space. In fact,

diffusion is primarily what allows you to smell wet paint, smoke, or a pleasant perfume. If anthrax

could be dispersed through the air, then it could diffuse efficiently throughout enclosed spaces,

greatly increasing the risk that anyone entering the space would be infected.

When engineers design indoor air systems, one thing they are concerned with is the ability of

the system to keep the space well mixed (that is, free of deadzones were contaminants could get

concentrated) and frequently refreshed (new air replacing old). Environmental fluid mechanics

provides the tools to estimate mixing rates and to design better systems. New designs might be

quieter, or use less energy, or rely on natural ventilation generated by temperature differences

between the indoors and outside. The first topics we will cover, diffusion followed by advection,

are directly related to these problems and design issues.

River discharges. Because rivers are readily accessible and efficiently transport chemicals

downstream, they are the primary receiving waters for a whole host of industrial and public
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Industrial 

discharge

Natural river

Fig. 1.2. Schematic of a point-source discharge of an industrial byproduct into a natural stream. As the source
moves downstream, it spreads laterally due to diffusion and advection.

wastes (see example illustrated in Figure 1.2). Moreover, it is very likely that your community

wastewater treatment plant discharges its treated water into a local river or reservoir. Although

the water is well treated, it still likely contains nutrients that will promote algae and bacteria

growth downstream, which in turn affect dissolved oxygen levels and promote eutrophication

(rapid aging) in lakes. Before passage of the Clean Water Act in the United States, pollution

in rivers was a major problem. Now, every point discharge must be evaluated by a government

agency and approved based on an assessment of its likely impact on the natural system. Water

quality standards are an example of the types of data that the impact assessment may be based

upon. Today, most people agree that direct discharges are not the major cause of the remaining

environmental problems in our lakes and rivers. Instead, nonpoint sources (sources that do not

originate from a pipe, but rather from a large, sometimes hard to define area) are the primary

source of contaminants.

To keep the impact of point discharges low, engineers must evaluate the impacts in the

near field (effects near the source) and the far field (downstream impact that is not affected

by the specific dynamics of the discharge mechanism). The near-field is dominated by diffusion

processes that cause the contaminant to rapidly mix with its environment. The far field is

dominated by advection, dispersion (stretching due to non-uniform velocity profiles in rivers)

and transformation processes that may eliminate the contaminant by natural biodegradation.

Each of these topics will be discussed in detail in this course.

Oxygen exchange. Not all substances that are of interest in environmental fluid mechanics

are harmful. One important chemical we will study is oxygen, a necessary input to respiration.

Oxygen levels can be depleted in water by biodegradation of wastes. This is primarily possible
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Fig. 1.3. Schematic of the diffusion of oxygen into a water body through the air-water interface. The dark
area represents regions of high oxygen concentration, and the lighter area represents a region of lower oxygen
concentration.

Atmospheric discharge

Fig. 1.4. Schematic of the release of an industrial byproduct into the atmosphere through a chimney stack. The
plume moves downstream due to an average wind field.

because of the relatively slow rate of exchange of oxygen between the water and the atmosphere.

When the water becomes depleted, oxygen will dissolve out of the atmosphere and into the water

and then diffuse downward into the water body. This is depicted in Figure 1.3.

This is an important characteristic of diffusion, that it transports chemicals from regions of

high concentration to regions of low concentration. If this were not the case, then a strong odor

would just get stronger and stronger in the location of the source and never be noticed away

from the source. Instead, diffusion reduces the magnitude of the odor at the source and causes

the odor to spread into the clean surroundings.

Atmospheric mixing. Probably the most noticeable release of chemicals into the environment

is through smoke stacks at industrial and power plants (see schematic in Figure 1.4). Because of

condensation in the waste stream, the expelled gas is made visible by a trail of smoke or clouds.

This is also visible in automobile exhaust on a cold winter’s day. In the summer, when auto

exhaust is not visible, we rarely think about all the chemicals that surround our car; however,

when cold air makes the exhaust visible, it can be surprising. The tools of environmental fluid

mechanics are used to predict the concentrations of gases both in summer and winter and to
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help design exhaust systems, both for your car and for factories, that do not result in toxic

levels. Again, the primary mechanisms we must address are transport (advection and diffusion)

and transformation (reactions).

1.1.2 Expressing Concentration

In order to evaluate how much of a chemical is present in any region of a fluid, we require a

means to measure chemical intensity or presence. This fundamental quantity in environmental

fluid mechanics is called concentration. In common usage, the term concentration expresses a

measure of the amount of a substance within a mixture.

Mathematically, the concentration C is the ratio of the mass of a substance Mi to the total

volume of a mixture V expressed

C =
Mi

V
. (1.1)

The units of concentration are [M/L3], commonly reported in mg/l, kg/m3, lb/gal, etc. For

one- and two-dimensional problems, concentration can also be expressed as the mass per unit

segment length [M/L] or per unit area, [M/L2].

A related quantity, the mass fraction χ, is the ratio of the mass of a substance Mi to the

total mass of a mixture M , written

χ =
Mi

M
. (1.2)

Mass fraction is unitless, but is often expressed using mixed units, such as mg/kg, parts per

million (ppm), or parts per billion (ppb).

A popular concentration measure used by chemists is the molar concentration θ. Molar con-

centration is defined as the ratio of the number of moles of a substance Ni to the total volume

of the mixture

θ =
Ni

V
. (1.3)

The units of molar concentration are [number of molecules/L3]; typical examples are mol/l and

µmol/l. To work with molar concentration, recall that the atomic weight of an atom is reported

in the Periodic Table in units of g/mol and that a mole is 6.022 · 1023 molecules.

The measure chosen to express concentration is essentially a matter of taste. Always use

caution and confirm that the units chosen for concentration are consistent with the equations

used to predict fate and transport. A common source of confusion arises from the fact that mass

fraction and concentration are often used interchangeably in dilute aqueous systems. This comes

about because the density of pure water at 4◦C is 1 g/cm3, making values for concentration in

mg/l and mass fraction in ppm identical. Extreme caution should be used in other solutions,

as in seawater or the atmosphere, where ppm and mg/l are not identical. The conclusion to be

drawn is: always check your units.
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1.1.3 Dimensional analysis

A very powerful analytical technique that we will use throughout this course is dimensional

analysis. The concept behind dimensional analysis is that if we can define the parameters that

a process depends on, then we should be able to use these parameters, usually in the form of

dimensionless variables, to describe that process at all scales (not just the scales we measure in

the laboratory or the field).

Dimensional analysis as a method is based on the Buckingham π-theorem (see e.g. Fischer

et al. 1979). Consider a process that can be described by m dimensional variables. This full

set of variables contains n different physical dimensions (length, time, mass, temperature, etc.).

The Buckingham π-theorem states that there are, then, m − n independent non-dimensional

groups that can be formed from these governing variables (Fischer et al. 1979). When forming

the dimensionless groups, we try to keep the dependent variable (the one we want to predict) in

only one of the dimensionless groups (i.e. try not to repeat the use of the dependent variable).

Once we have the m− n dimensionless variables, the Buckingham π-theorem further tells us

that the variables can be related according to

π1 = f(π2, πi, ..., πm−n) (1.4)

where πi is the ith dimensionless variable. As we will see, this method is a powerful way to find

engineering solutions to very complex physical problems.

Example: Reynolds number. As an example, consider a problem from your first course

in fluid mechanics where we want to predict when a fluid flow becomes turbulent. Here, our

dependent variable is a quality (turbulent or laminar) and does not have a dimension. The

variables it depends on are the velocity u, the flow disturbances, characterized by a typical

length scale L, and the fluid properties, as described by its density ρ, temperature T , and

viscosity µ. First, we must recognize that ρ and µ are functions of T ; thus, all three of these

variables cannot be treated as independent. The most compact and traditional approach is to

retain ρ and µ in the form of the kinematic viscosity ν = µ/ρ. Thus, we have m = 3 dimensional

variables (u, L, and ν) in n = 2 physical dimensions (length and time).

The next step is to form the dimensionless group π1 = f(u, L, ν). This can be done by assum-

ing each variable has a different exponent and writing separate equations for each dimension.

That is

π1 = uaLbνc, (1.5)

and we want each dimension to cancel out, giving us two equations

t gives: 0 = −a − c

L gives: 0 = a + b + 2c.

From the t-equation, we have a = −c, and from the L-equation we get b = −c. Since the system

is under-defined, we are free to choose the value of c. To get the most simplified form, choose

c = 1, leaving us with a = b = −1. Thus, we have
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π1 =
ν

uL
. (1.6)

This non-dimensional combination is just the inverse of the well-known Reynolds number Re;

thus, we have shown through dimensional analysis, that the turbulent state of the fluid should

depend on the Reynolds number

Re =
uL

ν
, (1.7)

which is a classical result in fluid mechanics.

Example: mixing scales. In environmental fluid mechanics we often want to know how long

it will take for a chemical to mix through a space or how far downstream a chemical will go

before it mixes to a certain size. In this problem we have three parameters: L is the distance over

which the chemical spreads, D is a measure of the rate of diffusion, and t is the time. Although

we have not formally introduced D, it is sufficient now to know that its dimensions are [L2/t]

and that large D give rapid mixing and small D give slow mixing. Thus, we have three variables

and two dimensions (L and t), yielding one non-dimensional number

π1 =
Dt

L2
. (1.8)

Later, we will see that this number is called the Peclet number.

If we want to know over how large a distance diffusion will spread a chemical in a time t, we

can rearrange the non-dimensional number to solve for length, giving

L ∝
√

Dt. (1.9)

This is a classical scaling law in environmental fluid mechanics, and one that we will use fre-

quently. The proportionality constant will change for different geometries, but the scaling rela-

tionship will remain. Hence,
√

Dt will be called the diffusion length scale. With this background,

we are now prepared to introduce the important concept of diffusion in more mathematical de-

tail.

1.2 Diffusion

As we have seen, a fundamental transport process in environmental fluid mechanics is diffusion.

Diffusion differs from advection in that it is random in nature (does not necessarily follow a fluid

particle). A well-known example is the diffusion of perfume in an empty room. If a bottle of

perfume is opened and allowed to evaporate into the air, soon the whole room will be scented. We

also know from experience that the scent will be stronger near the source and weaker as we move

away, but fragrance molecules will have wondered throughout the room due to random molecular

and turbulent motions. Thus, diffusion has two primary properties: it is random in nature, and

transport is from regions of high concentration to low concentration, with an equilibrium state

of uniform concentration.
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Fig. 1.5. Schematic of the one-dimensional molecular (Brownian) motion of a group of molecules illustrating the
Fickian diffusion model. The upper part of the figure shows the particles themselves; the lower part of the figure
gives the corresponding histogram of particle location, which is analogous to concentration.

1.2.1 Fickian diffusion

We just observed in our perfume example that regions of high concentration tend to spread into

regions of low concentration under the action of diffusion. Here, we want to derive a mathematical

expression that predicts this spreading-out process, and we will follow an argument presented

in Fischer et al. (1979).

To derive a diffusive flux equation, consider two rows of molecules side-by-side and centered

at x = 0, as shown in Figure 1.5(a.). Each of these molecules moves about randomly in response

to the temperature (in a random process called Brownian motion). Here, for didactic purposes,

we will consider only one component of their three-dimensional motion: motion right or left

along the x-axis. We further define the mass of particles on the left as Ml, the mass of particles

on the right as Mr, and the probability (transfer rate per time) that a particles moves across

x = 0 as k, with units [T−1].

After some time δt an average of half of the particles have taken steps to the right and half

have taken steps to the left, as depicted through Figure 1.5(b.) and (c.). Looking at the particle

histograms also in Figure 1.5, we see that in this random process, maximum concentrations

decrease, while the total region containing particles increases (the cloud spreads out).

Mathematically, the average flux of particles from the left-hand column to the right is kMl,

and the average flux of particles from the right-hand column to the left is −kMr, where the

minus sign is used to distinguish direction. Thus, the net flux of particles qx is

qx = k(Ml − Mr). (1.10)

For the one-dimensional case we can write (1.10) in terms of concentrations using

Cl = Ml/(δxδyδz) (1.11)
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Cr = Mr/(δxδyδz) (1.12)

where δx is the width, δy is the breadth, and δz is the height of each column. Physically, δx is

the average step along the x-axis taken by a molecule in the time δt. For the one-dimensional

case, we want qx to represent the flux in the x-direction per unit area perpendicular to x; hence,

we will take δyδz = 1. Next, we note that a finite difference approximation for dC/dx is

dC

dx
=

Cr − Cl

xr − xl

=
Mr − Ml

δx(xr − xl)
, (1.13)

which gives us a second expression for (Ml − Mr), namely,

(Ml − Mr) = −δx(xr − xl)
dC

dx
. (1.14)

Taking δx = (xr − xl) and substituting (1.14) into (1.10) yields

qx = −k(δx)2
dC

dx
. (1.15)

(1.15) contains two unknowns, k and δx. Fischer et al. (1979) argue that since q cannot depend

on an arbitrary δx, we must assume that k(δx)2 is a constant, which we will call the diffusion

coefficient, D. Substituting, we obtain the one-dimensional diffusive flux equation

qx = −D
dC

dx
. (1.16)

It is important to note that diffusive flux is a vector quantity and, since concentration is expressed

in units of [M/L3], it has units of [M/(L2T)]. To compute the total mass flux rate ṁ, in units

[M/T], the diffusive flux must be integrated over a surface area. For the one-dimensional case

we would have ṁ = Aqx, where A = δyδz.

Generalizing to three dimensions, we can write the diffusive flux vector at a point by adding

the other two dimensions, yielding (in various types of notation)

q = −D

(

∂C

∂x
,
∂C

∂y
,
∂C

∂z

)

= −D∇C

= −D
∂C

∂xi
. (1.17)

Diffusion processes that obey this relationship are called Fickian diffusion, and (1.17) is called

Fick’s law. To obtain the total mass flux rate we must integrate the normal component of q over

a surface area, as in

ṁ =

∫∫

A
q · ndA (1.18)

where n is the unit vector normal to the surface A.
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Example Box 1.1:
Diffusive flux at the air-water interface.

The time-average oxygen profile C(z) in the lam-
inar sub-layer at the surface of a lake is

C(z) = Csat − (Csat − Cl)erf

(

z

δ
√

2

)

where Csat is the saturation oxygen concentration
in the water, Cl is the oxygen concentration in the
body of the lake, δ is the concentration boundary
layer thickness, and z is defined positive downward.
Turbulence in the body of the lake is responsible for
keeping δ constant. Find an expression for the total
rate of mass flux of oxygen into the lake.

Fick’s law tells us that the concentration gradient
in the oxygen profile will result in a diffusive flux
of oxygen into the lake. Since the concentration is
uniform in x and y, we have from (1.16) the diffusive
flux

qz = −D
dC

dz
.

The derivative of the concentration gradient is

dC

dz
= −(Csat − Cl)

d

dz

[

erf

(

z

δ
√

2

)]

= − 2√
π
· (Csat − Cl)

δ
√

2
e
−

(

z

δ
√

2

)

2

At the surface of the lake, z is zero and the diffusive
flux is

qz = (Csat − Cl)
D
√

2

δ
√

π
.

The units of qz are in [M/(L2·T)]. To get the total
mass flux rate, we must multiply by a surface area,
in this case the surface of the lake Al. Thus, the total
rate of mass flux of oxygen into the lake is

ṁ = Al(Csat − Cl)
D
√

2

δ
√

π
.

For Cl < Csat the mass flux is positive, indicating
flux down, into the lake. More sophisticated models
for gas transfer that develop predictive expressions
for δ are discussed later in Chapter 5.

1.2.2 Diffusion coefficients

From the definition D = k(δx)2, we see that D has units L2/T . Since we derived Fick’s law

for molecules moving in Brownian motion, D is a molecular diffusion coefficient, which we

will sometimes call Dm to be specific. The intensity (energy and freedom of motion) of these

Brownian motions controls the value of D. Thus, D depends on the phase (solid, liquid or gas),

temperature, and molecule size. For dilute solutes in water, D is generally of order 2·10−9 m2/s;

whereas, for dispersed gases in air, D is of order 2 · 10−5 m2/s, a difference in magnitude of 104.

Table 1.1 gives a detailed accounting of D for a range of solutes in water with low salinity

(0.5 ppt). We see from the table that for a given temperature, D can range over about ±101 in

response to molecular size (large molecules have smaller D). The table also shows the sensitivity

of D to temperature; for a 10◦C change in water temperature, D can change by a factor of

±2. These observations can be summarized by the insight that faster and less confined motions

result in higher diffusion coefficients.

1.2.3 Diffusion equation

Although Fick’s law gives us an expression for the flux of mass due to the process of diffusion,

we still require an equation that predicts the change in concentration of the diffusing mass over

time at a point. In this section we will see that such an equation can be derived using the law

of conservation of mass.
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Table 1.1. Molecular diffusion coefficients for typical solutes in water at standard pressure and at two tempera-
tures (20◦C and 10◦C).a

Solute name Chemical symbol Diffusion coefficientb Diffusion coefficientc

(10−4 cm2/s) (10−4 cm2/s)

hydrogen ion H+ 0.85 0.70

hydroxide ion OH− 0.48 0.37

oxygen O2 0.20 0.15

carbon dioxide CO2 0.17 0.12

bicarbonate HCO−

3 0.11 0.08

carbonate CO2−
3 0.08 0.06

methane CH4 0.16 0.12

ammonium NH+
4 0.18 0.14

ammonia NH3 0.20 0.15

nitrate NO−

3 0.17 0.13

phosphoric acid H3PO4 0.08 0.06

dihydrogen phosphate H2PO−

4 0.08 0.06

hydrogen phosphate HPO2−
4 0.07 0.05

phosphate PO3−
4 0.05 0.04

hydrogen sulfide H2S 0.17 0.13

hydrogen sulfide ion HS− 0.16 0.13

sulfate SO2−
4 0.10 0.07

silica H4SiO4 0.10 0.07

calcium ion Ca2+ 0.07 0.05

magnesium ion Mg2+ 0.06 0.05

iron ion Fe2+ 0.06 0.05

manganese ion Mn2+ 0.06 0.05

a Taken from http://www.talknet.de/∼alke.spreckelsen/roger/thermo/difcoef.html
b for water at 20◦C with salinity of 0.5 ppt.
c for water at 10◦C with salinity of 0.5 ppt.

To derive the diffusion equation, consider the control volume (CV) depicted in Figure 1.6.

The change in mass M of dissolved tracer in this CV over time is given by the mass conservation

law

∂M

∂t
=
∑

ṁin −
∑

ṁout. (1.19)

To compute the diffusive mass fluxes in and out of the CV, we use Fick’s law, which for the

x-direction gives

qx,in = −D
∂C

∂x

∣

∣

∣

∣

1
(1.20)

qx,out = −D
∂C

∂x

∣

∣

∣

∣

2
(1.21)
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qx,in qx,out

x

-y

z

δx
δy

δz

Fig. 1.6. Differential control volume for derivation of the diffusion equation.

where the locations 1 and 2 are the inflow and outflow faces in the figure. To obtain total mass

flux ṁ we multiply qx by the CV surface area A = δyδz. Thus, we can write the net flux in the

x-direction as

δṁ|x = −Dδyδz

(

∂C

∂x

∣

∣

∣

∣

1
− ∂C

∂x

∣

∣

∣

∣

2

)

(1.22)

which is the x-direction contribution to the right-hand-side of (1.19).

To continue we must find a method to evaluate ∂C/∂x at point 2. For this, we use linear

Taylor series expansion, an important tool for linearly approximating functions. The general

form of Taylor series expansion is

f(x) = f(x0) +
∂f

∂x

∣

∣

∣

∣

x0

δx + HOTs, (1.23)

where HOTs stands for “higher order terms.” Substituting ∂C/∂x for f(x) in the Taylor series

expansion yields

∂C

∂x

∣

∣

∣

∣

2
=

∂C

∂x

∣

∣

∣

∣

1
+

∂

∂x

(

∂C

∂x

∣

∣

∣

∣

1

)

δx + HOTs. (1.24)

For linear Taylor series expansion, we ignore the HOTs. Substituting this expression into the

net flux equation (1.22) and dropping the subscript 1, gives

δṁ|x = Dδyδz
∂2C

∂x2
δx. (1.25)

Similarly, in the y- and z-directions, the net fluxes through the control volume are

δṁ|y = Dδxδz
∂2C

∂y2
δy (1.26)

δṁ|z = Dδxδy
∂2C

∂z2
δz. (1.27)

Before substituting these results into (1.19), we also convert M to concentration by recognizing

M = Cδxδyδz. After substitution of the concentration C and net fluxes δṁ into (1.19), we

obtain the three-dimensional diffusion equation (in various types of notation)
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∂C

∂t
= D

(

∂2C

∂x2
+

∂2C

∂y2
+

∂2C

∂z2

)

= D∇2C

= D
∂C

∂x2
i

, (1.28)

which is a fundamental equation in environmental fluid mechanics. For the last line in (1.28),

we have used the Einsteinian notation of repeated indices as a short-hand for the ∇2 operator.

1.2.4 One-dimensional diffusion equation

In the one-dimensional case, concentration gradients in the y- and z-direction are zero, and we

have the one-dimensional diffusion equation

∂C

∂t
= D

∂2C

∂x2
. (1.29)

We pause here to consider (1.29) and to point out a few key observations. First, (1.29) is first-

order in time. Thus, we must supply and impose one initial condition for its solution, and its

solutions will be unsteady, or transient, meaning they will vary with time. To solve for the

steady, time-invariant solution of (1.29), we must set ∂C/∂t = 0 and we no longer require an

initial condition; the steady form of (1.29) is the well-known Laplace equation. Second, (1.29) is

second-order in space. Thus, we must impose two boundary conditions, and its solution will vary

in space. Third, the form of (1.29) is exactly the same as the heat equation, where D is replaced

by the heat transfer coefficient κ. This observation agrees well with our intuition since we know

that heat conducts (diffuses) away from hot sources toward cold regions (just as concentration

diffuses from high concentration toward low concentration). This observation is also useful since

many solutions to the heat equation are already known.

1.3 Similarity solution to the one-dimensional diffusion equation

Because (1.28) is of such fundamental importance in environmental fluid mechanics, we demon-

strate here one of its solutions for the one-dimensional case in detail. There are multiple methods

that can be used to solve (1.28), but we will follow the methodology of Fischer et al. (1979) and

choose the so-called similarity method in order to demonstrate the usefulness of dimensional

analysis as presented in Section 1.1.3.

Consider the one-dimensional problem of a narrow, infinite pipe (radius a) as depicted in

Figure 1.7. A mass of tracer M is injected uniformly across the cross-section of area A = πa2 at

the point x = 0 at time t = 0. The initial width of the tracer is infinitesimally small. We seek

a solution for the spread of the tracer in the x-direction over time due to molecular diffusion

alone.

As this is a one-dimensional (∂C/∂y = 0 and ∂C/∂z = 0) unsteady diffusion problem, (1.29)

is the governing equation, and we require two boundary conditions and an initial condition. As

boundary conditions, we impose that the concentration at ±∞ remain zero
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A M

-x x

Fig. 1.7. Definitions sketch for one-dimensional pure diffusion in an infinite pipe.

Table 1.2. Dimensional variables for one-dimensional pipe diffusion.

Variable Dimensions

dependent variable C M/L3

independent variables M/A M/L2

D L2/T

x L

t T

C(±∞, t) = 0 (1.30)

because it is not possible for any of the tracer molecules to wander all the way out to infinity—

by definition, infinity is not reachable. The initial condition is that the dye tracer is injected

uniformly across the cross-section over an infinitesimally small width in the x-direction. To

specify such an initial condition, we use the Dirac delta function

C(x, 0) = (M/A)δ(x) (1.31)

where δ(x) is zero everywhere accept at x = 0, where it is infinite, but the integral of the delta

function from −∞ to ∞ is 1. Thus, the total injected mass is given by

M =

∫

V
C(x, t)dV (1.32)

=

∫ ∞

−∞

∫ a

0
(M/A)δ(x)2πrdrdx. (1.33)

= M QED. (1.34)

To use dimensional analysis, we must consider all the parameters that control the solution.

Table 1.2 summarizes the dependent and independent variables for our problem. There are m = 5

parameters and n = 3 dimensions; thus, we can form two dimensionless groups

π1 =
C

M/(A
√

Dt)
(1.35)

π2 =
x√
Dt

(1.36)

From dimensional analysis we have that π1 = f(π2), which implies for the solution of C

C =
M

A
√

Dt
f

(

x√
Dt

)

(1.37)
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where f is a yet-unknown function with argument π2. (1.37) is called a similarity solution because

C has the same shape in x at all times t (see also Example Box 1.3). Now we need to find f in

order to know what that shape is. Before we find the solution formally, compare (1.37) with the

actual solution given by (1.59). Through this comparison, we see that dimensional analysis can

go a long way toward finding solutions to physical problems.

The function f can be found in two primary ways. First, experiments can be conducted and

then a smooth curve can be fit to the data using the coordinates π1 and π2. Second, (1.37) can

be used as the solution to a differential equation and f solved for analytically. This is what we

will do here. The power of a similarity solution is that it turns a partial differential equation

(PDE) into an ordinary differential equation (ODE), which is the goal of any solution method

for PDEs.

The similarity solution (1.37) is really just a coordinate transformation. We will call our new

similarity variable η = x/
√

Dt. To substitute (1.37) into the diffusion equation, we will need the

two derivatives

∂η

∂t
= − η

2t
(1.38)

∂η

∂x
=

1√
Dt

. (1.39)

We first use the chain rule to compute ∂C/∂t as follows

∂C

∂t
=

∂

∂t

[

M

A
√

Dt
f(η)

]

=
∂

∂t

[

M

A
√

Dt

]

f(η) +
M

A
√

Dt

∂f

∂η

∂η

∂t

=
M

A
√

Dt

(

−1

2

)

1

t
f(η) +

M

A
√

Dt

∂f

∂η

(

− η

2t

)

= − M

2At
√

Dt

(

f + η
∂f

∂η

)

. (1.40)

Similarly, we use the chain rule to compute ∂2C/∂x2 as follows

∂2C

∂x2
=

∂

∂x

[

∂

∂x

(

M

A
√

Dt
f(η)

)]

=
∂

∂x

[

M

A
√

Dt

∂η

∂x

∂f

∂η

]

=
M

ADt
√

Dt

∂2f

∂η2
. (1.41)

Upon substituting these two results into the diffusion equation, we obtain the ordinary differen-

tial equation in η

d2f

dη2
+

1

2

(

f + η
df

dη

)

= 0. (1.42)

To solve (1.42), we should also convert the boundary and initial conditions to two new

constraints on f . Substituting η into the boundary conditions gives
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C(±∞, t) = 0

M

A
√

Dt
f

(

x√
Dt

)∣

∣

∣

∣

x=±∞
= 0

f(±∞) = 0. (1.43)

We convert the initial condition in a similar manner. Substituting η leads to

C(x, 0) =
M

A
δx

M

A
√

Dt
f

(

x√
Dt

)∣

∣

∣

∣

t=0

=
M

A
δx

Rearranging the terms yields

f

(

x√
Dt

)∣

∣

∣

∣

t=0

=
√

Dtδx
∣

∣

∣

t=0
(1.44)

The left hand side will give +∞ if x > 0 and −∞ if x < 0. The right hand side gives zero

because the
√

Dt term is always zero at t = 0. Then, the initial condition reduces to

f(±∞) = 0. (1.45)

Thus, the three conditions on the original partial differential equation (two boundary condi-

tions and an initial condition) have been reduced to two boundary conditions on the ordinary

differential equation in f , given by either (1.43) or (1.45).

Another constraint is required to fix the value of M and is taken from the conservation of

mass, given by (1.32). Substituting dx = dη
√

Dt into (1.32) and simplifying, we obtain
∫ ∞

−∞
f(η)dη = 1. (1.46)

Solving (1.42) requires a couple of integrations. First, we rearrange the equation using the

identity

d(fη)

dη
= f + η

df

dη
, (1.47)

which gives us

d

dη

[

df

dη
+

1

2
fη

]

= 0. (1.48)

Integrating once leaves us with

df

dη
+

1

2
fη = C0. (1.49)

It can be shown that choosing C0 = 0 is required to satisfy the boundary conditions (see

Appendix A for more details). For now, we will select C0 = 0 and then verify that the solution

we obtain does indeed obey the boundary condition f(±∞) = 0.

With C0 = 0 we have a homogeneous ordinary differential equation whose solution can readily

be found. Moving the second term to the right hand side we have

df

dη
= −1

2
fη. (1.50)
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The solution is found by collecting the f - and η-terms on separate sides of the equation

df

f
= −1

2
ηdη. (1.51)

Integrating both sides gives

ln(f) = −1

2

η2

2
+ C1 (1.52)

which after taking the exponential of both sides gives

f = C1 exp

(

−η2

4

)

. (1.53)

To find C1 we must use the remaining constraint given in (1.46). This is necessary since we

introduce a parameter M and we would like that the integral under the concentration curve give

us back the total mass. This auxiliary condition in f gives (recall (1.46))
∫ ∞

−∞
C1 exp

(

−η2

4

)

dη = 1. (1.54)

To solve this integral, we should use integral tables; therefore, we have to make one more change

of variables to remove the 1/4 from the exponential. Thus, we introduce ζ such that

ζ2 =
1

22
η2 (1.55)

2dζ = dη. (1.56)

Substituting this coordinate transformation and solving for C1 leaves

C1 =
1

2
∫∞
−∞ exp(−ζ2)dζ

. (1.57)

After looking up the integral in a table, we obtain C1 = 1/(2
√

π). Thus,

f(η) =
1

2
√

π
exp

(

η2

4

)

. (1.58)

Replacing f in our similarity solution (1.37) gives

C(x, t) =
M

A
√

4πDt
exp

(

− x2

4Dt

)

(1.59)

which is a classic result in environmental fluid mechanics, and an equation that will be used

thoroughly throughout this text. Generalizing to three dimensions, Fischer et al. (1979) give the

the solution

C(x, y, z, t) =
M

4πt
√

4πDxDyDzt
exp

(

− x2

4Dxt
− y2

4Dyt
− z2

4Dzt

)

(1.60)

which they derive using the separation of variables method.
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Example Box 1.2:
Maximum concentrations.

For the three-dimensional instantaneous point-
source solution given in (1.60), find an expression
for the maximum concentration. Where is the max-
imum concentration located?

The classical approach for finding maxima of func-
tions is to look for zero-points in the derivative of
the function. For many concentration distributions,
it is easier to take a qualitative look at the functional
form of the equation. The instantaneous point-source
solution has the form

C(x, t) = C1(t) exp(−|f(x, t)|).
C1(t) is an amplification factor independent of space.
The exponential function has a negative argument,
which means it is maximum when the argument is
zero. Hence, the maximum concentration is

Cmax(t) = C1(t).

Applying this result to (1.60) gives

Cmax(t) =
M

4πt
√

4πDxDyDzt
.

The maximum concentration occurs at the point
where the exponential is zero. In this case
x(Cmax) = (0, 0, 0).

We can apply this same analysis to other concen-
tration distributions as well. For example, consider
the error function concentration distribution

C(x, t) =
C0

2

(

1 − erf

(

x√
4Dt

))

.

The error function ranges over [−1, 1] as its argu-
ment ranges from [−∞,∞]. The maximum concen-
tration occurs when erf(·) = -1, and gives,

Cmax(t) = C0.

Cmax occurs when the argument of the error function
is −∞. At t = 0, the maximum concentration occurs
for all points x < 0, and for t > 0, the maximum
concentration occurs only at x = −∞.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1
Point source solution

η = x / (4Dt)1/2

C
 A

 (
4π

D
 t)

1/
2  / 

M

Fig. 1.8. Self-similarity solution for one-dimensional diffusion of an instantaneous point source in an infinite
domain.

1.3.1 Interpretation of the similarity solution

Figure 1.8 shows the one-dimensional solution (1.59) in non-dimensional space. Comparing (1.59)

with the Gaussian probability distribution reveals that (1.59) is the normal bell-shaped curve

with a standard deviation σ, of width

σ2 = 2Dt. (1.61)
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The concept of self similarity is now also evident: the concentration profile shape is always

Gaussian. By plotting in non-dimensional space, the profiles also collapse into a single profile;

thus, profiles for all times t > 0 are given by the result in the figure.

The Gaussian distribution can also be used to predict how much tracer is within a certain

region. Looking at Figure 1.8 it appears that most of the tracer is between -2 and 2. Gaussian

probability tables, available in any statistics book, can help make this observation more quanti-

tative. Within ±σ, 64.2% of the tracer is found and between ±2σ, 95.4% of the tracer is found.

As an engineering rule-of-thumb, we will say that a diffusing tracer is distributed over a region

of width 4σ, that is, ±2σ in Figure 1.8.

Example Box 1.3:
Profile shape and self similarity.

For the one-dimensional, instantaneous point-
source solution, show that the ratio C/Cmax can be
written as a function of the single parameter α de-
fined such that x = ασ. How might this be used to
estimate the diffusion coefficient from concentration
profile data?

From the previous example, we know that Cmax =
M/

√
4πDt, and we can re-write (1.59) as

C(x, t)

Cmax(t)
= exp

(

− x2

4Dt

)

.

We now substitute σ =
√

2Dt and x = ασ to obtain

C

Cmax
= exp

(

−α2/2
)

.

Here, α is a parameter that specifies the point to
calculate C based on the number of standard devia-
tions the point is away from the center of mass. This
illustrates very clearly the notion of self similarity:
regardless of the time t, the amount of mass M , or
the value of D, the ratio C/Cmax is always the same
value at the same position ασ.

This relationship is very helpful for calculating
diffusion coefficients. Often, we do not know the
value of M . We can, however, always normalize a
concentration profile measured at a given time t by
Cmax(t). Then we pick a value of α, say 1.0. We know
from the relationship above that C/Cmax = 0.61 at
x = σ. Next, find the locations where C/Cmax =
0.61 in the experimental profile and use them to mea-
sure σ. We then use the relationship σ =

√
2Dt and

the value of t to estimate D.

1.4 Application: Diffusion in a lake

With a solid background now in diffusion, consider the following example adapted from Nepf

(1995).

As shown in Figures 1.9 and 1.10, a small alpine lake is mildly stratified, with a thermocline

(region of steepest density gradient) at 3 m depth, and is contaminated by arsenic. Determine the

magnitude and direction of the diffusive flux of arsenic through the thermocline (cross-sectional

area at the thermocline is A = 2 · 104 m2) and discuss the nature of the arsenic source. The

molecular diffusion coefficient is Dm = 1 · 10−10 m2/s.

Molecular diffusion. To compute the molecular diffusive flux through the thermocline, we use

the one-dimensional version of Fick’s law, given above in (1.16)

qz = −Dm
∂C

∂z
. (1.62)
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Thermocline
z

Fig. 1.9. Schematic of a stratified alpine lake.
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Fig. 1.10. Profiles of temperature and arsenic concentration in an alpine lake. The dotted line at 3 m indicates
the location of the thermocline (region of highest density gradient).

We calculate the concentration gradient at z = 3 from the concentration profile using a finite

difference approximation. Substituting the appropriate values, we have

qz = −Dm
∂C

∂z

= −(1 · 10−10)
(10 − 6.1)

(2 − 4)
· 1000 l

1 m3

= +1.95 · 10−7 µg/(m2·s) (1.63)

where the plus sign indicates that the flux is downward. The total mass flux is obtained by

multiplying over the area: ṁ = Aqz = 0.0039 µg/s.

Turbulent diffusion. As we pointed out in the discussion on diffusion coefficients, faster ran-

dom motions lead to larger diffusion coefficients. As we will see in Chapter 3, turbulence also

causes a kind of random motion that behaves asymptotically like Fickian diffusion. Because the

turbulent motions are much larger than molecular motions, turbulent diffusion coefficients are

much larger than molecular diffusion coefficients.
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Sources of turbulence at the thermocline of a small lake can include surface inflows, wind

stirring, boundary mixing, convection currents, and others. Based on studies in this lake, a

turbulent diffusion coefficient can be taken as Dt = 1.5 · 10−6 m2/s. Since turbulent diffusion

obeys the same Fickian flux law, then the turbulent diffusive flux qz,t can be related to the

molecular diffusive flux qz,t = qz by the equation

qz,t = qz,m
Dt

Dm
(1.64)

= +2.93 · 10−3 µg/(m2·s). (1.65)

Hence, we see that turbulent diffusive transport is much greater than molecular diffusion. As

a warning, however, if the concentration gradients are very high and the turbulence is low,

molecular diffusion can become surprisingly significant!

Implications. Here, we have shown that the concentration gradient results in a net diffusive

flux of arsenic into the hypolimnion (region below the thermocline). Assuming no other transport

processes are at work, we can conclude that the arsenic source is at the surface. If the diffusive

transport continues, the hypolimnion concentrations will increase. The next chapter considers

how the situation might change if we include another type of transport: advection.

Summary

This chapter introduced the subject of environmental fluid mechanics and focused on the impor-

tant transport process of diffusion. Fick’s law was derived to represent the mass flux (transport)

due to diffusion, and Fick’s law was used to derive the diffusion equation, which is used to pre-

dict the time-evolution of a concentration field in space due to diffusive transport. A similarity

method was used through the aid of dimensional analysis to find a one-dimensional solution

to the diffusion equation for an instantaneous point source. As illustrated through an example,

diffusive transport results when concentration gradients exist and plays an important role in

predicting the concentrations of contaminants as they move through the environment.

Exercises

1.1 Newspaper research. Find an example of a news article that deals with fate or transport

of chemicals in a situation that demonstrates concepts from Environmental Fluid Mechanics.

You my chose a newspaper or web article, and the event should have occurred in the last

20 years. Attach a copy of the article and write a short paragraph describing it’s relationship to

environmental fluid mechanics.

1.2 Definitions. Write a short, qualitative definition of the following terms:

Concentration. Partial differential equation.

Mass fraction. Standard deviation.

Density. Chemical fate.
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Diffusion. Chemical transport.

Brownian motion. Transport equation.

Instantaneous point source. Fick’s law.

Similarity method.

1.3 Concentrations in water. A student adds 1.00 mg of pure Rhodamine WT (a common

fluorescent tracer used in field experiments) to 1.000 l of water at 20◦C. Assuming the solution

is dilute so that we can neglect the equation of state of the solution, compute the concentration

of the Rhodamine WT mixture in the units of mg/l, mg/kg, ppm, and ppb.

1.4 Concentrations in air. Air consists of 21% oxygen gas (O2). For air with a density of

1.4 kg/m3, compute the concentration of oxygen in the units of mg/l, mg/kg, mol/l, and ppm.

1.5 Fick’s law. Assume a linear concentration profile between two fixed points as depicted in

the following figure:

C

C0 C(x)

C1

L
x0

and given by the equation

C = bx + C0 (1.66)

where b = (C1 − C0)/L. Assuming the diffusion coefficient is D, find:

• The diffusive flux per unit area for any point between x = [0, L].

• The total mass flux over an area A between x = [0, L].

1.6 Mass fluxes. A one-dimensional concentration profile near a fixed-concentration sewage dis-

charge is

C(x) = C0

(

1 − erf

(

x√
4Dt

))

(1.67)

where C0 is the initial concentration near the source, erf is the error function, t is the time since

the start of release, x is the distance downstream, and D is the diffusion coefficient. Compute

the net mass flux vector qx at x = 10 m and t = 6 hours. Use D = 1 · 10−3 m2/s.

1.7 Diffusive flux in a side channel. A small fish pond located near a river bank downstream

of a mine is connected to the main river through a small channel for water intake (refer to the

figure below). Assume the water levels between the river and the pond are the same so that the

velocity in the channel is zero. The arsenic level in the river is on average 1 ppm during the
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summer, and 0 during the rest of the year. The initial level of arsenic is 0 ppm in the pond right

before summer. The connecting channel is 4 m long, 2 m wide and 2 m deep. Calculate how

much arsenic will diffuse into the pond over the 3 months during the summer. If the pond is

approximately 100 m long, 50 m wide, and 2 m deep, what will the mean arsenic level be in the

pond after the 3-month summer period? If the allowable arsenic level in the pond is 0.1 ppb, do

you suggest the owner to build a gate at the connecting channel so the inflow of arsenic can be

blocked?

River Pond

1.8 Instantaneous point source. Consider the pipe section depicted in Figure 1.7. A student in-

jects 5 ml of 20% Rhodamine-WT solution (specific gravity 1.15) instantaneously and uniformly

over the pipe cross-section (A = 0.8 cm3) at the point x = 0 and the time t = 0. The pipe is

filled with stagnant water. Assume the molecular diffusion coefficient is Dm = 0.13 ·10−4 cm2/s.

• What is the concentration at x = 0 at the time t = 0?

• What is the standard deviation of the concentration distribution 1 s after injection?

• Plot the maximum concentration in the pipe, Cmax(t), as a function of time over the interval

t = [0, 24 h].

• How long does it take until the concentration over the region x = ±1 m can be treated as

uniform? Define a uniform concentration distribution as one where the minimum concentration

within a region is no less than 95% of the maximum concentration within that same region.

1.9 Advection versus diffusion. Rivers can often be approximated as advection dominated

(downstream transport due to currents is much faster than diffusive transport) or diffusion domi-

nated (diffusive transport is much faster than downstream transport due to currents). This prop-

erty is described by a non-dimensional parameter (called the Peclet number) Pe = f(u, D, x),

where u is the stream velocity, D is the diffusion coefficient, and x is the distance downstream

to the point of interest. Using dimensional analysis, find the form of Pe such that Pe � 1 is

advection dominated and Pe � 1 is diffusion dominated. For a stream with u = 0.3 m/s and

D = 0.05 m2/s, where are diffusion and advection equally important?

1.10 Maximum concentrations. Referring to Figure 1.8, we note that the maximum concentra-

tion in space is always found at the center of the distribution (x = 0). For a point at x = r,

however, the maximum concentration over time occurs at one specific time tmax and then de-

creases until an equilibrium level is reached.
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• Using the one-dimensional point source solution, find an equation for the time tmax at which

the maximum concentration occurs for an arbitrary point x = r.

• Write a program (MATLAB is preferred, but not required) that solves the one-dimensional

point source solution at x = r with r, D, M , and A as user inputs. Plot the concentration as

a function of time at the location r = 2 with the remaining three inputs set as 1.0. Plot an

adequate time period that the maximum concentration is clearly identifiable. (Please mail me

your program).

• Calculate tmax for the case plotted in the previous step (r = 2, D = M = A = 1) and compare

your value to the figure from your Matlab program.

1.11 Diffusion in a river. The Rhein river can be approximated as having a uniform depth

(h = 5 m), width (B = 300 m) and mean flow velocity (u = 0.7 m/s). Under these conditions,

100 kg of tracer is injected as a point source (the injection is evenly distributed transversely over

the cross-section). The cloud is expected to diffuse laterally as a one-dimensional point source

in a moving coordinate system, moving at the mean stream velocity. The river has an enhanced

mixing coefficient of D = 10 m2/s. How long does it take for the center of mass of the cloud to

reach a point x = 15000 m downstream? What is the maximum concentration that passes the

point x? How wide is the cloud (take the cloud width as 4σ) when it passes this point?

1.12 Measuring diffusion coefficients 1. A chemist is trying to calculate the diffusion coefficient

for a new chemical. In his experiments, he measured the concentration as a function of time

at a point 5 cm away from a virtual point source diffusing in three dimensions. Select a set of

coordinates such that, when plotting the data in Table 1.3, D is the slope of a best-fit line through

the data. Based on this coordinate transformation, what is more important to measure precisely,

concentration or time? What recommendation would you give to this scientist to improve the

accuracy of his estimate for the diffusion coefficient?

1.13 Measuring diffusion coefficients 2.1 As part of a water quality study, you have been asked

to assess the diffusion of a new fluorescent dye. To accomplish this, you do a dye study in a

laboratory tank (depth h = 40 cm). You release the dye at a depth of 20 cm (spread evenly over

the area of the tank) and monitor its development over time. Vertical profiles of dye concentration

in the tank are shown in Figure 1.11; the x-axis represents the reading on your fluorometer and

the y-axis represents the depth.

• Estimate the molecular diffusion coefficient of the dye, Dm, based on the evolution of the dye

cloud.

• Predict at what time the vertical distribution of the dye will be affected by the boundaries of

the tank.

1.14 Radiative heaters. A student heats his apartment (surface area Ar = 32 m2 and ceiling

height h = 3 m) with a radiative heater. The heater has a total surface area of Ah = 0.8 m2;

the thickness of the heater wall separating the heater fluid from the outside air is δx = 3 mm

1 This problem is adapted from Nepf (1995).
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Table 1.3. Measured concentration and time for a point source diffusing in three-dimensions for problem num-
ber 112.

Time Concentration

(days) (µg/cm3 ±0.03)

0.5 0.02

1.0 0.50

1.5 2.08

2.0 3.66

2.5 4.81

3.0 5.50

3.5 5.80

4.0 5.91

4.5 5.81

5.0 5.70

5.5 5.54

6.0 5.28

6.5 5.05

7.0 4.87

7.5 4.65

8.0 4.40

8.5 4.24

9.0 4.00

9.5 3.84

10.0 3.66

(refer to Figure 1.12). The conduction of heat through the heater wall is given by the diffusion

equation

∂T

∂t
= κ∇2T (1.68)

where T is the temperature in ◦C and κ = 1.1 · 10−2 kcal/(s◦Cm) is the thermal conductivity of

the metal for the heater wall. The heat flux q through the heater wall is given by

q = −κ∇T. (1.69)

Recall that 1 kcal = 4184 J and 1 Watt = 1 J/s.

• The conduction of heat normal to the heater wall can be treated as one-dimensional. Write

(1.68) and (1.69) for the steady-state, one-dimensional case.

• Solve (1.68) for the steady-state, one-dimensional temperature profile through the heater wall

with boundary conditions T (0) = Th and T (δx) = Tr (refer to Figure 1.12).

• The water in the heater and the air in the room move past the heater wall such that Th = 85◦C

and Tr = 35◦C. Compute the heat flux from (1.69) using the steady-state, one-dimensional

solution just obtained.
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Fig. 1.11. Concentration profiles of fluorescent dye for two different measurement times. Refer to problem
number 1.13.

• How many 300 Watt lamps are required to equal the heat output of the heater assuming 100%

efficiency?

• Assume the specific heat capacity of the air is cv = 0.172 kcal/(kg·K) and the density is

ρa = 1.4 kg/m3. How much heat is required to raise the temperature of the apartment by

5◦C?

• Given the heat output of the heater and the heat needed to heat the room, how might you

explain that the student is able to keep the heater turned on all the time?
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Heater
fluid

Room
air

Th Ta

δ x

Steel heater wall

Fig. 1.12. Definitions sketch for one-dimensional thermal conduction for the heater wall in problem number 1.14.



2. Advective Diffusion Equation

In nature, transport occurs in fluids through the combination of advection and diffusion. The

previous chapter introduced diffusion and derived solutions to predict diffusive transport in

stagnant ambient conditions. This chapter incorporates advection into our diffusion equation

(deriving the advective diffusion equation) and presents various methods to solve the resulting

partial differential equation for different geometries and contaminant conditions.

2.1 Derivation of the advective diffusion equation

Before we derive the advective diffusion equation, we look at a heuristic description of the effect

of advection. To conceptualize advection, consider our pipe problem from the previous chapter.

Without pipe flow, the injected tracer spreads equally in both directions, describing a Gaussian

distribution over time. If we open a valve and allow water to flow in the pipe, we expect the

center of mass of the tracer cloud to move with the mean flow velocity in the pipe. If we move

our frame of reference with that mean velocity and assume the inviscid case, then we expect the

solution to look the same as before. This new reference frame is

η = x − (x0 + ut) (2.1)

where η is the moving reference frame spatial coordinate, x0 is the injection point of the tracer,

u is the mean flow velocity, and ut is the distance traveled by the center of mass of the cloud

in time t. If we substitute η for x in our solution for a point source in stagnant conditions we

obtain

C(x, t) =
M

A
√

4πDt
exp

(

−(x − (x0 + ut))2

4Dt

)

. (2.2)

To test whether this solution is correct, we need to derive a general equation for advective

diffusion and compare its solution to this one.

2.1.1 The governing equation

The derivation of the advective diffusion equation relies on the principle of superposition: ad-

vection and diffusion can be added together if they are linearly independent. How do we know

if advection and diffusion are independent processes? The only way that they can be dependent

is if one process feeds back on the other. From the previous chapter, diffusion was shown to be

a random process due to molecular motion. Due to diffusion, each molecule in time δt will move

Copyright c© 2004 by Scott A. Socolofsky and Gerhard H. Jirka. All rights reserved.
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Jx,in Jx,out

x
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z

δx
δy

δz

u

Fig. 2.1. Schematic of a control volume with crossflow.

either one step to the left or one step to the right (i.e. ±δx). Due to advection, each molecule

will also move uδt in the cross-flow direction. These processes are clearly additive and indepen-

dent; the presence of the crossflow does not bias the probability that the molecule will take a

diffusive step to the right or the left, it just adds something to that step. The net movement of

the molecule is uδt ± δx, and thus, the total flux in the x-direction Jx, including the advective

transport and a Fickian diffusion term, must be

Jx = uC + qx

= uC − D
∂C

∂x
. (2.3)

We leave it as an exercise for the reader to prove that uC is the correct form of the advective

term (hint: consider the dimensions of qx and uC).

As we did in the previous chapter, we now use this flux law and the conservation of mass

to derive the advective diffusion equation. Consider our control volume from before, but now

including a crossflow velocity, u = (u, v, w), as shown in Figure 2.1. Here, we follow the derivation

in Fischer et al. (1979). From the conservation of mass, the net flux through the control volume

is

∂M

∂t
=
∑

ṁin −
∑

ṁout, (2.4)

and for the x-direction, we have

δṁ|x =

(

uC − D
∂C

∂x

)∣

∣

∣

∣

1
δyδz −

(

uC − D
∂C

∂x

)∣

∣

∣

∣

2
δyδz. (2.5)

As before, we use linear Taylor series expansion to combine the two flux terms, giving

uC|1 − uC|2 = uC|1 −
(

uC|1 +
∂(uC)

∂x

∣

∣

∣

∣

1
δx

)

= −∂(uC)

∂x
δx (2.6)
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and

− D
∂C

∂x

∣

∣

∣

∣

1
+ D

∂C

∂x

∣

∣

∣

∣

2
= −D

∂C

∂x

∣

∣

∣

∣

1
+

(

D
∂C

∂x

∣

∣

∣

∣

1
+

∂

∂x

(

D
∂C

∂x

)∣

∣

∣

∣

1
δx

)

= D
∂2C

∂x2
δx. (2.7)

Thus, for the x-direction

δṁ|x = −∂(uC)

∂x
δxδyδz + D

∂2C

∂x2
δxδyδz. (2.8)

The y- and z-directions are similar, but with v and w for the velocity components, giving

δṁ|y = −∂(vC)

∂y
δyδxδz + D

∂2C

∂y2
δyδxδz (2.9)

δṁ|z = −∂(wC)

∂z
δzδxδy + D

∂2C

∂z2
δzδxδy. (2.10)

Substituting these results into (2.4) and recalling that M = Cδxδyδz, we obtain

∂C

∂t
+ ∇ · (uC) = D∇2C (2.11)

or in Einsteinian notation

∂C

∂t
+

∂uiC

∂xi
= D

∂2C

∂x2
i

, (2.12)

which is the desired advective diffusion (AD) equation. We will use this equation extensively in

the remainder of this text.

Note that these equations implicitly assume that D is constant. When considering a variable

D, the right-hand-side of (2.12) has the form

∂

∂xi

(

Dij
∂C

∂xj

)

. (2.13)

2.1.2 Point-source solution

To check whether our initial suggestion (2.2) for a solution to (2.12) was correct, we substitute

the coordinate transformation for the moving reference frame into the one-dimensional version

of (2.12). In the one-dimensional case, u = (u, 0, 0), and there are no concentration gradients in

the y- or z-directions, leaving us with

∂C

∂t
+

∂(uC)

∂x
= D

∂2C

∂x2
. (2.14)

Our coordinate transformation for the moving system is

η = x − (x0 + ut) (2.15)

τ = t, (2.16)

and this can be substituted into (2.14) using the chain rule as follows
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Fig. 2.2. Schematic solution of the advective diffusion equation in one dimension. The dotted line plots the
maximum concentration as the cloud moves downstream.

∂C

∂τ

∂τ

∂t
+

∂C

∂η

∂η

∂t
+ u

(

∂C

∂η

∂η

∂x
+

∂C

∂τ

∂τ

∂x

)

=

D

(

∂

∂η

∂η

∂x
+

∂

∂τ

∂τ

∂x

)(

∂C

∂η

∂η

∂x
+

∂C

∂τ

∂τ

∂x

)

(2.17)

which reduces to

∂C

∂τ
= D

∂2C

∂η2
. (2.18)

This is just the one-dimensional diffusion equation (1.29) in the coordinates η and τ with solution

for an instantaneous point source of

C(η, τ) =
M

A
√

4πDτ
exp

(

− η2

4Dτ

)

. (2.19)

Converting the solution back to x and t coordinates (by substituting (2.15) and (2.16)), we

obtain (2.2); thus, our intuitive guess for the superposition solution was correct. Figure 2.2

shows the schematic behavior of this solution for three different times, t1, t2, and t3.

2.1.3 Incompressible fluid

For an incompressible fluid, (2.12) can be simplified by using the conservation of mass equation

for the ambient fluid. In an incompressible fluid, the density is a constant ρ0 everywhere, and

the conservation of mass equation reduces to the continuity equation

∇ · u = 0 (2.20)

(see, for example Batchelor (1967)). If we expand the advective term in (2.12), we can write

∇ · (uC) = (∇ · u)C + u · ∇C. (2.21)

by virtue of the continuity equation (2.20) we can take the term (∇·u)C = 0; thus, the advective

diffusion equation for an incompressible fluid is
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∂C

∂t
+ ui

∂C

∂xi
= D

∂2C

∂x2
i

. (2.22)

This is the form of the advective diffusion equation that we will use the most in this class.

2.1.4 Rules of thumb

We pause here to make some observations regarding the AD equation and its solutions.

First, the solution in Figure 2.2 shows an example where the diffusive and advective transport

are about equally important. If the crossflow were stronger (larger u), the cloud would have less

time to spread out and would be narrower at each ti. Conversely, if the diffusion were faster

(larger D), the cloud would spread out more between the different ti and the profiles would

overlap. Thus, we see that diffusion versus advection dominance is a function of t, D, and u,

and we express this property through the non-dimensional Peclet number

Pe =
D

u2t
, (2.23)

or for a given downstream location L = ut,

Pe =
D

uL
. (2.24)

For Pe � 1, diffusion is dominant and the cloud spreads out faster than it moves downstream;

for Pe � 1, advection is dominant and the cloud moves downstream faster than it spreads out.

It is important to note that the Peclet number is dependent on our zone of interest: for “large”

times or distances, the Peclet number is small and advection dominates.

Second, the maximum concentration decreases in the downstream direction due to diffusion.

Figure 2.2 also plots the maximum concentration of the cloud as it moves downstream. This is

obtained when the exponential term in (2.2) is 1.0. For the one-dimensional case, the maximum

concentration decreases as

Cmax(t) ∝ 1√
t
. (2.25)

In the two- and three-dimensional cases, the relationship is

Cmax(t) ∝ 1

t
and (2.26)

Cmax(t) ∝ 1

t
√

t
, (2.27)

respectively.

Third, the diffusive and advective scales can be used to simplify the equations and make ap-

proximations. One of the most common questions in engineering is: when does a given equation

or approximation apply? In contaminant transport, this question is usually answered by com-

paring characteristic advection and diffusion length and time scales to the length and time scales

in the problem. For advection (subscript a) and for diffusion (subscript d), the characteristic

scales are
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La = ut ; ta =
L

u
(2.28)

Ld =
√

Dt ; td =
L2

D
. (2.29)

These scales can be used as a rule-of-thumb estimate for when or where certain events take

place. For instance, for a point source released in the middle of a region of width L and bounded

at ±L/2 by impermiable boundaries, the time required before the cloud can be considered well-

mixed over the region by diffusion is tm,d = L2/(8D). The coefficient value 8 is derived by

requiring that the concentration at ±L/2 be at least 97% of the maximum concentration Cmax.

These characteristic scales (easily derivable through dimensional analysis) should be memorized

and used extensively to get a rough solution to transport problems.

2.2 Solutions to the advective diffusion equation

In the previous chapter we presented a detailed solution for an instantaneous point source in a

stagnant ambient. In nature, initial and boundary conditions can be much different from that

idealized case, and this section presents a few techniques to deal with other general cases. Just as

advection and diffusion are additive, we will also show that superpostion can be used to build up

solutions to complex geometries or initial conditions from a base set of a few general solutions.

The solutions in this section parallel a similar section in Fischer et al. (1979). Appendix B

presents analytical solutions for other initial and boundary conditions, primarily obtained by

extending the techniques discussed in this section. Taken together, these solutions can be applied

to a wide range of problems.

2.2.1 Initial spatial concentration distribution

A good example of the power of superposition is the solution for an initial spatial concentration

distribution. Since advection can always be included by changing the frame of reference, we will

consider the one-dimensional stagnant case. Thus, the governing equation is

∂C

∂t
= D

∂2C

∂x2
. (2.30)

We will consider the homogeneous initial distribution, given by

C(x, t0) =

{

C0 if x ≤ 0

0 if x > 0
(2.31)

where t0 = 0 and C0 is the uniform initial concentration, as depicted in Figure 2.3. At a point

x = ξ < 0 there is an infinitesimal mass dM = C0Adξ, where A is the cross-sectional area δyδz.

For t > 0, the concentration at any point x is due to the diffusion of mass from all the differential

elements dM . The contribution dC for a single element dM is just the solution of (2.30) for an

instantaneous point source

dC(x, t) =
dM

A
√

4πDt
exp

(

−(x − ξ)2

4Dt

)

, (2.32)
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Fig. 2.3. Schematic of an instantaneous initial concentration distribution showing the differential element dM at
the point −ξ.

and by virtue of superposition, we can sum up all the contributions dM to obtain

C(x, t) =

∫ 0

−∞

C0dξ√
4πDt

exp

(

−(x − ξ)2

4Dt

)

(2.33)

which is the superposition solution to our problem. To compute the integral, we must, as usual,

make a change of variables. The new variable ζ is defined as follows

ζ =
x − ξ√

4Dt
(2.34)

dζ = − dξ√
4Dt

. (2.35)

Substituting ζ into the integral solution gives

C(x, t) =
C0√

π

∫ x/
√

4Dt

∞
− exp(−ζ2)dζ. (2.36)

Note that to obtain the upper bound on the integral we set ξ = 0 in the definition for ζ given

in (2.34). Rearranging the integral gives

C(x, t) =
C0√

π

∫ ∞

x/
√

4Dt
exp(−ζ2)dζ (2.37)

=
C0√

π

[

∫ ∞

0
exp(−ζ2)dζ −

∫ x/
√

4Dt

0
exp(−ζ2)dζ

]

. (2.38)

The first of the two integrals can be solved analytically—from a table of integrals, its solution

is
√

π/2. The second integral is the so called error function, defined as

erf(ϕ) =
2√
π

∫ ϕ

0
exp(−ζ2)dζ. (2.39)

Solutions to the error function are generally found in tables or as built-in functions in a spread-

sheet or computer programming language. Hence, our solution can be written as

C(x, t) =
C0

2

(

1 − erf

(

x√
4Dt

))

. (2.40)

Figure 2.4 plots this solution for C0 = 1 and for increasing times t.
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Fig. 2.4. Solution (2.40) for an instantaneous initial concentration distribution given by (2.31) with C0 = 1.

Example Box 2.1:
Diffusion of an intravenous injection.

A doctor administers an intravenous injection of
an allergy fighting medicine to a patient suffering
from an allergic reaction. The injection takes a to-
tal time T . The blood in the vein flows with mean
velocity u, such that blood over a region of length
L = uT contains the injected chemical; the concen-
tration of chemical in the blood is C0 (refer to the
following sketch).

L

-x x

x = 0

What is the distribution of chemical in the vein when
it reaches the heart 75 s later?

This problem is an initial spatial concentration
distribution, like the one in Section 2.2.1. Take the
point x = 0 at the middle of the distribution and
let the coordinate system move with the mean blood
flow velocity u. Thus, we have the initial concentra-
tion distribution

C(x, t0) =

{

C0 if −L/2 < x < L/2
0 otherwise

where t0 = 0 at the time T/2.
Following the solution method in Section 2.2.1,

the superposition solution is

C(x, t) =

∫ L/2

−L/2

C0dξ√
4πDt

exp

(

− (x − ξ)2

4Dt

)

which can be expanded to give

C(x, t) =
C0√
4πDt

·
[∫ L/2

−∞

exp

(

− (x − ξ)2

4Dt

)

dξ −
∫

−L/2

−∞

exp

(

− (x − ξ)2

4Dt

)

dξ

]

.

After substituting the coordinate transformation in
(2.34) and simplifying, the solution is found to be

C(x, t) =
C0

2

(

erf

(

x + L/2√
4Dt

)

−

erf

(

x − L/2√
4Dt

))

.

Substituting t = 75 s gives the concentration distri-
bution when the slug of medicine reaches the heart.

2.2.2 Fixed concentration

Another common situation is a fixed concentration at some point x1. This could be, for example,

the oxygen concentration at the air-water interface. The parameters governing the solution are

the fixed concentration C0, the diffusion coefficient D, and the coordinates (x − x0), and t.

Again, we will neglect advection since we can include it through a change of variables, and we
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Fig. 2.5. Solution (2.43) for a fixed concentration at x = 0 of C0 = 1.

will take x0 = 0 for simplicity. As we did for a point source, we form a similarity solution from

the governing variables, which gives us the solution form

C(x, t) = C0f

(

x√
Dt

)

. (2.41)

If we define the similarity variable η = x/
√

Dt and substitute it into (2.30) we obtain, as

expected, an ordinary differential equation in f and η, given by

d2f

dη2
+

η

2

df

dη
= 0 (2.42)

with boundary conditions f(0) = 1 and f(∞) = 0. Unfortunately, our ordinary differential

equation is non-linear. A quick look at Figure 2.4, however, might help us guess a solution. The

point at x = 0 has a fixed concentration of C0/2. If we substitute C0 as the leading coefficient

in (2.40) (instead of C0/2), maybe that would be the solution. Substitution into the differential

equation (2.42) and its boundary conditions proves, indeed, that the solution is correct, namely

C(x, t) = C0

(

1 − erf

(

x√
4Dt

))

(2.43)

is the solution we seek. Figure 2.5 plots this solution for C0 = 1. Important note: this solution

is only valid for x > x0.

2.2.3 Fixed, no-flux boundaries

The final situation we examine in this section is how to incorporate no-flux boundaries. No-flux

boundaries are any surface that is impermeable to the contaminant of interest. The discussion

in this section assumes that no chemical reactions occur at the surface and that the surface is

completely impermeable.

As you might expect, we first need to find a way to specify a no-flux boundary as a boundary

condition to the governing differential equation. This is done easily using Fick’s law. Since no-

flux means that q = 0 (and taking D as constant), the boundary conditions can be expressed
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Example Box 2.2:
Dissolving sugar in coffee.

On a cold winter’s day you pour a cup of coffee and
add 2 g of sugar evenly distributed over the bottom
of the coffee cup. The diameter of the cup is 5 cm;
its height is 7 cm. If you do not stir the coffee, when
does the concentration boundary layer first reach the
top of the cup and when does all of the sugar dis-
solve? How would these answers change if you stir
the coffee?

The concentration of sugar is fixed at the satu-
ration concentration at the bottom of the cup and
is initially zero everywhere else. These are the same
conditions as for the fixed concentration solution;
thus, the sugar distribution at height z above the
bottom of the cup is

C(z, t) = C0

(

1 − erf

(

z√
4Dt

))

.

The characteristic height of the concentration
boundary layer is proportional to σ =

√
2Dt. As-

sume the concentration boundary layer first reaches
the top of the cup when 2σ = h = 7 cm. Solving for
time gives

tmix,bl =
h2

8D
.

For an order-of-magnitude estimate, take D ∼
10−9 m2/s, giving

tmix,bl ≈ 6 · 105 s.

To determine how long it takes for the sugar to
dissolve, we must compute the mass flux of sugar at
z = 0. We already computed the derivative of the
error function in Example Box 1.1. The mass flux of
sugar at z = 0 is then

ṁ(0, t) =
ADCsat√

πDt

where A is the cross-sectional area of the cup. The to-
tal amount of dissolved sugar Md is the time-integral
of the mass flux

Md =

∫ t

0

ADCsat√
πDτ

dτ

Integrating and solving for time gives

td =
M2

d π

4A2DC2
sat

where td is the time it takes for the mass Md to
dissolve. This expression is only valid for t < tmix,bl;
for times beyond tmix,bl, we must account for the
boundary at the top of the cup. Assuming Csat =
0.58 g/cm3, the time needed to dissolve all the sugar
is

td = 5 · 104 s.

By stirring, we effectively increase the value of D.
Since D is in the denominator of each of these time
estimates, we shorten the time for the sugar to dis-
solve and mix throughout the cup.

as

q|Sb
· n = 0

(

∂C

∂x
,
∂C

∂y
,
∂C

∂z

)∣

∣

∣

∣

Sb

· n = 0 (2.44)

where Sb is the function describing the boundary surface (i.e. Sb = f(x, y)) and n is the unit vec-

tor normal to the no-flux boundary. In the one-dimensional case, the no-flux boundary condition

reduces to

∂C

∂x

∣

∣

∣

∣

xb

= 0, (2.45)

where xb is the boundary location. This property is very helpful in interpreting concentration

measurements to determine whether a boundary, for instance, the lake bottom, is impermeable

or not.

To find a solution to a bounded problem, consider an instantaneous point source injected

at x0 with a no-flux boundary a distance L to the right as shown in Figure 2.6. Our standard

solution allows mass to diffuse beyond the no-flux boundary (as indicated by the dashed line in
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Fig. 2.6. Schematic of a no-flux boundary with real instantaneous point source to the left and an imaginary
source to the right. The dotted lines indicate the individual contributions from the two sources; the solid line
indicates the superposition solution.

the figure). To replace this lost mass, an image source (imaginary source) is placed to the right

of the boundary, such that it leaks the same amount of mass back to left of the boundary as

our standard solution leaked to the right. Superposing (adding) these two solutions gives us the

desired no-flux behavior at the wall. The image source is placed L to the right of the boundary,

and the solution is

C(x, t) =
M

A
√

4πDt

(

exp

(

−(x − x0)
2

4Dt

)

+ exp

(

−(x − xi)
2

4Dt

))

(2.46)

where xi = x0 + 2L. Naturally, the solution given here is only valid to the left of the boundary.

To the right of the boundary, the concentration is everywhere zero. Compute the concentration

gradient ∂C/∂x at x = 0 to prove to yourself that the no-flux boundary condition is satisfied.

The method of images becomes more complicated when multiple boundaries are concerned.

This is because the mass diffusing from the image source on the right eventually will penetrate a

boundary on the left and need its own image source. In general, when there are two boundaries,

an infinite number of image sources is required. In practice, the solution usually converges after

only a few image sources have been included (Fischer et al. 1979). For the case of an instantaneous

point source at the origin with boundaries at ±L, Fischer et al. (1979) give the image source

solution

C(x, t) =
M

A
√

4πDt

∞
∑

n=−∞
exp

(

−(x + 2nL)2

4Dt

)

. (2.47)

Obviously, the number of image sources required for the solution to converge depends on the

time scale over which the solution is to be valid. These techniques will become more clear in the

following examples and remaining chapters.

2.3 Application: Diffusion in a Lake

We return here to the application of arsenic contamination in a small lake presented in Chapter 1

(adapted from Nepf (1995)). After further investigation, it is determined that a freshwater spring

flows into the bottom of the lake with a flow rate of 10 l/s.
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Example Box 2.3:
Boundaries in a coffee cup.

In the previous example box we said that we have
to account for the free surface boundary when the
concentration boundary layer reaches the top of the
coffee cup. Describe the image source needed to ac-
count for the free surface and state the image-source
solution for the concentration distribution.

We can ignore the boundaries at the sides of the
cup because sugar is evenly distributed on the bot-
tom of the cup. This even distribution results in
∂C/∂x = ∂C/∂y = 0, which results in no net dif-
fusive flux toward the cup walls.

To account for the free surface, though, we must
add an image source with a fixed concentration of
Csat somewhere above the cup. Taking z = 0 at the
bottom of the cup, the image source must be placed
at z = 2h, where h is the depth of coffee in the cup.

Taking care that C(z,∞) → Csat, the superposi-
tion solution for the sugar concentration distribution
can be found to be

C(z, t) = Csat

(

1 + erf

(

2h√
4Dt

)

−

erf

(

z√
4Dt

)

− erf

(

2h − z√
4Dt

))

.

Advection. Advection is due to the flow of spring water through the lake. Assuming the spring

is not buoyant, it will spread out over the bottom of the lake and rise with a uniform vertical

flux velocity (recall that z is positive downward, so the flow is in the minus z-direction)

va = −Q/A

= −5 · 10−7 m/s. (2.48)

The concentration of arsenic at the thermocline is 8 µg/l, which results in an advective flux of

arsenic

qa = Cva

= −4 · 10−3 µg/(m2s). (2.49)

Thus, advection caused by the spring results in a vertical advective flux of arsenic through the

thermocline.

Discussion. Taking the turbulent and advective fluxes of arsenic together, the net vertical flux

of arsenic through the thermocline is

Jz = −4.00 · 10−3 + 2.93 · 10−3

= −1.10 · 10−3 µg/(m2s) (2.50)

where the minus sign indicates the net flux is upward. Thus, although the net diffusive flux is

downward, the advection caused by the stream results in the net flux at the thermocline being

upward. We can conclude that the arsenic source is likely at the bottom of the lake. The water

above the thermocline will continue to increase in concentration until the diffusive flux at the

thermocline becomes large enough to balance the advective flux through the lake, at which time

the system will reach a steady state.
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Fig. 2.7. Schematic diagram of the reservoir and fish farm intake for the copper contamination example.

2.4 Application: Fishery intake protection

As part of a renovation project, the face of a dam is to be treated with copper sulfate to remove

unsightly algae build-up. A fish nursery derives its water from the reservoir upstream of the

dam and has contracted you to determine if the project will affect their operations. Based on

experience, the fish nursery can accept a maximum copper concentration at their intake of

1.5 · 10−3 mg/l. Refer to Figure 2.7 for a schematic of the situation.

The copper sulfate is applied uniformly across the dam over a period of about one hour. Thus,

we might model the copper contamination as an instantaneous source distributed evenly along

the dam face. After talking with the renovation contractor, you determine that 1 kg of copper

will be dissolved at the dam face. Because the project is scheduled for the spring turnover in the

lake, the contaminant might be assumed to spread evenly in the vertical (dam cross-sectional

area A = 3000 m2). Based on a previous dye study, the turbulent diffusion coefficient was

determined to be 2 m2/s. The average flow velocity past the fishery intake is 0.01 m/s.

Advection or diffusion dominant. To evaluate the potential risks, the first step is to see how

important diffusion is to the transport of copper in the lake. This is done through the Peclet

number, giving

Pe =
D

uL
= 0.3 (2.51)

which indicates diffusion is mildly important, and the potential for copper to migrate upstream

remains.

Maximum concentration at intake. Because there is potential that copper will move upstream

due to diffusion, the concentration of copper at the intake needs to be predicted. Taking the

dam location at x = 0 and taking x positive downstream, the concentration at the intake is

C(xi, t) =
M

A
√

4πDt
exp

(

−(xi − ut)2

4Dt

)

. (2.52)
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Fig. 2.8. Concentration of copper at the fishery intake as a function of time. The dotted line indicates the
maximum allowable concentration of 1.5 · 10−3 mg/l.

where xi is the intake location (-700 m). Figure 2.8 shows the solution for the copper con-

centration at the intake from (2.52). From the figure, the maximum allowable concentration is

expected to be exceeded for about 1 day between the times t = 0.3 and t = 1.3 days. The

maximum copper concentration at the intake will be about 2.4 · 10−3 mg/l. Thus, the fish farm

will have to take precautions to prevent contamination. What other factors do you think could

increase or decrease the likelihood of copper poisoning at the fish farm?

Summary

This chapter derived the advective diffusion equation using the method of superposition and

demonstrated techniques to solve the resulting partial differential equation. Solutions for a stag-

nant ambient were shown to be easily modified to account for advection by solving in a moving

reference frame. Solutions for distributed and fixed concentration distributions were presented,

and the image-source method to account for no-flux boundaries was introduced. Engineering

approximations should be made by evaluating the Peclet number and characteristic length and

time scales of diffusion and advection.

Exercises

2.1 Superposition. If there are two point sources released simultaneously, how do you obtain

the concentration field as a function of space and time? You need to prove why your particular

method can be applied. If one point source is at x = −L while the other is at x = L, what is

the concentration at x = 0 (write the equation you would use to solve for C given D, M , A, and

t)? Plot your result as a function of time with the values of D, M and A set as 1.0.
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2.2 Integral evaluation. Define an appropriate coordinate transformation and show that

I =
1√
π

∫ 4Dt+x2/
√

Dt

−∞
2x

√
Dt exp



−
(

x2

√
Dt

+ 4Dt

)2


 dx (2.53)

can also be written as

I =
Dt

2

(

erf

(

x2

√
Dt

+ 4Dt

)

− 1

)

(2.54)

2.3 Non-dimensionalization. Non-dimensionalize the three-dimensional diffusion equation and

find the important parameter(s) in the equation. Use a single length scale for all three dimensions.

Discuss your parameter(s) in a brief paragraph.

2.4 Peclet number. A river with cross section A = 20 m2 has a flow rate of Q = 1 m3/s. The

effective mixing coefficient is D = 1 m2/s. For what distance downstream is diffusion dominant?

Where does advection become dominant? What is the length of stream where diffusion and

advection have about equal influence?

2.5 Advection in a stream. To estimate the mixing characteristics of a small stream, a scientist

injects 5 g of dye instantaneously and uniformly over the river cross section (A = 5 m2) at the

point x = 0. A measurement station is located 1 km downstream and records a river flow rate

of Q = 0.5 m3/s. In order to design the experiment, the scientist assumed that D = 0.1 m2/s.

Use this value to answer the following equations.

• The fluorometer used to measure the dye downstream at the measuring station has a detection

limit of 0.1 µg/l. When does the measuring station first detect the dye cloud?

• When does the maximum dye concentration pass the measuring station, and what is this

maximum concentration?

• After the maximum concentration passes the measuring station, the measured concentration

decreases again. When is the measuring station no longer able to detect the dye?

• Why is the elapsed time between first detection and the maximum concentration different

from the elapsed time between the last detection and the maximum concentration?

2.6 Fixed concentration. A beaker in a laboratory contains a solution with dissolved methane

gas (CH4). The concentration of methane in the atmosphere Ca is negligible; the concentration

of methane in the uniformly-mixed portion of the beaker is Cw. The methane in the beaker

dissolves out of the water and into the air, resulting in a fixed concentration at the water surface

of Cws = 0. Assume this process is limited by diffusion of methane through the water.

• Write an expression for the vertical concentration distribution of methane in the beaker.

Assume the bottom boundary does not affect the profile (concentration at the bottom is Cw)

and that methane is uniformly distributed in the horizontal (use the one-dimensional solution).

• Use the expression found above to find an expression for the flux of methane into the atmo-

sphere through the water surface.

2.7 Concentration profiles. Figure 2.9 shows four concentration profiles measured very carefully

at the bottom of four different lakes. For each profile, state whether the lake bottom is a no-flux

or flux boundary and describe where you think the source is located and why.
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Fig. 2.9. Bottom concentration profiles for the four lakes in problem number 2.4.

2.8 Double point sources. To demonstrate the image-source method, a professor creates two

instantaneous point sources of dye (three dimensional) a distance L apart and measures the

concentration of dye at the point halfway between the two sources. Estimate the radius of the

cloud for each point source by r = 2σ.

• Write an expression for the time t when the two sources first touch.

• Write an expression for the concentration distribution along the line connecting the two point

sources.

• Differentiate this solution to show that the net flux through the measurement point along the

axis of the two sources is zero.

2.9 The time-scale for a point source injected mid-way between two impermeable boundaries

to become uniformly mixed across the section is given by the rule-of-thumb

tm =
L2

8D
(2.55)

where L is the distance between the two boundaries and D is the diffusion coefficient. Referring

to the sketch below, consider a line of dye released instantaneously along the centerline of a

shallow river so that the problem can be treated as one-dimensional.

• Write a program applying the superposition method to calculate the relative concentration

(relative to the centerline concentration of the river C(x = 0, t)) at the river bank x = L/2

as a function of time, that is, find the ratio C(L/2, t)/C(0, t). The width of the river is L and

the diffusion coefficient of the dye is D (please email me your final program).
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• Plot your result with C(L/2, t)/C(0, t) as the y-axis and t/(L2/D) as the x-axis using the

values L = 10 m and D = 0.01 m2/s.

• What is the relative concentration when t = tm?

x = -L/2 x = L/2x = 0

2.10 How is the three-dimensional point-source solution derived. You don’t need to show the

details of the derivation. Just explain the methodology with a minimum number of equations.

2.11 Smoke stack. A chemical plant has a smoke stack 75 m tall that discharges a continuous

flux of carbon monoxide (CO) of 0.01 kg/s . The wind blows with a velocity of 1 m/s due east

(from the west to the east) and the transverse turbulent diffusion coefficient is 4.5 m2/s. Neglect

longitudinal (downwind) diffusion.

• Write the unbounded solution for a continuous source in a cross wind.

• Add the appropriate image source(s) to account for the no-flux boundary at the ground and

write the resulting image-source solution for concentration downstream of the release.

• Plot the two-dimensional concentration distribution downstream of the smoke stack for the

plane 2 m above the ground.

• For radial distance r away from the smoke stack, where do the maximum concentrations occur?

2.12 Damaged smoke stack. After a massive flood, the smoke stack in the previous problem

developed a leak at ground level so that all the exhaust exits at z = 0.

• How does this new release location change the location(s) of the image source(s)?

• Plot the maximum concentration at 2 m above the ground as a function of distance from the

smoke stack for this damaged case.

• If a CO concentration of 1.0 µg/l of CO is dangerous, should the factory be closed until repairs

are completed?

2.13 Boundaries in a boat arena. A boat parked in an arena has a sudden gasoline spill. The

arena is enclosed on three sides, and the spill is located as shown in Figure 2.10. Find the

locations of the first 11 most important image sources needed to account for the boundaries and

incorporate them into the two-dimensional instantaneous point-source solution.

2.14 Image sources in a pipe. A point source is released in the center of an infinitely long round

pipe. Describe the image source needed to account for the pipe walls.
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Fig. 2.10. Sketch of the boat arena and spill location for problem number 2.4.

2.15 Vertical mixing in a river. Wastewater from a chemical plant is discharged by a line diffuser

perpendicular to the river flow and located at the bottom of the river. The river flow velocity is

15 cm/s and the river depth is 1 m.

• Find the locations of the first four most important image sources needed to account for the

river bottom and the free surface.

• Write a spreadsheet program that computes the ratio of C(x, z = h, t = x/u) to Cmax(t =

x/u), where u is the flow velocity in the river and h is the water depth; x = z = 0 at the

release location.

• Use the spreadsheet program to find the locations where the concentration ratio is 0.90, 0.95,

and 0.98.

• From dimensional analysis we can write that the time needed for the injection to mix in the

vertical is given by

tmix =
xmix

u
=

h2

αD
(2.56)

where D is the vertical diffusion coefficient. Compute the value of α for the criteria Cmin/Cmax =

0.95.

• Why is the value of α independent of D?

2.16 Mixing of joining rivers. One river (left) with a high concentration of sediment joins another

river (right) with a negligible sediment concentration. The width of the low concentration river

near their union is 40 m while the high concentration river is 80 m wide. Assume the river width

and depth do not change much after the union, and both rivers are shallow and have the same

velocity. At one particular day the mean velocity downstream of the union is 1 m/s and the

diffusion coefficient is 0.1 m2/s.

• Estimate the time required tmix and the distance downstream xmix until the low sediment con-

centration river is considered to be well-mixed with the sediment from the high concentration

river. Use a relative concentration of 95% as the criteria for the well-mixed condition.

• If there is a water intake located on the low-sediment side of the river at 3 km downstream

from the river union, do you expect the water taken from the intake to contain a significant

amount of sediment? Justify your answer.
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Table 2.1: Table of solutions to the diffusion equation

Schematic and Solution

Instantaneous point source, infinite domain

C

x

C(x,t = 0) = 

x0

δ (x-x0)M
A

8

C

x

Cmax

2σ1

4σ2

C(x, t) =
M

A
√

4πDt
exp

[

− (x − x0)
2

4Dt

]

Cmax(t) =
M

A
√

4πDt

qx(x, t) =
M(x − x0)

2At
√

4πDt
exp

[

− (x − x0)
2

4Dt

]

Let σ =
√

2Dt and
(2σ)2 = 8Dt.
For x0 = 0:
C(±σ, t) = 0.61Cmax(t)

Let σ =
√

2Dt and
(4σ)2 = 32Dt.
For x0 = 0:
C(±2σ, t) = 0.14Cmax(t)

Instantaneous distributed source, infinite domain

C

x

C(x,t = 0) = 

x0

C

x

2σ1

C0, x < x0

   0, x > x0

C0
2

4σ2

C(x, t) =
C0

2

[

1 − erf

[

(x − x0)√
4Dt

]]

Cmax(t) = C0

qx(x, t) =
C0

√
D√

4πt
exp

[

− (x − x0)
2

4Dt

]

Let σ =
√

2Dt and
(2σ)2 = 8Dt.
For x0 = 0:
C(+σ, t) = 0.16C0

C(−σ, t) = 0.84C0

Let σ =
√

2Dt and
(4σ)2 = 32Dt.
For x0 = 0:
C(+2σ, t) = 0.02C0

C(−2σ, t) = 0.98C0
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Table 2.1: (continued)

Schematic Solution

Fixed concentration, semi-infinite domain

C

x

C(x=x0,t ) = C0

x0

C

x

σ

C0

C0

2σ

C(x > x0, t) = C0

[

1 − erf

[

(x − x0)√
4Dt

]]

Cmax(t) = C0

qx(x > x0, t) =
2C0

√
D√

4πt
exp

[

− (x − x0)
2

4Dt

]

Let σ =
√

2Dt and
σ2 = 2Dt.
For x0 = 0:
C(+σ, t) = 0.32C0

C(−σ, t) = Undefined

Let σ =
√

2Dt and
(2σ)2 = 8Dt.
For x0 = 0:
C(+2σ, t) = 0.05C0

C(−2σ, t) = Undefined

Instantaneous point source, bounded domain

C

x

C(x,t = 0) = 

x0

δ (x-x0)M
A

8

C

x

Cmax

dC
dx

= 0
xb

2Lb

C(x, t) =
M

A
√

4πDt

∞
∑

n=−∞

exp

[

− (x − x0 + 2nLb)
2

4Dt

]

Cmax(t) =
M

A
√

4πDt

∞
∑

n=−∞

exp

[

− (2nLb)
2

4Dt

]

qx(x, t) =
M

2At
√

4πDt

∞
∑

n=−∞

(x − x0 + 2nLb) exp

[

− (x − x0 + 2nLb)
2

4Dt

]

Using the image-source
method, the first image
on the opposite side of
the boundary is at
x0 ± 2Lb.
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Table 2.1: (continued)

Schematic Solution

Instantaneous 2-D point source, infinite domain

y

x

C(x,y,t = 0) = δ (x-x0)M
H

y

x

δ (y-y0)

(x0,y0)

σ

C(x, y, t) =
M

4πHt
√

DxDy

exp

[

− (x − x0)
2

4Dxt

− (y − y0)
2

4Dyt

]

Cmax(t) =
M

4πHt
√

DxDy

q(x, y, t) =
M

8πHt2
√

DxDy

exp

[

− (x − x0)
2

4Dxt

− (y − y0)
2

4Dyt

]

((x − x0)i + (y − y0)j)

Let Dx = Dy,σ =
√

2Dt,
(2σ)2 = 8Dt, and
r2 = (x−x0)

2+(y−y0)
2.

For r = σ:
C(σ, t) = 0.61Cmax(t)

Let Dx = Dy,
σ =

√
2Dt,

(4σ)2 = 32Dt, and
r2 = (x−x0)

2+(y−y0)
2.

For r = 2σ:
C(2σ, t) = 0.14Cmax(t)

Instantaneous 3-D point source, infinite domain

z

x

C(x,y,t = 0) = δ (x-x0)M
H

z

x

δ (y-y0)

(x0,y0,z0)

δ (z-z0)

Iso-concentration
surface

y

y

C(x, y, z, t) =
M

4πt
√

4πtDxDyDz

exp

[

− (x − x0)
2

4Dxt

− (y − y0)
2

4Dyt
− (z − z0)

2

4Dzt

]

Cmax(t) =
M

4πt
√

4πtDxDyDz

q(x, y, z, t) =
M

8πt2
√

4πtDxDyDz

exp

[

− (x − x0)
2

4Dxt

− (y − y0)
2

4Dyt
− (z − z0)

2

4Dzt

]

·

((x − x0)i + (y − y0)j + (z − z0)k)

Let Dx = Dy = Dz,
σ =

√
2Dt, (2σ)2 = 8Dt,

and
r2 = (x − x0)

2 + (y −
y0)

2 + (z − z0)
2.

For r = σ:
C(σ, t) = 0.61Cmax(t)

Let Dx = Dy = Dz,
σ =

√
2Dt,

(4σ)2 = 32Dt, and
r2 = (x − x0)

2 + (y −
y0)

2 + (z − z0)
2.

For r = 2σ:
C(2σ, t) = 0.14Cmax(t)
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3. Mixing in Rivers: Turbulent Diffusion

and Dispersion

In previous chapters we considered the processes of advection and molecular diffusion and have

seen some example problems with so called “turbulent diffusion” coefficients, where we use the

same governing equations, but with larger diffusion (mixing) coefficients. In natural rivers, a

host of processes lead to a non-uniform velocity field, which allows mixing to occur much faster

than by molecular diffusion alone. In this chapter, we formally derive the equations for non-

uniform velocity fields to demonstrate their effects on mixing. First, we consider the effect of a

random, turbulent velocity field. Second, we consider the combined effects of diffusion (molecular

or turbulent) with a shear velocity profile to develop equations for dispersion. In each case, the

resulting equations retain their previous form, but the mixing coefficients are orders of magnitude

greater than the molecular diffusion coefficients.

We start by giving a description of turbulence and its effects on the transport of contaminants.

We then derive a new advective diffusion equation for turbulent flow and show why turbulence

can be described by the regular advective diffusion equation derived previously, but using larger

turbulent diffusion coefficients. We then look at the effect of a shear velocity profile on the

transport of contaminants and derive one-dimensional equations for longitudinal dispersion.

This chapter concludes with a common dye study application to compute the effective mixing

coefficients in rivers.

3.1 Turbulence and mixing

In the late 1800’s, Reynolds performed a series of experiments on the transport of dye streaks in

pipe flow. These were the pioneering observations of turbulence, and his analysis is what gives

the Re number its name. It is interesting to realize that the first contribution to turbulence

research was in the area of contaminant transport (the behavior of dye streaks); therefore, we

can assume that turbulence has an important influence on transport. In his paper, Reynolds

(1883) wrote (taken from Acheson (1990)):

The experiments were made on three tubes. They were all about 4 feet 6 inches

[1.37 m] long, and fitted with trumpet mouthpieces, so that water might enter without

disturbance. The water was drawn through the tubes out of a large glass tank, in which

the tubes were immersed, arrangements being made so that a streak or streaks of highly

colored water entered the tubes with the clear water.

The general results were as follows:

Copyright c© 2004 by Scott A. Socolofsky and Gerhard H. Jirka. All rights reserved.
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Fig. 3.1. Sketches from Reynolds (1883) showing laminar flow (top), turbulent flow (middle), and turbulent flow
illuminated with an electric spark (bottom). Taken from Acheson (1990).

1. When the velocities were sufficiently low, the streak of colour extended in a beautiful

straight line through the tube.

2. If the water in the tank had not quite settled to rest, at sufficiently low velocities,

the streak would shift about the tube, but there was no appearance of sinuosity.

3. As the velocity was increased by small stages, at some point in the tube, always at

a considerable distance from the trumpet or intake, the color band would all at once

mix up with the surrounding water, and fill the rest of the tube with a mass of colored

water. Any increase in the velocity caused the point of break down to approach the

trumpet, but with no velocities that were tried did it reach this. On viewing the tube

by the light of an electric spark, the mass of color resolved itself into a mass of more

or less distinct curls, showing eddies.

Figure 3.1 shows the schematic drawings of what Reynolds saw, taken from his paper.

The first case he describes, the one with low velocities, is laminar flow: the fluid moves in

parallel layers along nearly perfect lines, and disturbances are damped by viscosity. The only way

that the dye streak can spread laterally in the laminar flow is through the action of molecular

diffusion; thus, it would take a much longer pipe before molecular diffusion could disperse the

dye uniformly across the pipe cross-section (what rule of thumb could we use to determine the

required length of pipe?).

The latter case, at higher velocities, is turbulent flow: the fluid becomes suddenly unstable

and develops into a spectrum of eddies, and these disturbances grow due to instability. The

dye, which more or less follows the fluid passively, is quickly mixed across the cross-section as

the eddies grow and fill the tube with turbulent flow. The observations with an electric spark

indicate that the dye conforms to the shape of the eddies. After some time, however, the eddies

will have grown and broken enough times that the dye will no longer have strong concentration

gradients that outline the eddies: at that point, the dye is well mixed and the mixing is more or

less random (even though it is still controlled by discrete eddies).



3.1 Turbulence and mixing 53

Reynolds summarized his results by showing that these characteristics of the flow were de-

pendent on the non-dimensional number Re = UL/ν, where U is the mean pipe flow velocity, L

the pipe diameter and ν the kinematic viscosity, and that turbulence occurred at higher values

of Re. The main consequence of turbulence is that it enhances momentum and mass transport.

3.1.1 Mathematical descriptions of turbulence

Much research has been conducted in the field of turbulence. The ideas summarized in the

following can be found in much greater detail in the treatises by Lumley & Panofsky (1964),

Pope (2000), and Mathieu & Scott (2000).

In this section we will consider a special kind of turbulence: homogeneous turbulence. The

term homogeneous means that the statistical properties of the flow are steady (unchanging)—the

flow can still be highly irregular. These homogeneous statistical properties are usually described

by properties of the velocity experienced at a point in space in the turbulent flow (this is an

Eulerian description). To understand the Eulerian properties of turbulence, though, it is useful

to first consider a Lagrangian frame of reference and follow a fluid particle.

In a turbulent flow, large eddies form continuously and break down into smaller eddies so

that there is always a spectrum of eddy sizes present in the flow. As a large eddy breaks down

into multiple smaller eddies, very little kinetic energy is lost, and we say that energy is efficiently

transferred through a cascade of eddy sizes. Eventually, the eddies become small enough that

viscosity takes over, and the energy is damped out and converted into heat. This conversion of

kinetic energy to heat at small scales is called dissipation and is designated by

ε =
dissipated kinetic energy

time
(3.1)

which has the units [L2/T 3]. Since the kinetic energy is efficiently transferred down to these

small scales, the dissipated kinetic energy must equal the total turbulent kinetic energy of the

flow: this means that production and dissipation of kinetic energy in a homogeneous turbulent

flow are balanced.

The length scale of the eddies in which turbulent kinetic energy is converted to heat is called

the Kolmogorov scale LK . How large is LK? We use dimensional analysis to answer this question

and recognize that LK depends on the rate of dissipation (or, equivalently, production) of energy,

ε, and on the viscosity, ν, since friction converts the kinetic energy to heat. Forming a length

scale from these parameters, we have

LK ∝ ν3/4

ε1/4
. (3.2)

This is an important scale in turbulence.

Summarizing the Lagrangian perspective, if we follow a fluid particle, it may begin by being

swept into a large eddy, and then will move from eddy to eddy as the eddies break down,

conserving kinetic energy in the cascade. Eventually, the particle finds itself in a small enough

eddy (one of order LK in size), that viscosity dissipates its kinetic energy into heat. This small

eddy is also a part of a larger eddy; hence, all sizes of eddies are present at all times in the flow.
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Fig. 3.2. Schematic measurement of the turbulent fluctuating velocity at a point showing the average velocity, u
and the fluctuating component, u′(t).

Because it is so difficult to follow a fluid particle with a velocity probe (this is what we try

to do with Particle Tracking Velocimetry (PTV)), turbulent velocity measurements are usually

made at a point, and turbulence is described by an Eulerian reference frame. The spectrum of

eddies pass by the velocity probe, transported with the mean flow velocity. Large eddies produce

long-period velocity fluctuations in the velocity measurement, and small eddies produce short-

period velocity fluctuations, and all these scales are present simultaneously in the flow. Figure 3.2

shows an example of a turbulent velocity measurement for one velocity component at a point.

If we consider a short portion of the velocity measurement, the velocities are highly correlated

and appear deterministic. If we compare velocities further apart in the time-series, the velocities

become completely uncorrelated and appear random. The time-scale at which velocities begin

to appear uncorrelated and random is called the integral time scale tI . In the Lagrangian frame,

this is the time it takes a parcel of water to forget its initial velocity. This time scale can also

be written as a characteristic length and velocity, giving the integral scales uI and lI .

Reynolds suggested that at some time longer than tI , the velocity at a point xi could be

decomposed into a mean velocity ui and a fluctuation u′
i such that

ui(xi, t) = ui(xi) + u′
i(xi, t), (3.3)

and this treatment of the velocity is called Reynolds decomposition. tI is, then, comparable to

the time it takes for ui to become steady (constant).

One other important descriptor of turbulence is the root-mean-square velocity

urms =
√

u′u′ (3.4)

which, since kinetic energy is proportional to a velocity squared, is a measure of the turbulent

kinetic energy of the flow (i.e. the mean flow kinetic energy is subtracted out since u′ is just the

fluctuation from the mean).
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3.1.2 The turbulent advective diffusion equation

To derive an advective diffusion equation for turbulence, we substitute the Reynolds decompo-

sition into the normal equation for advective diffusion and analyze the results. Before we can do

that, we need a Reynolds decomposition analogy for the concentration, namely,

C(xi, t) = C(xi) + C ′(xi, t). (3.5)

Since we are only interested in the long-term (long compared to tI) average behavior of a

tracer cloud, after substituting the Reynolds decomposition, we will also take a time average. As

an example, consider the time-average mass flux in the x-direction at our velocity probe, uC:

qx = uC

= (ui + u′
i)(C + C ′)

= uiC + uiC ′ + u′
iC + u′

iC
′ (3.6)

where the over-bar indicates a time average

uC =
1

tI

∫ t+tI

t
uCdτ. (3.7)

For homogeneous turbulence, the average of the fluctuating velocities must be zero, u′
i = C ′ = 0,

and we have

uC = uiC + u′
iC

′ (3.8)

where we drop the double over-bar notation since the average of an average is just the average.

Note that we cannot assume that the cross term u′
iC

′ is zero.

With these preliminary tools, we are now ready to substitute the Reynolds decomposition

into the governing advective diffusion equation (with molecular diffusion coefficients) as follows

∂C

∂t
+

∂uiC

∂xi
=

∂

∂xi

(

D
∂C

∂xi

)

∂(C + C ′)

∂t
+

∂(ui + u′
i)(C + C ′)

∂xi
=

∂

∂xi

(

D
∂(C + C ′)

∂xi

)

. (3.9)

Next, we integrate over the integral time scale tI

1

tI

∫ t+tI

t

{

∂(C + C ′)

∂τ
+

∂(ui + u′
i)(C + C ′)

∂xi
=

∂

∂xi

(

D
∂(C + C ′)

∂xi

)}

dτ

∂(C + C ′)

∂t
+

∂(uiC + uiC ′ + u′
iC + u′

iC
′)

∂xi
=

∂

∂xi

(

D
∂(C + C ′)

∂xi

)

. (3.10)

Finally, we recognize that the terms uiC ′, u′
iC and C ′ are zero, and, after moving the u′

iC
′-term

to the right hand side, we are left with

∂C

∂t
+ ui

∂C

∂xi
= −∂u′

iC
′

∂xi
+

∂

∂xi

(

D
∂C

∂xi

)

. (3.11)
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To utilize (3.11), we require a model for the term u′
iC

′. Since this term is of the form uC, we

know that it is a mass flux. Since both components of this term are fluctuating, it must be a mass

flux associated with the turbulence. Reynolds describes this turbulent component qualitatively

as a form of rapid mixing; thus, we might make an analogy with molecular diffusion. Taylor

(1921) derived part of this analogy by analytically tracking a cloud of tracer particles in a

turbulent flow and calculating the Lagrangian autocorrelation function. His result shows that,

for times greater than tI , the cloud of tracer particles grows linearly with time. Rutherford

(1994) and Fischer et al. (1979) use this result to justify an analogy with molecular diffusion,

though it is worth pointing out that Taylor did not take the analogy that far. For the diffusion

analogy model, the average turbulent diffusion time scale is ∆t = tI , and the average turbulent

diffusion length scale is ∆x = uItI = lI ; hence, the model is only valid for times greater than

tI . Using a Fick’s law type relationship for turbulent diffusion gives

u′
iC

′ = Dt
∂C

∂xi
(3.12)

with

Dt =
(∆x)2

∆t
= uI lI . (3.13)

Substituting this model for the average turbulent diffusive transport into (3.11) and dropping

the over-bar notation gives

∂C

∂t
+ ui

∂C

∂xi
=

∂

∂xi

(

Dt
∂C

∂xi

)

+
∂

∂xi

(

Dm
∂C

∂xi

)

. (3.14)

As we will see in the next section, Dt is usually much greater than the molecular diffusion

coefficient Dm; thus, the final term is typically neglected.

3.1.3 Turbulent diffusion coefficients in rivers

How big are turbulent diffusion coefficients? To answer this question, we need to determine what

the coefficients depend on and use dimensional analysis.

For this purpose, consider a wide river with depth h and width W � h. An important

property of three-dimensional turbulence is that the largest eddies are usually limited by the

smallest spatial dimension, in this case, the depth. This means that turbulent properties in a

wide river should be independent of the width, but dependent on the depth. Also, turbulence

is thought to be generated in zones of high shear, which in a river would be at the bed. A

parameter that captures the strength of the shear (and is also proportional to many turbulent

properties) is the shear velocity u∗ defined as

u∗ =

√

τ0

ρ
(3.15)

where τ0 is the bed shear and ρ is the fluid density. For uniform open channel flow, the shear

friction is balanced by gravity, and
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Example Box 3.1:
Turbulent diffusion in a room.

To demonstrate turbulent diffusion in a room, a
professor sprays a point source of perfume near the
front of a lecture hall. The room dimensions are 10 m
by 10 m by 5 m, and there are 50 people in the room.
How long does it take for the perfume to spread
through the room by turbulent diffusion?

To answer this question, we need to estimate the
air velocity scales in the room. Each person repre-
sents a heat source of 60 W; hence, the air flow in
the room is dominated by convection. The vertical
buoyant velocity w∗ is, by dimensional analysis,

w∗ = (BL)1/3

where B is the buoyancy flux per unit area in [L2/T3]
and L is the vertical dimension of the room (here
5 m). The buoyancy of the air increases with tem-
perature due to expansion. The net buoyancy flux
per unit area is given by

B = βg
H

ρcv

where β is the coefficient of thermal expansion
(0.00024 K−1 for air), H is the heat flux per unit
area, ρ is the density (1.25 kg/m3 for air), and cv is
the specific heat at constant volume (1004 J/(Kg·K)
for air).

For this problem,

H =
50 pers. · 60 W/pers.

102 m2

= 30 W/m2.

This gives a unit area buoyancy flux of 5.6 ·
10−5 m2/s3 and a vertical velocity of w∗ = 0.07 m/s.

We now have the necessary scales to estimate the
turbulent diffusion coefficient from (3.13). Taking
uI ∝ w∗ and lI ∝ h, where h is the height of the
room,

Dt ∝ w∗h

≈ 0.35 m2/s

which is much greater than the molecular diffusion
coefficient (compare to Dm = 10−5 m2/s in air).
The mixing time can be taken from the standard
deviation of the cloud width

tmix ≈ L2

Dt
.

For vertical mixing, L = 5 m, and tmix is 1 minute;
for horizontal mixing, L = 10 m, and tmix is 5 min-
utes. Hence, it takes a few minutes (not just a couple
seconds or a few hours) for the students to start to
smell the perfume.

u∗ =
√

ghS (3.16)

where S is the channel slope. Arranging our two parameters (h and u∗) to form a diffusion

coefficient gives

Dt ∝ u∗h. (3.17)

Because the velocity profile is much different in the vertical (z) direction as compared with

the transverse (y) direction, Dt is not expected to be isotropic (i.e. it is not the same in all

directions).

Vertical mixing. Vertical turbulent diffusion coefficients can be derived from the velocity

profile (see Fischer et al. (1979)). For fully developed turbulent open-channel flow, it can be

shown that the average turbulent log-velocity profile is given by

ut(z) = u +
u∗
κ

(1 + ln(z/h)) (3.18)

where κ is the von Karman constant. Taking κ = 0.4, we obtain

Dt,z = 0.067hu∗. (3.19)

This relationship has been verified by experiments for rivers and for atmospheric boundary layers

and can be considered accurate to ±25%.
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Example Box 3.2:
Vertical mixing in a river.

A factory waste stream is introduced through a
lateral diffuser at the bed of a river, as shown in the
following sketch.

ασ

L

At what distance downstream can the injection be
considered as fully mixed in the vertical?

The assumption of “fully mixed” can be defined
as the condition where concentration variations over
the cross-section are below a threshold criteria. Since
the vertical domain has two boundaries, we have
to use an image-source solution similar to (2.47) to
compute the concentration distribution. The results
can be summarized by determining the appropriate
value of α in the relationship

h = ασ

where h is the depth and σ is the standard devia-
tion of the concentration distribution. Fischer et al.
(1979) suggest α = 2.5.

For vertical mixing, we are interested in the ver-
tical turbulent diffusion coefficient, so we can write

h = 2.5
√

2Dt,zt

where t is the time required to achieve vertical mix-
ing. Over the time t, the plume travels downstream
a distance L = ut. We can also make the approxi-
mation u∗ = 0.1u. Substituting these relationships
together with (3.19) gives

h = 2.5
√

2 · 0.067h(0.1u)L/u.

Solving for L gives

L = 12h.

Thus, a bottom or surface injection in a natural
stream can be treated as fully vertically mixed af-
ter a distance of approximately 12 times the channel
depth.

Transverse mixing. On average there is no transverse velocity profile and mixing coefficients

must be obtained from experiments. For a wealth of laboratory and field experiments reported in

Fischer et al. (1979), the average transverse turbulent diffusion coefficient in a uniform straight

channel can be taken as

Dt,y = 0.15hu∗. (3.20)

The experiments indicate that the width plays some role in transverse mixing; however, it is

unclear how that effect should be incorporated (Fischer et al. 1979). Transverse mixing deviates

from the behavior in (3.20) primarily due to large, coherent lateral motions, which are really not

properties of the turbulence in the first place. Based on the ranges reported in the experiments,

(3.20) should be considered accurate to at best ±50%.

In natural streams, the cross-section is rarely of uniform depth, and the fall-line tends to

meander. These two effects enhance transverse mixing, and for natural streams, Fischer et al.

(1979) suggest the relationship

Dt,y = 0.6hu∗. (3.21)

If the stream is slowly meandering and the side-wall irregularities are moderate, the coefficient

in (3.21) is usually found in the range 0.4–0.8.

Longitudinal mixing. Since we assume there are no boundary effects in the lateral or longi-

tudinal directions, longitudinal turbulent mixing should be equivalent to transverse mixing:

Dt,x = Dt,y. (3.22)
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Fig. 3.3. Schematic showing the process of longitudinal dispersion. Tracer is injected uniformly at (a.) and
stretched by the shear profile at (b.). At (c.) vertical diffusion has homogenized the vertical gradients and a
depth-averaged Gaussian distribution is expected in the concentration profiles.

However, because of non-uniformity of the vertical velocity profile and other non-uniformities

(dead zones, curves, non-uniform depth, etc.) a process called longitudinal dispersion dominates

longitudinal mixing, and Dt,x can often be neglected, with a longitudinal dispersion coefficient

(derived in the next section) taking its place.

Summary. For a natural stream with width W = 10 m, depth h = 0.3 m, flow rate Q = 1 m3/s,

and slope S = 0.0005, the relationships (3.19), (3.20), and (3.22) give

Dt,z = 6.4 · 10−4 m2/s (3.23)

Dt,y = 5.7 · 10−3 m2/s (3.24)

Dt,x = 5.7 · 10−3 m2/s. (3.25)

Since these calculations show that Dt in natural streams is several orders of magnitude greater

than the molecular diffusion coefficient, we can safely remove Dm from (3.14).

3.2 Longitudinal dispersion

In the previous section we saw that turbulent fluctuating velocities caused a kind of random

mixing that could be described by a Fickian diffusion process with larger, turbulent diffusion

coefficients. In this section we want to consider what effect velocity deviations in space, due to

non-uniform velocity, or shear-flow, profiles, might have on the transport of contaminants.

Figure 3.3 depicts schematically what happens to a dye patch in a shear flow such as open-

channel flow. If we inject a contaminant so that it is uniformly distributed across the cross-

section at point (a.), there will be no vertical concentration gradients and, therefore, no net
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diffusive flux in the vertical at that point. The patch of tracer will advect downstream and

get stretched due to the different advection velocities in the shear profile. After some short

distance downstream, the patch will look like that at point (b.). At that point there are strong

vertical concentration gradients, and therefore, a large net diffusive flux in the vertical. As the

stretched out patch continues downstream, (turbulent) diffusion will smooth out these vertical

concentration gradients, and far enough downstream, the patch will look like that at point (c.).

The amount that the patch has spread out in the downstream direction at point (c.) is much more

than what could have been produced by just longitudinal (turbulent) diffusion. This combined

process of advection and vertical diffusion is called dispersion.

If we solve the transport equation in three dimensions using the appropriate molecular or

turbulent diffusion coefficients, we do not need to do anything special to capture the stretching ef-

fect of the velocity profile described above. Dispersion is implicitly included in three-dimensional

models.

However, we would like to take advantage of the fact that the concentration distribution

at the point (c.) is essentially one-dimensional: it is well mixed in the y- and z-directions. In

addition, the concentration distribution at point (c.) is observed to be Gaussian, suggesting a

Fickian-type diffusive process. Taylor’s analysis for dispersion, as presented in the following, is

a method to include the stretching effects of dispersion in a one-dimensional model. The result

is a one-dimensional transport equation with an enhanced longitudinal mixing coefficient, called

the longitudinal dispersion coefficient.

As pointed out by Fischer et al. (1979), the analysis presented by G. I. Taylor to compute

the longitudinal dispersion coefficient from the shear velocity profile is a particularly impressive

example of the genius of G. I. Taylor. At one point we will cancel out the terms of the equation

for which we are trying to solve. Through a scale analysis we will discard terms that would be

difficult to evaluate. And by thoroughly understanding the physics of the problem, we will use

a steady-state assumption that will make the problem tractable. Hence, just about all of our

mathematical tools will be used.

3.2.1 Derivation of the advective dispersion equation

To derive an equation for longitudinal dispersion, we will follow a modified version of the

Reynolds decomposition introduced in the previous section to handle turbulence. Referring to

Figure 3.4, we see that for one component of the turbulent decomposition, we have a mean

velocity that is constant at a point xi in three dimensional space and fluctuating velocities that

are variable in time so that

u(xi, t) = u(xi) + u′(xi, t). (3.26)

For shear-flow decomposition (here, we show the log-velocity profile in a river), we have a mean

velocity that is constant over the depth and deviating velocities that are variable over the depth

such that

u(z) = u + u′(z) (3.27)
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Fig. 3.4. Comparison of the Reynolds decomposition for turbulent flow (left) and shear flow (right).

where the over-bar represents a depth average, not an average o turbulent fluctuations. We

explicitly assume that u and u′(z) are independent of x. A main difference between these two

equations is that (3.26) has a random fluctuating component u′(xi, t); whereas, (3.27) has a

deterministic, non-random (and fully known!) fluctuating component u′(z), which we rather

call a deviation than a fluctuation. As for turbulent diffusion above, we also have a Reynold’s

decomposition for the concentrations

C(x, z) = C(x) + C ′(x, z) (3.28)

which is dependent on x, and for which C ′(x, z) is unknown.

Armed with these concepts, we are ready to follow Taylor’s analysis and apply it to longi-

tudinal dispersion in an open channel. For this derivation we will assume laminar flow and an

infinitely wide channel with no-flux boundaries at the top and bottom, so that v = w = 0. The

dye patch is introduced as a plane so that we can neglect lateral diffusion (∂C/∂y = 0). The

governing advective diffusion equation is

∂C

∂t
+ u

∂C

∂x
= Dx

∂2C

∂x2
+ Dz

∂2C

∂z2
. (3.29)

This equation is valid in three dimensions and contains the effect of dispersion. The diffusion

coefficients would either be molecular or turbulent, depending on whether the flow is laminar or

turbulent. Substituting the Reynolds decomposition for the shear velocity profile, we obtain

∂(C + C ′)

∂t
+ (u + u′)

∂(C + C ′)

∂x
= Dx

∂2(C + C ′)

∂x2
+ Dz

∂2(C + C ′)

∂z2
. (3.30)

Since we already argued that longitudinal dispersion will be much greater than longitudinal

diffusion, we will neglect the Dx-term for brevity (it can always be added back later as an

additive diffusion term). Also, note that C is not a function of z; thus, it drops out of the final

Dz-term.

As usual, it is easier to deal with this equation in a frame of reference that moves with the

mean advection velocity; thus, we introduce the coordinate transformation
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ξ = x − ut (3.31)

τ = t (3.32)

z = z, (3.33)

and using the chain rule, the differential operators become

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂τ

∂τ

∂x
+

∂

∂z

∂z

∂x

=
∂

∂ξ
(3.34)

∂

∂t
=

∂

∂ξ

∂ξ

∂t
+

∂

∂τ

∂τ

∂t
+

∂

∂z

∂z

∂t

=
∂

∂τ
− u

∂

∂ξ
(3.35)

∂

∂z
=

∂

∂ξ

∂ξ

∂z
+

∂

∂τ

∂τ

∂z
+

∂

∂z

∂z

∂z

=
∂

∂z
. (3.36)

Substituting this transformation and combining like terms (and dropping the terms discussed

above) we obtain

∂(C + C ′)

∂τ
+

∂u′(C + C ′)

∂ξ
= Dz

∂2C ′

∂z2
, (3.37)

which is effectively our starting point for Taylor’s analysis.

The discussion above indicates that it is the gradients of concentration and velocity in the

vertical that are responsible for the increased longitudinal dispersion. Thus, we would like, at

this point, to remove the non-fluctuating terms (terms without a prime) from (3.37). This step

takes great courage and profound foresight, since that means getting rid of ∂C/∂t, which is the

quantity we would ultimately like to predict (Fischer et al. 1979). As we will see, however, this

is precisely what enables us to obtain an equation for the dispersion coefficient.

To remove the constant components from (3.37), we will take the depth average of (3.37) and

then subtract that result from (3.37). The depth-average operator is

1

h

∫ h

0
dz. (3.38)

Applying the depth average to (3.37) leaves

∂C

∂τ
+

∂u′C ′

∂ξ
= 0, (3.39)

since the depth average of C ′ is zero, but the cross-term, u′C ′, may not be zero. This equation is

the one-dimensional governing equation we are looking for. We will come back to this equation

once we have found a relationship for u′C ′. Subtracting this result from (3.37), we obtain

∂C ′

∂τ
+ u′∂C

∂ξ
+ u′∂C ′

∂ξ
=

∂u′C ′

∂ξ
+ Dz

∂2C ′

∂z2
, (3.40)
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which gives us a governing equation for the concentration deviations C ′. If we can solve this

equation for C ′, then we can substitute the solution into (3.39) to obtain the desired equation

for C.

Before we solve (3.40), let us consider the scale of each term and decide whether it is necessary

to keep all the terms. This is called a scale-analysis. We are seeking solutions for the point (c.)

in Figure 3.3. At that point, a particle in the cloud has thoroughly sampled the velocity profile,

and C ′ � C. Thus,

u′∂C ′

∂ξ
� u′∂C

∂ξ
and (3.41)

∂u′C ′

∂ξ
� u′∂C

∂ξ
. (3.42)

We can neglect the two terms on the left-hand-side of the inequalities above, leaving us with

∂C ′

∂τ
+ u′∂C

∂ξ
= Dz

∂2C ′

∂z2
. (3.43)

This might be another surprise. In the turbulent diffusion case, it was the cross-term u′C ′ that

became our turbulent diffusion term. Here, we have just discarded this term. In turbulence (as

will also be the case here for dispersion), that cross-term represents mass transport due to the

fluctuating velocities. But let us, also, take a closer look at the middle term of (3.43). This

term is an advection term working on the mean concentration, C, but due to the non-random

deviating velocity, u′(z). Thus, it is the transport term that represents the action of the shear

velocity profile.

Next, we see another insightful simplification that Taylor made. In the beginning stages of dis-

persion ((a.) and (b.) in Figure 3.3) the concentration fluctuations are unsteady, but downstream

(at point (c.)), after the velocity profile has been thoroughly sampled, the vertical concentration

fluctuations will reach a steady state (there will be a balanced vertical transport of contami-

nant), which represents the case of a constant (time-invariant) dispersion coefficient. At steady

state, (3.43) becomes

u′∂C

∂ξ
=

∂

∂z

(

Dz
∂C ′

∂z

)

(3.44)

where we have written the form for a non-constant Dz. Solving for C ′ by integrating twice gives

C ′(z) =
∂C

∂ξ

∫ z

0

1

Dz

∫ z

0
u′dzdz, (3.45)

which looks promising, but still contains the unknown C-term.

Step back for a moment and consider what the mass flux in the longitudinal direction is. In

our moving coordinate system, we only have one velocity; thus, the advective mass flux must be

qa = u′(C + C ′). (3.46)

To obtain the total mass flux, we take the depth average
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qa =
1

h

∫ h

0
u′(C + C ′)dz

=
1

h

∫ h

0
u′C ′dz

= u′C ′. (3.47)

Recall that the depth average of u′C is zero. Substituting the solution for C ′ from (3.45), the

depth-average mass flux becomes

qa =
1

h

∫ h

0
u′∂C

∂ξ

∫ z

0

1

Dz

∫ z

0
u′dzdzdz. (3.48)

We can take ∂C/∂ξ outside of the integral since it is independent of z, leaving us with

qa = −DL
∂C

∂ξ
(3.49)

where

DL = −1

h

∫ h

0
u′
∫ z

0

1

Dz

∫ z

0
u′dzdzdz, (3.50)

and we have a Fick’s law-type mass flux relationship in (3.49). Since the equation for DL is just

a function of the depth and the velocity profile, we can calculate DL for any velocity profile by

integrating; thus, we have an analytical solution for the longitudinal dispersion coefficient.

The final step is to introduce this result into the depth-average governing equation (3.39) to

obtain

∂C

∂τ
=

∂

∂ξ

(

DL
∂C

∂ξ

)

, (3.51)

which, in the original coordinate system, gives the one-dimensional advective dispersion equation

∂C

∂t
+ u

∂C

∂x
=

∂

∂x

(

DL
∂C

∂x

)

(3.52)

with DL as defined by (3.50).

3.2.2 Calculating longitudinal dispersion coefficients

All the brilliant mathematics in the previous section really paid off since we ended up with an

analytical solution for the dispersion coefficient

DL = −1

h

∫ h

0
u′
∫ z

0

1

Dz

∫ z

0
u′dzdzdz.

In real streams, it is usually the lateral shear (in the y-direction) rather than the vertical shear

that plays the more important role. For lateral shear, Fischer et al. (1979) derive by a similar

analysis the relationship

DL = − 1

A

∫ W

0
u′h

∫ y

0

1

Dyh

∫ y

0
u′hdydydy (3.53)

where A is the cross-sectional area of the stream and W is the width. Irrespective of which

relationship we choose, the question that remains is, how do we best calculate these integrals.
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Example Box 3.3:
River mixing processes.

As part of a dye study to estimate the mixing co-
efficients in a river, a student injects a slug (point
source) of dye at the surface of a stream in the mid-
dle of the cross-section. Discuss the mixing processes
and the length scales affecting the injected tracer.

Although the initial vertical momentum of the dye
injection generally results in good vertical mixing,
assume here that the student carefully injects the
dye just at the stream surface. Vertical turbulent
diffusion will mix the dye over the depth, and from
Example Box 3.2 above, the injection can be treated
as mixed in the vertical after the point

Lz = 12h

where h is the stream depth.

As the dye continues to move downstream, lat-
eral turbulent diffusion mixes the dye in the trans-
verse direction. Based on the discussion in Example
Box 3.2, the tracer can be considered well mixed lat-
erally after

Ly =
W 2

3h

where W is the stream width.
For the region between the injection and Lz, the

dye cloud is fully three-dimensional, and no simplifi-
cations can be made to the transport equation. Be-
yond Lz, the cloud is vertically mixed, and longitudi-
nal dispersion can be applied. For distances less than
Ly, a two-dimensional model with lateral turbulent
diffusion and longitudinal dispersion is required. For
distances beyond Ly, a one-dimensional longitudinal
dispersion model is acceptable.

Analytical solutions. For laminar flows, analytical velocity profiles may sometimes exist and

(3.50) can be calculated analytically. Following examples in Fischer et al. (1979), the simplest

flow is the flow between two infinite plates, where the top plate is moving at U relative to the

bottom plate. For that case

DL =
U2d2

120Dz
(3.54)

where d is the distance between the two plates. Similarly, for laminar pipe flow, the solution is

DL =
a2U2

0

192Dr
(3.55)

where a is the pipe radius, U0 is the pipe centerline velocity and Dr is the radial diffusion

coefficient.

For turbulent flow, an analysis similar to the section on turbulent diffusion can be carried

out and the result is that (3.50) keeps the same form, and we substitute the turbulent diffusion

coefficient and the mean turbulent shear velocity profile for Dz and u′. The result for turbulent

flow in a pipe becomes

DL = 10.1au∗. (3.56)

One result of particular importance is that for an infinitely wide open channel of depth h.

Using the log-velocity profile (3.18) with von Karman constant κ = 0.4 and the relationship

(3.50), the dispersion coefficient is

DL = 5.93hu∗. (3.57)

Comparing this equation to the prediction for longitudinal turbulent diffusion from the previous

section (Dt,x = 0.15hu∗) we see that DL has the same form (∝ hu∗) and that DL is indeed much

greater than longitudinal turbulent diffusion. For real open channels, the lateral shear velocity

profile between the two banks becomes dominant and the leading coefficient for DL can range
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from 5 to 7000 (Fischer et al. 1979). For further discussion of analytical solutions, see Fischer

et al. (1979).

Numerical integration. In many practical engineering applications, the variable channel ge-

ometry makes it impossible to assume an analytical shear velocity profile. In that case, one

alternative is to break the river cross-section into a series of bins, measure the mean velocity

in each bin, and then compute the second relationship (3.53) by numerical integration. Fischer

et al. (1979) give a thorough discussion of how to do this.

Engineering estimates. When only very rough measurements are available, it is necessary

to come up with a reasonably accurate engineering estimate for DL. To do this, we first write

(3.53) in non-dimensional form using the dimensionless variables (denoted by ∗) defined by

y = Wy∗; u′ =

√

u′2u′∗; Dy = DyD
∗
y; h = hh∗

where the over-bar indicates a cross-sectional average. As we already said, longitudinal dispersion

in streams is dominated by the lateral shear velocity profile, which is why we are using y and

Dy. Substituting this non-dimensionalization into (3.53) we obtain

DL =
W 2u′2

Dy
I (3.58)

where

I = −
∫ 1

0
u′∗h∗

∫ y∗

0

1

D∗
yh

∗

∫ y∗

0
u′∗h∗dy∗dy∗dy∗. (3.59)

As Fischer et al. (1979) point out, in most practical cases it may suffice to take I ≈ 0.01to0.1.

To go one step further, we introduce some further scales measured by Fischer et al. (1979).

From experiments and comparisons with the field, the ratio u′2/u2 can be taken as 0.2±0.03. For

irregular streams, we can take Dy = 0.6du∗. Substituting these values into (3.58) with I = 0.033

gives the estimate

DL = 0.011
u2W 2

du∗
(3.60)

which has been found to agree with observations within a factor of 4 or so. Deviations are

primarily due to factors not included in our analysis, such as recirculation and dead zones.

Geomorphological estimates. Deng et al. (2001) present a similar approach for an engineer-

ing estimate of the dispersion coefficient in straight rivers based on characteristic geomorpho-

logical parameters. The expression they obtain is

DL

hu∗
=

0.15

8εt0

(

W

h

)5/3 ( u

u∗

)2

(3.61)

where εt0 is a dimensionless number given by:

εt0 = 0.145 +

(

1

3520

)(

u

u∗

)(

W

h

)1.38

. (3.62)

These equations are based on the hydraulic geometry relationship for stable rivers and on the

assumption that the uniform-flow formula is valid for local depth-averaged variables. Deng et al.
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(2001) compare predictions for this relationship and predictions from (3.60) with measurements

from 73 sets of field data. More than 64% of the predictions by (3.61) fall within the range of

0.5 ≤ DL|prediction/DL|measurement ≤ 2. This accuracy is on average better than that for (3.60);

however, in some individual cases, (3.60) provides the better estimate.

Dye studies. One of the most reliable means of computing a dispersion coefficient is through

a dye study, as illustrated in the applications of the next sections. It is important to keep in

mind that since DL is dependent on the velocity profile, it is, in general, a function of the flow

rate. Hence, a DL computed by a dye study for one flow rate does not necessarily apply to a

situation at a much different flow rate. In such cases, it is probably best to perform a series of

dye studies over a range of flow rates, or to compare estimates such as (3.60) to the results of

one dye study to aid predictions under different conditions.

3.3 Application: Dye studies

The purpose of a dye tracer study is to determine a river’s flow and transport properties; in

particular, the mean advective velocity and the effective longitudinal dispersion coefficient. To

estimate these quantities, we inject dye upstream, measure the concentration distribution down-

stream, and compare the results to analytical solutions. The two major types of dye injections

are instantaneous injections and continuous injections. The following sections discuss typical

results for these two injection scenarios.

3.3.1 Preparations

To prepare a dye injection study, we use engineering estimates for the expected transport prop-

erties to determine the location of the measurement station(s), the duration of the experiment,

the needed amount of dye, and the type of dye injection.

For illustration purposes, assume in the following discussion that you measure a river cross-

section to have depth h = 0.35 m and width W = 10 m. The last time you visited the site, you

measured the surface current by timing leaves floating at the surface and found Us = 53 cm/s. A

rule-of-thumb for the mean stream velocity is U = 0.85Us = 0.45 cm/s. You estimate the river

slope from topographic maps as S = 0.0005. The channel is uniform but has some meandering.

Measurement stations. A critical part of a dye study is that you measure far enough down-

stream that the dye is well mixed across the cross-section. If you measure too close to the source,

you might obtain a curve for C(t) that looks Gaussian, but the concentrations will not be uni-

form across the cross-section, and dilution estimates will be biased. We use our mixing length

rules of thumb to compute the necessary downstream distance.

Assuming the injection is at a point (conservative case), it must mix both vertically and

transversely. The two relevant turbulent diffusion coefficients are

Dt,z = 0.067d
√

gdS

= 9.7 · 10−4 m2/s (3.63)
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Dt,y = 0.6d
√

gdS

= 8.7 · 10−3 m2/s. (3.64)

The time it takes for diffusion to spread a tracer over a distance l is l2/(12.5D); thus, the distance

the tracer would move downstream in this time is

Lx =
l2

12.5D
U. (3.65)

There are several injection possibilities. If you inject at the bottom or surface, the dye must

spread over the whole depth; if you inject at middle depth, the dye must only spread over half

the depth. Similarly, if you inject at either bank, the dye must spread across the whole river;

if you inject at the stream centerline, the dye must only spread over half the width. Often it

is possible to inject the dye in the middle of the river and at the water surface. For such an

injection, we compute in our example that Lm,z for spreading over the full depth is 4.2 m,

whereas, Lm,y for spreading over half the width is 95 m. Thus, the measuring station must be

at least Lm = 100 m downstream of the injection.

The longitudinal spreading of the cloud is controlled by the dispersion coefficient. Using the

estimate from Fischer et al. (1979) given in (3.60), we have

DL = 0.011
U2W 2

d
√

gdS

= 15.4 m2/s. (3.66)

We would like the longitudinal width of the cloud at the measuring station to be less than the

distance from the injection to the measuring station; thus, we would like a Peclet number, Pe,

at the measuring station of 0.1 or less. This criteria gives us

Lm =
D

UPe
= 342 m. (3.67)

Since for this stream the Peclet criteria is more stringent than that for lateral mixing, we chose

a measurement location of Lm = 350 m.

Experiment duration. We must measure downstream long enough in time to capture all of

the cloud or dye front as it passes. The center of the dye front reaches the measuring station

with the mean river flow: tc = Lc/U . Dispersion causes some of the dye to arrive earlier and

some of the dye to arrive later. An estimate for the length of the dye cloud that passes after the

center of mass is

Lσ = 3
√

2DLLm/U

= 525 m (3.68)

or in time coordinates, tσ = 1170 s. Thus, we should start measuring immediately after the dye

is injected and continue taking measurements until t = tc + tσ = 30 min. To be conservative, we

select a duration of 35 min.
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Amount of injected dye tracer. The general public does not like to see red or orange water

in their rivers, so when we do a tracer study, we like to keep the concentration of dye low enough

that the water does not appear colored to the naked eye. This is possible using fluorescent dyes

because they remain visible to measurement devices at concentrations not noticeable to casual

observation. The most common fluorescent dye used in river studies is Rhodamine WT. Many

other dyes can also be used, including other types of Rhodamine (B, 6G, etc.) or Fluorescein.

Smart & Laidlay (1977) discuss the properties of many common fluorescent dyes.

In preparing a dye study, it is necessary to determine the amount (mass) of dye to inject. A

common field fluorometer by Turner Designs has a measurement range for Rhodamine WT of

(0.04 to 40)·10−2 mg/l. To have good sensitivity and also leave room for a wide range of river

flow rates, you should design for a maximum concentration at the measurement station near the

upper range of the fluorometer, for instance Cmax = 4 mg/l.

The amount of dye to inject depends on whether the injection is a point source or a continuous

injection. For a point source injection, we use the instantaneous point source solution with the

longitudinal dispersion coefficient estimated above

M = CmaxA
√

4πDLLm/U

= 5.4 g. (3.69)

For a continuous injection, we estimate the dye mass flow rate from the expected dilution

ṁ = U0ArCmax

= 6.3 g/s. (3.70)

These calculations show that a continuous release uses much more dye than a point release.

These estimates are for the pure (usually a powder) form of the dye.

Type of injection. To get the best injection characteristics, we dissolve the powder form of

the dye in a solution of water and alcohol before injecting it in the river. The alcohol is used to

obtain a neutrally buoyant mixture of dye. For a point release, we usually spill a bottle of dye

mixture containing the desired initial mass of dye in the center of the river and record the time

when the injection occurs. For a continuous release, we require some tubing to direct the dye

into the river, a reservoir containing dye at a known concentration, and a means of regulating

the flow rate of dye.

The easiest way to get a constant dye flow rate is to use a peristaltic pump. Another means

is to construct a Marriot bottle as described in Fischer et al. (1979) and shown in Figure 3.5.

The idea of the Marriot bottle is to create a constant head tank where you can assume the

pressure is equal to atmospheric pressure at the bottom of the vertical tube. As long as the

bottle has enough dye in it that the bottom of the vertical tube is submerged, a constant flow

rate Q0 will result by virtue of the constant pressure head between the tank and the injection.

We must calibrate the flow rate in the laboratory for a given head drop prior to conducting the

field experiment.

The concentration of the dye C0 for the continuous release is calculated according to the

equation



70 3. Mixing in Rivers: Turbulent Diffusion and Dispersion

Fig. 3.5. Schematic of a Marriot bottle taken from Fischer et al. (1979).
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Fig. 3.6. Measured dye concentration for example dye study. Dye fluctuations are due to instrument uncertainty,
not due to turbulent fluctuations.

ṁ = Q0C0 (3.71)

where Q0 is the flow rate from the pump or Marriot bottle. With these design issues complete,

a dye study is ready to be conducted.

3.3.2 River flow rates

Figure 3.6 shows a breakthrough curve for a continuous injection, based on the design in the

previous section. The river flow rate can be estimated from the measured steady-state concen-

tration in the river Cr at t = 35 min. Reading from the graph, we have Cr = 3.15 mg/l. Thus,

the actual flow rate measured in the dye study was

Qr =
ṁ

Cr

= 2.0 m3/s. (3.72)
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Notice that this estimate for the river flow rate is independent of the cross-sectional area.

To estimate the error in this measurement, we use the error-propagation equation

δγ =

√

√

√

√

n
∑

i=1

(

∂γ

∂mi
δmi

)2

(3.73)

where δγ is the error in some quantity γ, estimated from n measurements mi. Computing the

error for our river flow rate estimate, we have

δQr =

√

(

C0

Cr
δQ0

)2

+

(

Q0

Cr
δC0

)2

+

(

Q0C0

C2
r

δCr

)2

. (3.74)

If the uncertainties in the measurements were Cr = (3.15 ± 0.04) mg/l, C0 = 32 ± 0.01 g/l and

Q0 = 0.2 ± 0.01 l/s, then our estimate should be Qr = 2.0 ± 0.1 m3/s. The error propagation

formula is helpful for determining which sources of error contribute the most to the overall error

in our estimate.

3.3.3 River dispersion coefficients

The breakthrough curve in Figure 3.6 also contains all the information we need to estimate an

in situ longitudinal dispersion coefficient. To do that, we will use the relationship

σ2 = 2DLt. (3.75)

Since our measurements of σ are in time, we must convert them to space in order to use this

equation. One problem is that the dye cloud continues to grow as it passes the site, so the width

measured at the beginning of the front is less than the width measured after most of the front

has passed; thus, we must take an average.

The center of the dye front can be taken at C = 0.5C0, which passed the station at

t = 12.94 min and represents the mean stream velocity. One standard deviation to the left

of this point is at C = 0.16C0, as shown in the figure. This concentration passed the measure-

ment station at t = 8.35 min. One standard deviation to the right is at C = 0.84C0, and this

concentration passed the station at t = 20.12 min. From this information, the average velocity

is u = 0.45 m/s and the average width of the front is 2σt = 20.12− 8.35 = 11.77 min. The time

associated with this average sigma is t = 8.35 + 11.77/2 = 14.24 min.

To compute DL from (3.75), we must convert our time estimate of σt to a spatial estimate

using σ = uσt. Solving for DL gives

DL =
u2σ2

t

2t
= 14.8 m2/s. (3.76)

This value compares favorably with our initial estimate from (3.50) of 15.4 m2/s.

3.4 Application: Dye study in Cowaselon Creek

In 1981, students at Cornell University performed a dye study in Cowaselon Creek using an

instantaneous point source of Rhodamine WT dye. The section of Cowaselon Creek tested has
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a very uniform cross-section and a straight fall line from the injection point through the mea-

surement stations. At the injection site, the students measured the cross-section and flow rate,

obtaining

Q = 0.6 m3/s W = 10.7 m

u = 0.17 m/s h = 0.3 m.

From topographic maps, they measured the creek slope over the study area to be S = 4.3 ·10−4.

The concentration profiles were measured at three stations downstream. The first station was

670 m downstream of the injection, the second station was 2800 m downstream of the injection,

and the final station was 5230 m downstream of the injection. At each location, samples were

taken in the center of the river and near the right and left banks. Figure 3.7 shows the measured

concentration profiles.

For turbulent mixing in the vertical direction, the downstream distance would be Lm,z =

12d = 17 m. This location is well upstream of our measurements; thus, we expect the plume to

be well-mixed in the vertical by the time it reaches the measurement stations.

For mixing in the lateral direction, the method in Example Box 3.3 (using Dt,y = 0.15du∗ for

straight channels) gives a downstream distance of Lm,y = 2500 m. Since the first measurement

station is at L = 670 m we clearly see that there are still lateral gradients in the concentra-

tion cloud. At the second measurement station, 2800 m downstream, the lateral gradients have

diffused, and the lateral distribution is independent of the lateral coordinate. Likewise, at the

third measurement station, 5230 m downstream, the plume is mixed laterally; however, due to

dispersion, the plume has also spread more in the longitudinal direction.

To estimate the dispersion coefficient, we can take the travel time between the stations two

and three and the growth of the cloud. The travel time between stations is δt = 3.97 hr. The

width at station one is σ1 = 236 m, and the width at station two is σ2 = 448 m. The dispersion

coefficient is

DL =
σ2

2 − σ2
1

2δt
= 5.1 m2/s. (3.77)

Comparing to (3.60) and (3.61), we compute

DL|Fischer = 3.4 m2/s (3.78)

DL|Deng = 5.4 m2/s. (3.79)

Although the geomorphological estimate of 5.4 m2/s is closer to the true value than is 3.3 m2/s,

for practical purposes, both methods give good results. Dye studies, however, are always helpful

for determining the true mixing characteristics of rivers.
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Fig. 3.7. Measured dye concentrations at two stations in Cowaselon Creek for a point injection. Measurements
at each station are presented for the stream centerline and for locations near the right and left banks.
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Summary

This chapter presented the effects of contaminant transport due to variability in the ambient

velocity. In the first section, turbulence was discussed and shown to be composed of a mean

velocity and a random, fluctuating turbulent velocity. By introducing the Reynolds decomposi-

tion of the turbulent velocity into the advective diffusion equation, a new equation for turbulent

diffusion was derived that has the same form as that for molecular diffusion, but with larger,

turbulent diffusion coefficients. The second type of variable velocity was a shear velocity profile,

described by a mean stream velocity and deterministic deviations from that velocity. Substitut-

ing a modified type of Reynolds decomposition for the shear profile into the advective diffusion

equation and depth averaging led to a new equation for longitudinal dispersion and an integral

relationship for calculating the longitudinal dispersion coefficient. To demonstrate how to use

these equations and obtain field measurements of these properties, the chapter closed with an

example of a simple dye study to obtain stream flow rate and longitudinal dispersion coefficient.

Exercises

3.1 Properties of turbulence. The axial velocity u of a turbulent jet can be measured using a

laser Doppler velocimetry (LDV) system. Obtain a data file that contains only one column (the

u component velocity) with a unit of m/s; the sampling rate is 100 Hz. Do the following:

• Plot the velocity and examine whether the flow is turbulent by checking the randomness in

your plot. Comment on your observations.

• Use Matlab to calculate the mean velocity and create a variable that contains just the fluctu-

ating velocity (you do not have to turn in anything for this step).

• Plot the fluctuating velocity.

• Calculate the mean value of the fluctuating velocity .

• Write a program to compute the correlation function (normalized so the maximum correlation

is 1.0) and plot the function.

• Calculate the integral time scale (integrate between 0 to 0.3 s only).

• Estimate the “typical” size of the eddies (find the integral length scale).

3.2 Turbulent diffusion coefficients. The Rhine river in the vicinity of Karlsruhe has width

B = 300 m and Manning’s friction factor 0.02. The slope is 1 · 10−4. Assume the river is always

at normal depth and that the width is constant for all flow rates.

• For each flow rate in Table 3.1, compute the dispersion coefficient from the equation from

Fischer et al. (1977)

DL = 0.011
u2B2

hu∗
(3.80)

where u is the mean velocity and u∗ is the shear velocity.
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Table 3.1. Flow rates in the Rhine river near Karlsruhe.

Flow rate

[m3/s]

120

240

500

800

1200

• For each flow rate in Table 3.1, compute the dispersion coefficient from the equation from

Deng et al. (2001)

DL

hu∗
=

0.15

8εt0

(

B

h

)5/3 ( u

u∗

)2

(3.81)

with

εt0 = 0.145 +

(

1

3520

)(

u

u∗

)(

B

h

)1.38

. (3.82)

where h is the water depth and B is the channel width.

• Plot the dispersion coefficient for each method as a function of flow rate and comment on the

trends. Do you think it is adequate to do one dye study to evaluate DL? Why or why not?

3.3 Numerical integration. Using the velocity profile data in Table 3.2 (from Nepf (1995)),

perform a numerical integration of (3.53) to estimate a longitudinal dispersion coefficient. You

should obtain a value of DL = 1.5 m2/s.

3.4 Dye study. This problem is adapted from Nepf (1995). A small stream has been found to be

contaminated with Lindane, a pesticide known to cause convulsions and liver damage. Ground-

water wells in the same region have also been found to contain Lindane, and so you suspect

that the river contamination is due to groundwater inflow. To test your theory, you conduct a

dye study using a continuous release of dye. Based on the information given in Figure 3.8, what

is the groundwater volume flux and the concentration of Lindane in the groundwater between

Stations 2 and 3? The variables in the figure are Qd the volume flow rate of the dye at the

injection, Cd the concentration of the dye at the injection and at downstream stations, Cl the

concentration of Lindane in the river at each station, W the width of the river, and d the depth

in the river. (Hint: this is a steady-state problem, so you do not need to use diffusion coefficients

to solve the problem other than to determine whether the dye is well-mixed when it reaches

Station 2.)

Due to problems with the pump, the dye flow rate has an error of Qd = 100 ± 5 cm3/s.

Assume this is the only error in your measurement and report your measurement uncertainty.
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Table 3.2. Stream velocity data for calculating a longitudinal dispersion coefficient.

Station Distance from Total depth Measurement Velocity

number bank d depth, z/d u

[cm] [cm] [–] [cm/s]

1 0.0 0 0 0.0

2 30.0 14 0.6 3.0

3 58.4 42 0.2 6.0

0.8 6.4

4 81.3 41 0.2 16.8

0.8 17.6

5 104.1 43 0.2 13.4

0.8 13.6

6 137.2 41 0.2 13.6

0.8 14.2

7 170.2 34 0.2 9.0

0.8 9.6

8 203.2 30 0.2 5.0

0.8 5.4

9 236.2 15 0.2 1.0

0.8 1.4

10 269.2 15 0.2 0.8

0.8 1.2

11 315.0 14 0.6 0.0

12 360.7 0 0 0.0

3.5 Accidental kerosene spill. A tanker truck has an accident and spills 100 kg of kerosene into a

river. The spill occurs over a span of 3 minutes and can be approximated as uniformly distributed

across the lateral cross-section of the river. A fish farm has its water intake 2.5 km downstream

of the spill location. Refer to Figure 3.9.

• Use the following relationship to compute the longitudinal dispersion coefficient, DL:

DL

Hu∗
=

0.15

8εt0

(

B

H

)5/3 ( U

u∗

)2

(3.83)

B and H are the river width and depth, U is the average flow velocity, u∗ is the shear velocity,

and εt0 is a non-dimensional number given by:

εt0 = 0.145 +

(

1

3520

)(

U

u∗

)(

B

H

)1.38

(3.84)

= 0.229

• What is the length in the downstream direction that the spill occupies due to its 3 minute

duration? At what point downstream of the spill do you think it would be reasonable to

approximate the spill using an instantaneous point source release?
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Station 1:

Dye injected @
x = 0 m
Qd = 100 cm3/s
Cd = 50 mg/l

x = 70 m
Cd = 10 ug/l
Cl = 0.5 ug/l

x = 170 m
Cd = 8 ug/l
Cl = 0.9 ug/l

Station 2:

Station 3:

River cross-section:

W = 1 m
d = 0.5 m

Fig. 3.8. Dye study to determine the source of Lindane contamination in a small stream.

Spill location

Fish farm 

inlet

x = 0 x =2.5 km

U
i
 = 40 cm/s

H = 2 m

B = 25 m

S = 0.0001

Fig. 3.9. Schematic of the accidental spill with the important measurement values. B and H are the width and
depth of the river, Ui is the average river flow velocity at the accident location, and S is the channel slope.

• Plot the concentration in the river as a function of downstream distance at t = 2 hr after

the accident. From the figure, determine the location of the center of mass of the kerosene

cloud, the maximum concentration in the river, and the characteristic width of the cloud

in the x-direction (approximate the cloud using one standard deviation of the concentration

distribution).

• Write the equation for the concentration as a function of time at the inlet to the fish farm.

Plot your equation and determine at what time the maximum concentration passes the fish

farm.

• A dye study was conducted in the river at an earlier time and concluded that there is a flow

of groundwater into the river along the stretch between the accident and the fish farm. How

would this information influence the results reported in the previous steps of this problem?

3.6 Ocean mixing. This problem is adapted from Nepf (1995). Ten surface drogues are released

into a coastal region at local coordinates (x, y) = (0, 0). The drogues move passively with the

surface currents and are tracked using radio signals. Their locations at the end of t1 = 1 and

t2 = 20 days are given in the following table.
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Table 3.3. Drogue position data.

Drogue x(t1) y(t1) x(t2) y(t2)

Number [km] [km] [km] [km]

1 2.5 0.2 5.3 8.1

2 4.6 1.4 2.3 1.0

3 2.3 -1.2 6.6 3.9

4 3.1 -0.4 6.7 -2.8

5 1.5 0.8 0.5 4.2

6 1.4 2.1 10.1 3.6

7 4.7 2.1 6.6 -1.4

8 2.7 0.2 6.0 -2.9

9 1.5 2.6 3.2 2.1

10 4.9 2.3 -4.0 1.7

1. Estimate the advection velocity and the lateral coefficients of diffusion (Dx and Dy) for this

coastal region.

2. Using the radio links, the positions of all ten drogues can be collected within ten min-

utes. Suppose the radio link were to break down and the positions were instead determined

through visual observation. Even using a helicopter, it requires nearly four hours to locate

all ten drogues. How does this change the accuracy of your data? Can you still consider the

measurements to be synoptic?

3. Later, a freight ship is caught in a winter storm off the coast where this drogue study was

conducted. High winds and rough seas cause several shipping containers to be washed over-

board. One of the containers breaks open, releasing its contents: 29,000 children’s bathtub

toys. Estimate how long it will take for the toys to begin to wash up on shore assuming the

same transport characteristics as during the drogue study and that the spill occurs 1 km

off the coast. (This really happened in the Pacific Ocean, and the trajectory of the bathtub

toys, plastic turtles and ducks, were subsequently used to gain information about the current

system.)

3.7 Mixing of a continuous point source in a river. Many dye studies are conducted by injecting a

continuous point source of dye at one station and measuring the dilution at downstream stations,

where the dye is assumed to be well-mixed across the cross-section. The continuous point source

solution in an infinite domain with constant, uniform advection current in the x-direction, U , is

C(x, y, z) =
ṁ

4πx
√

DzDy
exp

(

−(z − z0)
2U

4Dzx
− (y − y0)

2U

4Dyx

)

(3.85)

where ṁ is the mass flux of dye at the injection, x is the downstream distance, Dz is the

vertical diffusion coefficient, Dy is the lateral diffusion coefficient, z0 is the vertical position of

the injection, and y0 is the lateral position of the injection. To derive this solution, we have

assumed that longitudinal diffusion is negligible (called the slender-plume approximation).
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In a river there are four boundaries that must be accounted for. In the vertical direction, there

are boundaries at the channel bed and at the free-water surface. In the lateral direction, there

are boundaries at each channel bank. Write a Matlab function that solves this problem for an

arbitrary injection point at (0, y0, z0). It should take the vertical coordinate as positive upward

with origin at the channel bed and the lateral coordinate as positive toward the right-hand bank

with origin at the channel center-line.

Dimensional analysis can be used to estimate the distance Lm downstream of an injection at

x = 0 at which the injection may be considered well-mixed in the vertical or lateral direction.

This relationship is

Lm ∝ L2U

D
(3.86)

where L is the distance over which the dye must spread (for vertical mixing, this would be the

water depth), Lm is the downstream distance to the point where the cloud can be considered

well-mixed, and D is the pertinent diffusion coefficient (for vertical mixing, this would be Dz). To

calibrate this relationship, we define “well-mixed” as the point at which the ratio of the minimum

dye concentration Cmin to the maximum dye concentration Cmax across the cross-section reaches

a threshold value. Common practice is to define well-mixed as Cmin/Cmax = 0.95. Using this

criteria, we can calculate Lm, and a proportionality constant α can be determined, giving the

relationship

Lm = α
L2U

D
. (3.87)

Use this information to study a river with the following characteristics:

• Width B = 10.7 m

• Depth H = 0.3 m

• Slope S = 4.3 · 10−4

• Mean flow velocity u = 0.17 m/s

• Dye injection rate ṁ = 1 g/s;

Use enough image sources that your solution is independent of the number of images you are

using and answer the following questions:

1. What is the value of Manning’s roughness coefficient n that corresponds to the given flow

depth and channel slope? Do you think that this value is reasonable? If it seems too high

or too low, do you expect that the estimate for the shear velocity of u∗ =
√

gHS is an

over-prediction or under-prediction for this stream? Use your calibrated value of n for the

remaining questions.

2. Plot the relative concentration C(x, 0, H)/C(x, 0, 0.5H) for an injection at (0, 0, 0.5H) versus

downstream distance for x between x = 1 m and x = 45 m.

3. Calibrate the coefficient α in (3.87) for vertical mixing for an injection at y0 = 0 and

z0 = [0, 0.25H, 0.5H, 0.75H, H] for the criteria C(z)min/C(z)max = 0.95.

4. Repeat your calculations in the previous step, but move the injection to y0 = B/2. Does this

affect your results? Why or why not?
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5. Calibrate the coefficient α in (3.87) for lateral mixing for an injection at z0 = 0.5H and

y0 = [B/2, B/4, 0,−B/4,−B/2] for the criteria C(y)min/C(y)max = 0.95. Do you think

your results would change if you moved the injection at z0 to a different elevation? Why or

why not?

6. Repeat your calculations in the previous step, but using a lateral diffusion coefficient of

Dy = 0.6u∗H. Did this change your value of α?

7. Based on these results, what value of α would you recommend for an arbitrary injection

location (you must pick a single value of α that best represents your data).

(Hint: it would probably be a good idea to do your calculations by writing a second Matlab

program that solves the questions above. You can plot the relative concentration downstream

and use ginput to pick the point where Cmin/Cmax = 0.95).
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Transformations

In the previous chapters, concentrations change in response to transport processes, such as

diffusion, advection, and dispersion, and we have considered these processes in mass conserving

systems. Now, we would like to look at systems where the mass of a given species of interest is

not conserving. Processes that remove mass can be physical, chemical or biological in nature.

Since the total mass of the system must be conserved, these processes generally change the

species of interest into another species; thus, we will call these processes transformation.

This chapter begins by describing the common types of transformation reactions. Since we

are interested in concentration changes, we review reaction kinetics and derive rate laws for

first- and second-order systems. The methods are then generalized to higher-order reactions.

Transformation is then added to our transport equation for two types of reactions. In the first

case, the reaction becomes a source or sink term in the governing differential equation; in the

second case, the reaction occurs at the boundary and becomes a boundary constraint on the

governing transport equation. The chapter closes with an engineering application to bacteria

die-off downstream of a wastewater treatment plant.

4.1 Concepts and definitions

Transformation is defined as production (or loss) of a given species of interest through physical,

chemical, or biological processes. When no transformation occurs, the system is said to be

conservative, and we represent this characteristic mathematically with the conservation of mass

equation

dMi

dt
= 0 (4.1)

where Mi is the total mass of species i. When transformation does occur, the system is called

reactive, and, for a given species of interest, the system is no longer conservative. We represent

this characteristic mathematically as

dMi

dt
= Si (4.2)

where Si is a source or sink term. For reactive systems, we must supply these reaction equations

that describe the production or loss of the species of interest. Since the total system mass must

be conserved, these reactions are often represented by a system of transformation equations.

Transformation reactions are broadly categorized as either homogeneous or heterogeneous.

Homogeneous reactions occur everywhere within the fluid of interest. This means that they are

Copyright c© 2004 by Scott A. Socolofsky and Gerhard H. Jirka. All rights reserved.
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distributed throughout the control volume; hence, they are represented as a source or sink term

in the governing differential equation. By contrast, heterogeneous reactions occur only at fluid

boundaries. They are not distributed throughout the control volume; hence, they are specified

by source or sink boundary conditions constraining the governing differential equation.

Some reactions have properties of both homogeneous and heterogeneous reactions. As an

example, consider a reaction that occurs on the surface of suspended sediment particles. Because

the reaction occurs only at the sediment/water interface, the reaction is heterogeneous. But,

because the sediment is suspended throughout the water column, the effect of the reaction is

homogeneous in nature. Models that represent the reaction through boundary conditions (i.e.

they treat the reaction as heterogeneous) are sometimes called two-phase, or multi-phase, models.

Models that simplify the reaction to treat it as a homogeneous reaction are called single-phase,

or mixture, models. To obtain analytical solutions, we often must use the single-phase approach.

4.1.1 Physical transformation

Physical transformations result from processes governed by the laws of physics. The classical

example, which comes from the field of nuclear physics, is radioactive decay. Radioactive decay is

the process by which an atomic nucleus emits particles or electromagnetic radiation to become

either a different isotope of the same element or an atom of a different element. The three

radioactive decay paths are alpha decay (the emission of a helium nucleus), beta decay (the

emission of an electron or positron), and gamma decay (the emission of a photon). Gamma

decay alone does not result in transformation, but it is generally accompanied by beta emission,

which does.

A common radioactive element encountered in civil engineering is radon, a species in the

uranium decay chain. Radon decays to polonium by alpha decay according to the equation

222Rn → 218Po + α (4.3)

where α represents the ejected helium nucleus, 4
2He. As we will see in the section on kinetics,

this single-step reaction is first order, and the concentration of radon decreases exponentially

with time. The time it takes for half the initial mass of radon to be transformed is called the

half-life.

Another common example that we will treat as a physical transformation is the settling of

suspended sediment particles. Although settling does not actually transform the sediment into

something else, it does remove sediment from our control volume by depositing it on the river

bed. This process can be expressed mathematically by heterogeneous transformation equations

at the river bed; hence, we will discuss it as a transformation.

4.1.2 Chemical transformation

Chemical transformation refers to the broad range of physical and organic chemical reactions

that do not involve transformations at the atomic level. Thus, the periodic table of the elements

contains all the building blocks of chemical transformations.
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A classic example from aqueous phase chemistry is the dissolution of carbon dioxide (CO2)

in water (H2O), given by the equilibrium equation

CO2 + H2O ⇀↽ HCO−
3 + H+ (4.4)

where HCO−
3 is called bicarbonate and H+ is the hydrogen ion. The terms on the left-hand-side

of the equation are called the reactants; the terms on the right-hand-side of the equation are

called the products. Equilibrium refers to the state in which the formation of products occurs

at the same rate as the reverse process that re-forms the reactants from the products. This

give-and-take balance between reactants and products is indicated by the ⇀↽ symbol.

4.1.3 Biological transformation

Biological transformation refers to that sub-set of chemical reactions mediated by living or-

ganisms through the processes of photosynthesis and respiration. These reactions involve the

consumption of a nutritive substance to produce biomass, and are accompanied by an input or

output of energy.

The classical photosynthesis equation shows the production of glucose, C6H12O6, from CO2

through the input of solar radiation, hν :

6CO2 + 6H2O → C6H12O6 + 6O2. (4.5)
hν

Photosynthesis and respiration (particularly in the form of biodegradation) are of partic-

ular interest in environmental engineering because they affect the concentration of oxygen, a

component essential for most aquatic life.

4.2 Reaction kinetics

Reaction kinetics is the study of the rate of formation of products from reactants in a trans-

formation reaction. All reactions occur at a characteristic rate ∆tk. A common measure of this

characteristic rate is the half-life, the time for half of the reactants to be converted into products.

The other physical processes of interest in our problems (i.e. diffusion and advection) also occur

with characteristic time scales, ∆tp. Comparing these characteristic time-scales, three cases can

be identified:

• ∆tk � ∆tp: For these reactions we can assume the products are formed as soon as reactants

become available, and we can neglect the reaction kinetics. Such reactions are called instanta-

neous and are reactant-limited; that is, the rate of formation of products is controlled by the

rate of formation of reactants and not by the reaction rate of the tranformation equation.

• ∆tk � ∆tp: For these reactions the reaction can be ignored altogether, and we have a conser-

vative (non-reacting) system.

• ∆tk ≈ ∆tp: For these reactions neither the reaction nor the reaction kinetics can be ignored.

Assuming the products are readily available, such reactions are called rate-limited, and the rate

of formation of products is controlled by the reaction kinetics of the chemical transformation.
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This last case, where the reactions are rate-limited, is the case of interest in this chapter, and

in this section we discuss the rate laws of chemical kinetics.

To formulate the rate laws for a generic reaction, consider the mixed chemical reaction

aA + bB → cC + dD, (4.6)

where the lower-case letters are the stoichiometric coefficients of the reaction and the upper-case

letters are the reactants (A and B) and products (C and D). The general form of the rate law

for species A can be written as

d[A]

dt
= RA, (4.7)

where RA is a function describing the rate law for species A. We use the [A]-notation to designate

concentration of species A (we will also use the equivalent notation CA). From the stoichiometry

of the reaction, the following ratios can also be inferred:

d[A]/dt

d[B]/dt
=

a

b
, and

d[A]/dt

−d[C]/dt
=

a

c
.

Substituting the rate laws gives the relationships

RA = +
a

b
RB, and (4.8)

RA = −a

c
RC . (4.9)

We still require a means of writing the rate law for species i, Ri.

The general form of the rate law for product i formed from j reactants is

Ri = kiC
n1

1 Cn2

2 ... C
nj

j , (4.10)

where k is the rate constant of the reaction, nj is the order of the reaction with respect to

constituent j, and K =
∑j

i=1 ni is the overall reaction order (note that the units of k depend on

K). In general, reaction order cannot be predicted (except for simple, single-step, elementary

reactions, where reaction order is the stoichiometric coefficient). Hence, reaction rate laws are

determined on an experimental basis.

As one might expect, the reaction rate k is temperature dependent. One way to find a

relationship for k(T ) is to use Arrhenius equation for an ideal gas

k = A exp(−Ea/(RT )), (4.11)

where A is a constant, Ea is the activation energy, R is the ideal gas constant, and T is the

absolute temperature. Defining k1 = k(T1) we can rearrange this equation to obtain

k(T ) = k1 exp

(

Ea(T − T1)

RTT1

)

. (4.12)

for small temperature changes, this equation can be linearized by defining the constant

θ =
Ea

RT2T1
. (4.13)



4.2 Reaction kinetics 85

Then, for T1 ≤ T ≤ T2,

k(T ) = k1 exp(θ(T − T1)). (4.14)

This form of the temperature dependence is often applied to non-gaseous systems as well.

4.2.1 First-order reactions

The general equation for a first-order reaction is

dC

dt
= ±kC, (4.15)

where k has units [1/T ]. Common examples are radioactive decay and the die-off of bacteria in

a river. Whether mass increases or decreases in our control volume depends on our perspective:

it depends on which species we are interested in, since one species will decrease as the other is

created. To avoid confusion, we will always report the rate constant for the reaction using an

absolute value. In this way, k is always positive. We then must chose the positive or negative sign

in (4.15) depending on whether the species of interest is increasing (positive sign) or decreasing

(negative sign) in our control volume.

This is a standard initial-value problem, whose solution can be found subject to the initial

condition

C(t = 0) = C0. (4.16)

First, rearrange the governing equation to obtain

dC

C
= ±kdt. (4.17)

Next, integrate both sides, yielding
∫

dC

C
=

∫

±kdt

ln(C) = ±kt + C1, (4.18)

where C1 is an integration constant. Solving for C we obtain

C = C ′
1 exp(±kt), (4.19)

where C ′
1 is another constant (given by exp(C1)). After applying the initial condition, we obtain

C(t) = C0 exp(±kt). (4.20)

Figure 4.1 plots this solution for a decreasing concentration (negative sign in solution) for C0 = 1

and k = 1.

As already discussed above, the characteristic reaction time is given by the time it takes

for the ratio C(t)/C0 to reach a specified value. For radioactive decay, k is negative, and two

common characteristic times are the half-life and the e-folding time. The half-life, T1/2, is the

time required for the concentration ratio to reach 1/2. From (4.20), the half-life is
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Fig. 4.1. Solution for a first-order transformation reaction. The reaction rate is k = −1.

T1/2 =
ln(1/2)

k

≈ −0.69

k
. (4.21)

The e-folding time is the time required for the concentration ratio to reach 1/e, given by

Te = −1

k
. (4.22)

Hence, the characteristic times for first-order reactions are independent of the initial concentra-

tion (or mass).

Example Box 4.1:
Radioactive decay.

A radioactive disposal site receives a sample of
high-grade plutonium containing 1 g of 239Pu and
a sample of low-grade plutonium containing 1 g
of 242Pu. The half-lives of the two samples are
24,100 yrs for 239Pu and 379,000 yrs for 242Pu. On
average, how many atoms transform per second for
each sample of plutonium?

The instantaneous disintegration rate is given by

∂C

∂t
= −kC

=
ln(0.5)

T1/2

C.

The molar weight of plutonium is 244.0642 g/mol;
hence, we have N0 = 2.467 · 1021 atoms per sample.
For 239Pu, we have

∂N

∂t
= −2.876 · 10−5N0

= −2.248 · 109 atoms/s

and for 239Pu, we have

∂N

∂t
= −1.829 · 10−6N0

= −1.430 · 108 atoms/s.

Hence, even though the half-lives are very long, we
still have a tremendous number of transformations
per second in these two samples of plutonium.

4.2.2 Second-order reactions

The general equation for a second-order reaction is
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Example Box 4.2:
Radio-carbon dating.

Radio-carbon dating can be used to estimate the
age of things that once lived. The principle of radio-
carbon dating is to compare the 14C ratio in some-
thing when it was alive to the 14C ratio in the artifact
now and use (4.20) to estimate how long the artifact
has been dead. The main assumption is that all living
things absorb the same ratio of radioactive carbon,
14C, to stable carbon, 12C, as has the atmosphere.
For this method, scientists require an accurate esti-
mate of the half-life of 14C, which is 5730±40 yrs.
Use the error-propogation equation (3.73) to esti-
mate the accuracy of this method.

Currently, the radioactive carbon in the atmo-
sphere is about 1 ·10−10 % of the total carbon. Thus,
per mole of C, there would be 6.022 · 1011 atoms of
14C. If we assume the atmosphere has historically
had the same 14C ratio, then we can use this number
for C0. A student carefully measures the 14C content
of a sample to have C = 7.528 · 1010 atoms of 14C
per mole. Thus, the age of the sample is

t = − 1

k
ln
(

C

C0

)

= 17190 yrs old.

We can estimate the accuracy as follows. First,
re-write the estimate equation as

t = − 1

k
(ln(C) − ln(C0)) .

Second, we calculate the necessary derivatives

∂t

∂k
=

1

k2
ln
(

C

C0

)

∂t

∂C
= − 1

kC
∂t

∂C0

= − 1

kC0

.

Finally, we incorporate these derivatives into the
error-propagation equation

δt =

[

(

1

k2
ln
(

C

C0

)

δk
)2

+
(

1

kC
δC
)2

+
(

1

kC0

δC0

)2
]1/2

.

Assuming an accuracy of ±0.1% for the 14C concen-
trations, the accuracy of our estimate is

δt =
√

119.42 + 8.22 + 8.32

= ±120 yrs.

Hence, the error in the half-life is the most impor-
tant error, and leads of an error of ±120 yrs for this
sample.

dC

dt
= ±kC2, (4.23)

where k has units [L3/M/T ]. An example is the reaction of iodine gas given by the reaction

2I(g) → I2(g), (4.24)

which has rate constant k = 7 · 109 l/(mol·s).
This is another initial-value problem, which can be solved subject to the initial condition

C(t = 0) = C0. (4.25)

We begin by rearranging the governing equation to obtain

dC

C2
= ±kt. (4.26)

This time we integrate using definite integrals and our initial condition, giving
∫ C

C0

dC ′

C ′2 =

∫ t

0
±kdt

−
(

1

C
− 1

C0

)

= ±kt. (4.27)

Solving for C(t) gives
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Fig. 4.2. Solution for a second-order transformation reaction. The reaction rate is k = −1.

C(t) =
1

∓kt + 1/C0
. (4.28)

Figure 4.2 plots this solution for decreasing concentration (positive sign in the equation) with

C0 = 1 and k = 1.

The characteristic times for a second-order reaction are given by

T1/2 = − 1

kC0
, and (4.29)

Te = −(e − 1)

kC0
. (4.30)

Hence, for second- and higher-order reactions, the characteristic times depend on the initial

concentration!

4.2.3 Higher-order reactions

The general equation for an nth-order reaction is

dC

dt
= ±kCn, (4.31)

where k has units [L3(n−1)/M (n−1)/T ]. The general solution subject to the initial condition

C(t = 0) = C0 is
(

1

(n − 1)

)

[

1

Cn−1
− 1

C
(n−1)
0

]

= kt (4.32)

for n ≥ 2. Such reactions are rare, and one generally tries different values of n to find the best

fit to experimental data.

A common means of dealing with higher-order reaction rates is to linearize the reaction in

the vicinity of the concentration of interest, CI . The linearized reaction rate equation is

R = k∗C − kC2
I , (4.33)
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Fig. 4.3. Schematic of a control volume with crossflow and reaction.

where k is the real rate constant and k∗ is the linearized rate constant; note that kC2
I is also a

constant. Thus, higher-order reactions can be treated as first-order reactions in the vicinity of a

known concentration CI .

4.3 Incorporating transformation with the advective-

diffusion equation

Having a thorough understanding of transformations and reaction kinetics, we are ready to

incorporate transformations into our transport equation, the advective diffusion equation. As we

pointed out earlier, reactions are treated differently, depending on whether they are homogeneous

or heterogeneous. Homogeneous reactions add a term to the governing differential equation;

whereas, heterogeneous reactions are enforced with special boundary conditions.

4.3.1 Homogeneous reactions: The advective-reacting

diffusion equation

Homogeneous reactions add a new term to the governing transport equation because they occur

everywhere within our system; hence, they provide another flux to our law of conservation of

mass. Referring to the control volume in Figure 4.3, the mass conservation equation is

∂M

∂t
=
∑

ṁin −
∑

ṁout ± S, (4.34)

where S is a source or sink reaction term. We have already seen in the derivation of the advective

diffusion equation that

δṁ =

(

D
∂2C

∂x2
i

− ui
∂C

∂xi

)

δxδyδz. (4.35)
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Fig. 4.4. Schematic representation of the reaction boundary condition. S represents the source or sink term, δs

is the reaction sublayer, and δxδy is the surface area into the page of the boundary control volume.

The reaction term is just the kinetic rate law integrated over the volume, giving

S = ±Rδxδyδz. (4.36)

Combining these results in an equation for the concentration, we obtain

∂C

∂t
+

∂uiC

∂xi
= D

∂2C

∂x2
i

± R, (4.37)

where R has the same form as in the sections discussed above. Appendix B presents solutions

for a wide range of cases.

As an example, consider the solution for an instantaneous point source of a first-order reacting

substance in one dimension. The solution for C(t) can be found using Fourier transformation to

be

C(x, t) =
M

A
√

4πDt
exp

(

−(x − ut)2

4Dt

)

exp(±kt), (4.38)

where M is the total mass of substance injected, A is the cross-sectional area, D is the diffusion

coefficient, u is the flow velocity, and k is the reaction rate constant. If we compare this solution

to the solution for a first-order reaction given in (4.20), we see that the initial concentration C0

is replaced by the time-varying solution in the absence of transformation. This observation is

helpful for deriving solutions to cases not presented in Appendix B.

4.3.2 Heterogeneous reactions: Reaction boundary conditions

Heterogeneous reactions occur only at the boundaries; hence, they provide new flux boundary

conditions as constraints on the governing transport equation. Examples include corrosion, where

there is an oxygen sink at the boundary, and also catalyst reactions, where the presence of other-

phase boundaries is needed to facilitate or speed up the reaction. Figure 4.4 shows a macroscopic

and microscopic view of the solid boundary. To define the boundary condition, we require an

expression for the source/sink flux, Jn.

Writing the conservation of mass for the control volume in the microscopic view, we have
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dM

dt
= ±S, (4.39)

where S is the source or sink mass flux over the control volume. We can expand this expression

to obtain

δxδyδs
dCs

dt
= ±δxδyδsR, (4.40)

where δs is the reaction sublayer depth and Cs is the mean surface concentration within the

reaction sublayer. Since we are looking for a flux, Jn, with units [M/(L2T)], we must write the

above equation on a per unit area basis, that is

δs
dCs

dt
= ±δsR = ±Jn. (4.41)

Thus, the general form of a reaction boundary condition is

Jn = δsR. (4.42)

As an example, consider the one-dimensional case for a first-order reacting boundary condi-

tion. For first order reactions, R = kCs, and for the one-dimensional case, Jn = −D(dC/dn)|s.
Substituting into the general case, we obtain

− D
dC

dn

∣

∣

∣

∣

s
= ±δskCs. (4.43)

The reaction constant, k, is controlled by the boundary geometry, the possible presence of a

catalyst, and by the kinetics for the species of interest; hence, k is a property of both the species

and the boundary surface. The reaction rate is often given as a reaction velocity, ks = kδs. These

types of boundary conditions will be handled in greater detail in the chapter on sediment- and

air/water interfaces.

4.4 Application: Wastewater treatment plant

A wastewater treatment plant (WWTP) discharges a constant flux of bacteria, ṁ into a stream.

How does the concentration of bacteria change downstream of the WWTP due to the die-off of

bacteria? The river is h = 20 cm deep, L = 20 m wide and has a flow rate of Q = 1 m3/s. The

bacterial discharge is ṁ = 5 ·1010 bacteria/s, and the bacteria can be modeled with a first-order

transformation equation with a rate constant of 0.8 day−1. The bacteria are discharged through

a line-source diffuser so that the discharge can be considered well-mixed both vertically and

horizontally at the discharge location. Refer to Figure 4.5 for a schematic of the situation.

The solution for a first-order reaction was derived above and is given by

C(t) = C0 exp(−kt). (4.44)

The initial concentration C0 is the concentration at the discharge, which we can derive through

the relationship

ṁ0 = QC0. (4.45)
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Fig. 4.6. Bacteria concentration downstream of WWTP.

Substituting the values given above, C0 = 5 · 106 #/100ml. The next step is to convert the time

t in our general solution to space x through the relationship

x = ut. (4.46)

Substituting, we have

C(x) = C0 exp

(

−k
x

u

)

= 5 · 106 exp(−3.7 · 10−5x) #/100ml. (4.47)

The half-life for this case can be given in terms of downstream distance. From (4.21), we have

x1/2 = −0.69

k

= − 0.69

−3.7 · 10−5

= 18.6 km. (4.48)

Figure 4.6 plots the solution for the first 20 km of downstream distance.
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Summary

This chapter introduced the treatment of transformation processes. Three classes of transfor-

mations were considered: physical, chemical and biological. The rate laws governing the trans-

formations were derived from chemical reaction kinetics. Solutions for first and second order

reactions were derived, and methods for dealing with higher-order reactions and temperature

dependence of rate constants were presented. These rate laws were then combined with the

transport equation for two types of reactions: for homogeneous reactions, the rate law becomes

a source or sink term in the governing differential transport equation; for heterogeneous reac-

tions, a modified rate law becomes a boundary condition constraining the governing differential

equation. An example of bacterial die-off downstream of a WWTP closed the chapter.

Exercises

4.1 Reaction order. A chemical reaction is of order 1.5. What are the units of the rate constant?

What is the solution to the rate equation (i.e. what is C(t))? Write an expression for the half-life.

4.2 Clean disposal. A chemical tanker runs aground near the shore of a wide river. The company

declares the load on the tanker a complete loss, due to contamination by river water, and decides

to slowly discharge the hazardous material into the river to dispose of it. The material (an

industrial acid) reacts with the river water (the material is buffered by the river alkalinity)

and is converted to harmless products with a rate constant of k = 5 · 10−5 s−1. Calculate the

maximum discharge rate such that a concentration standard of 0.01 mg/l is not exceeded at a

distance of 1.5 km downstream. The river flow rate is Q = 15 m3/s, the depth is h = 2 m, the

width is B = 75 m, and the concentration of acid in the grounded tanker is 1200 mg/l. If the

tanker contains 10000 m3, how long will it take to safely empty the tanker?

4.3 Water treatment. In part of a water treatment plant, a mixing tank is used to remove

heavy metals. Untreated water flows into the tank where is it rigorously mixed (instantaneously

mixed) and brought into contact with other chemicals that remove the metals. A single outlet

is installed in the tank. Assume the inflow and outflow rates are identical, and assume metals

are removed in a first-order reaction with a rate constant of k = 0.06 s−1. The tank volume is

15 m3. What is the allowable flow rate such that the exit stream contains 10% of the metals in

the input stream? How high can the flow rate be if the reaction rate constant is doubled?
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5. Boundary Exchange: Air-Water and

Sediment-Water Interfaces

In the previous chapter we introduced transformation and described both homogeneous and

heterogeneous reactions. Now, we would like to look in more detail at heterogeneous reactions

and discuss the chemical and physical processes at interfaces that lead to boundary fluxes of

chemical species. The two major boundary types in environmental fluid mechanics are the air-

water and sediment-water interfaces. Because the processes at both boundaries are very similar,

we treat them together in this chapter under the heading of boundary exchange.

This chapter is divided into three main sections. First, the boundary layer in the vicinity

of the interface is described, and two common models for treating the boundary dynamics are

introduced without specifying what type of boundary is involved. Second, the air-water interface

is introduced, and methods are described for treating gas exchange across the interface. As an

example, the Streeter-Phelps equation for predicting oxygen concentrations downstream of an

organic waste stream is introduced. Third, the sediment-water interface is described, including

the complex physical and transformation processes that bring sediment and water into contact,

and a short description of the chemistry that occurs at the sediment-water interface is provided.

5.1 Boundary exchange

Under the concept of boundary exchange, we are primarily interested in the transfer of substances

that can be dissolved in the water phase. Examples at the air-water interface include chemicals

present in both phases (the air and the water), such as oxygen and carbon dioxide, as well as

volatile chemicals that off-gas from the water into the atmosphere, where the concentration is

negligible, such as mercuric compounds (e.g. (CH3)2Hg), chlorinated hydrocarbons (e.g. CH2Cl),

and a host of other organic compounds. Examples at the sediment-water interface include metals,

salts, nutrients, and organic compounds.

The transfer of these substances at an interface leads to a net mass flux, J , which can

have diffusive and advective components. Diffusive transfer is often assumed to be controlled by

equilibrium chemistry. Advective transfer results from a host of processes, such as the ejection

of sea spray from waves or the flow of groundwater. In general, this net mass flux becomes a

boundary condition that is imposed on the governing transport equation that is then solved

either numerically or analytically.

The challenge in describing boundary exchange is in predicting the magnitude of J . Unfor-

tunately, the dynamics that control the magnitude of the exchange flux are often microscopic in

nature and must be predicted by sub-models. If we consider the example of sugar dissolving in a

Copyright c© 2004 by Scott A. Socolofsky and Gerhard H. Jirka. All rights reserved.
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Fig. 5.1. Schematic for the boundary exchange for a dissolving substance into a stagnant water body. Figure (a.)
shows the initial condition, and Figure (b.) shows the time-response of the concentration profiles. Csat is the
saturation concentration of the dissolving substance.

cup of tea, we know from experience that the sugar dissolves much faster if we stir the tea than

if we let the system remain stagnant. But, if we add sand to a cup of tea and stir for a few years,

the sand will still not completely dissolve. Hence, we expect J to depend on the physico-chemical

properties of the species in the exchange process, as well as on the hydrodynamic conditions in

each phase.

5.1.1 Exchange into a stagnant water body

As a simple introduction, consider a completely stagnant case, where the hydrodynamic effects

on transfer are negligible. Figure 5.1 describes such a situation. The initial condition is that a

semi-infinite body of water has a uniform initial concentration C(z, t) = C0 that is less than the

saturation concentration of the substance, Csat. The surface interface is then instantaneously

exposed to an infinite source of the substance. Because the concentration in the water body is

below Csat, the substance will want to dissolve into the water until the water body reaches a

uniform concentration of Csat. The dissolution reaction is a very fast reaction; hence, the con-

centration at the surface becomes Csat as soon as the source is applied. However, the movement

of C into the water body is limited by diffusion away from the surface. This process is illustrated

schematically in Figure 5.1(b.).

To treat this stagnant case quantitatively, consider the governing transport equation and its

solution. Because ∂C/∂x = ∂C/∂y = 0, we can use the one-dimensional equation, and because

the fluid is stagnant, we can neglect advection, leaving us with

∂C

∂t
= D

∂2C

∂z2
. (5.1)

The boundary and initial conditions are:

C(−∞, t) = C0 (5.2)

C(0, t) = Csat (5.3)

C(z, 0) = C0. (5.4)
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The solution for this case was found in Section 2.2.2 for the case of C0 = 0. The modified solution

for this case is

C(z, t) − C0

Csat − C0
= 1 − erf

( −z√
4Dt

)

(5.5)

where the minus sign inside the error function is needed since z is negative downward. Recall

also that (5.5) is only valid for z ≤ 0.

From this solution we can derive an expression for the boundary flux at z = 0 using Fick’s

law. Writing the flux law for the stagnant case in one-dimension, we have

Jz = uC − D
∂C

∂z

∣

∣

∣

∣

z=0

= −D
∂C

∂z

∣

∣

∣

∣

z=0
(5.6)

since u = 0. Substituting the solution above, we can compute Jz as

Jz(t) = −(Csat − C0)

√

D

πt
. (5.7)

We can also compute the characteristic thickness, δ, of the mixing layer, or the concentration

boundary layer, over which the concentrations change from Csat to C0:

δ = σz =
√

2Dt. (5.8)

Hence, for the stagnant case, the mixing layer grows deeper in time and the boundary flux can

be written as

Jz = −kl(Csat − C0) (5.9)

where kl is the transfer velocity, given in this stagnant case by kl =
√

D/(πt), with units [L/T ].

5.1.2 Exchange into a turbulent water body

When the water body present below (or above) the interface is turbulent, large-scale motion

within the fluid body will interact with the mixing layer, defined by the concentration boundary

layer δ.

This turbulent motion has two major effects. First, the turbulence in the bulk fluid erodes

the boundary layer, thereby, limiting the growth of the layer thickness δ. Since the bulk fluid and

interface concentrations C0 and Ci are independent of δ, this effect will increase the concentration

gradient; hence, Jz will be larger than in the stagnant case. Second, the turbulence in the bulk

fluid will cause motion within the boundary layer, thereby, increasing the effective diffusivity.

Hence, Jz will again be larger than the stagnant case. However, molecular diffusion is still

expected to be a rate-limiting process since turbulence (three-dimensional motion) cannot exist

directly at the surface. For the case of a large groundwater flux, this last statement may have

to be relaxed, but for now we will assume the actual interface is laminar.

These effects of turbulence can be summarized in the following list of expectations regarding

the concentration boundary layer for a turbulent flow:
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1. We expect an average film thickness, δ. That is, turbulence will prevent δ from growing

arbitrarily large.

2. We expect an average boundary layer flux (transfer velocity). This is a consequence of the

previous expectation.

3. The transfer rate can be limited on either side of the interface by the chemical or hydrody-

namic conditions in that phase.

The following two sections introduce models which seek expressions for kl that satisfy the three

expectations listed above.

5.1.3 Lewis-Whitman model

The simplest type of model is the Lewis-Whitman model, which says that the mixing layer is a

constant thickness, δ, which leads to kl given by

kl =
D

δ
(5.10)

(refer to Figure 5.2). Note that for this model kl is linearly proportional to D, as compared to the

square-root dependence derived in the stagnant case. Also, the mixing depth δ is a pure function

of the hydrodynamic condition. Thus, once one has an expression for δ, the transfer velocity for

different substances can be computed using the various respective molecular diffusivities Dm.

The weakness of this model is that is does not provide any physical insight into how to predict

δ; hence, δ must be determined empirically.

5.1.4 Film-renewal model

The film-renewal model improves on the Lewis-Whitman model by providing a physical mecha-

nism that controls the boundary layer thickness; hence, we can use this mechanism to formulate

a predictive model for δ. In the film renewal model, the boundary layer is allowed to grow as in

the stagnant case until at some point the turbulence suddenly replaces the water in the boundary

layer, and the mixing layer growth starts over from the beginning. This mixing layer exchange,
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or film-renewal, occurs periodically with a renewal frequency that is a function of the turbulent

characteristics of the flow.

Under the idealized case that the boundary layer grows undisturbed until it is suddenly

completely replaced by water from the bulk turbulent flow, the net flux at the boundary can

be determined analytically. The governing transport equation and the initial and boundary

conditions are exactly the same as in the stagnant case (see (5.1) to (5.4)). The solution is given

by (5.5), and the net flux at the boundary is given by (5.7). These solutions are only valid,

however, from t = 0 to t = tr, the time between renewal events. The mean boundary flux over

one cycle can be found easily by taking the time average

Jz =
1

tr

∫ t+tr

t
Jz(t)dt

=
1

tr

∫ t+tr

t
−(Ci − C0)

√

D

πt
dt

= −(Ci − C0)

√

4D

πtr
(5.11)

or, since the renewal frequency, r, is just 1/tr,

Jz = −(Ci − C0)

√

4Dr

π
. (5.12)

Thus, the average transfer velocity is independent of time and is given by

kl =

√

4Dr

π
(5.13)

which leaves us with the need to predict r.

The renewal frequency r is a characteristic of the turbulence. Recall that a turbulent flow is

a spectrum of eddy sizes, from the integral scale down to the Kolmogorov scale, and is driven,

for homogeneous turbulence, by the dissipation rate

ε =
u3

I

lI
(5.14)

where uI and lI are the integral velocity and length scales of the flow, respectively. For a shear

flow, the approximations uI = u∗ and lI = h are generally valid, where u∗ is the shear velocity

and h is the depth of the shear layer. We can derive two extreme estimates for r: one for the

case that the concentration boundary layer is renewed by Kolmogorov-scale eddies (called the

small-eddy estimate), and another for the case that the concentration boundary layer is renewed

by integral-scale eddies (called the large-eddy estimate).

Small-eddy estimate of r. Since the smallest eddies are dissipated by viscosity ν, an estimate

for the Kolmogorov time scale tK can be written as

tK =

√

ν

ε
. (5.15)

Taking r as 1/tK and substituting approximations for uI and lI for a shear flow, we can obtain
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r =

√

u3
∗

hν
. (5.16)

If we further substitute the shear velocity as u∗ = u
√

f/8, where u is the mean flow velocity

and f is a friction coefficient, then an estimate for kl can be written as

kl = K
u3/4

h1/4
(5.17)

where K is a constant that depends on the fluid properties (i.e. ν) , the physico-chemical

properties of the substance (i.e. D), and on the boundary type (i.e. f). For kl at the air-water

interface with units cm/s, K is of order 10−1 to 100.

Large-eddy estimate of r. The time scale of the largest eddies is given by the integral time

scale tI , which for a shear flow is

tI =
u∗
h

. (5.18)

Taking r = 1/tI , and substituting u∗ = u
√

f/8 leads the the expression for kl given by

kl = K
u1/2

h1/2
(5.19)

where K is another constant which depends on the the physico-chemical properties of the sub-

stance (i.e. D), and on the boundary type (i.e. f).

Experimental data are sparse, but tend to agree better with the relationship kl ∝ u3/4; hence,

it is most likely the small-scale eddies that are responsible for the film renewal.

5.2 Air/water interface

At the air-water interface we are primarily concerned with the transfer of gases that can be

dissolved in the water. The substance may, or may not, be measurable in the gas phase. Figure 5.3

demonstrates the general case for a substance with measurable concentrations in both the gas and

liquid phase. As the figure demonstrates, there is a concentration boundary layer in the vicinity

of the water surface for both the phases. Because there cannot be a build-up of concentration

at the interface, the flux from the gas into the water, ṁa, must equal the flux at the interface

into the water, ṁw. Hence, only one of the phases contains the rate-limiting step.

The rate of transfer at the interface is controlled by the transfer velocity kl; thus, the rate-

limiting phase will have the lowest value of kl. Consider first the Lewis-Whitman model. The

transfer velocity increases as the diffusion coefficient increases and as the concentration boundary

layer gets thinner. Both of these conditions are higher in the gas phase than in the liquid phase.

The more complex film-renewal model gives the same conclusion: the flux at the interface can be

higher in the air than in the water. Therefore, we generally assume the substance is immediately

available at the gas side of the interface, and we must only consider the concentration boundary

layer in the water phase in order to compute the net flux at the boundary.

Because the air-water interface is a moving boundary, two further complications can arise

that are not addressed in either of our boundary transfer models. First, wind generates shear
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Fig. 5.3. Schematic of the air-water interface for a substance with measurable concentrations in both the air and
the water.

directly at the interface. We considered shear at the channel bed as the generation mechanism

for turbulence in the film-renewal model. However, shear at the air-water interface generates

motion at the interface that can strongly affect (and greatly increase) the transfer velocity from

the case of a stagnant wind. These effects are particularly important in the ocean and in lakes.

Second, surface waviness, breaking and instabilities, greatly increases gas transfer by disturbing

the exchange boundary layer. For example, breaking waves entrain air and carry air bubbles

deep into the fluid, that then dissolve as they rise back to the water surface. Such dynamic

situations must be handled by more complicated techniques.

5.2.1 General gas transfer

Assuming the rate-limiting step is on the liquid side of the interface, we can now derive a

general expression for gas transfer into a well-mixed medium, such as at the surface layer of a

lake in summer. We will consider the control volume in Figure 5.3(b.). The conservation of mass

equation is

dM

dt
= ṁin − ṁout (5.20)

= ṁw. (5.21)

To write M as a concentration, we must define the size of the control volume. A common

assumption is to use the depth of the well-mixed water body, h, and a non-specified surface

area, A. Then, substituting from (5.9)

Ah
dCw

dt
= Akl(Ciw − Cw) (5.22)

which is rearranged to give
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Example Box 5.1:
Volatilization.

As an example, consider the off-gassing of the
volatile compound benzyl chloride (CH2Cl) from a
stream with velocity u = 1 m/s and initial concen-
tration of CH2Cl of C0 = 0.1 mg/l. The gas transfer
coefficient is Kl = 1 · 10−4 s−1. Because CH2Cl is
not present in the atmosphere, Ciw can be taken as
zero. Then (5.23) becomes

dCw

dt
= −KlCw

which, after substituting t = x/u, has solution

Cw(x) = C0 exp
(

−Kl
x

u

)

.

Thus, CH2Cl concentration decreases exponentially
downstream from the source due to volatilization.

x

Co2

D

Co2

Degradation

dominated

Reaeration dominated

Csat

Q

mL

Fig. 5.4. Schematic of the dissolved oxygen sag curve downstream of a biodegradable waste stream. The upper
figure illustrates the receiving stream; the lower diagram shows the downstream dissolved oxygen concentration.

dCw

dt
= Kl(Ciw − Cw) (5.23)

where Kl = kl/h is the gas transfer coefficient with units [T−1].

5.2.2 Aeration: The Streeter-Phelps equation

A common problem that requires modeling the exchange of oxygen through the air-water inter-

face is that of predicting the oxygen dynamics in a river downstream of a biodegradable waste

stream. As the waste is advected downstream, it degrades, thereby consuming oxygen. The oxy-

gen deficit, however, drives the counteracting aeration process, so that the situation is similar

to that shown in Figure 5.4.

Biodegradation is a reaction that consumes oxygen. A general biodegradation equation can

be written as
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OM + O2 → CO2 + H2O + new cells + stable products
microorganisms

where OM stands for organic matter (the biodegradable waste). It can be shown in the laboratory

that the consumption of OM is a first-order reaction. Thus, the rate-law for the consumption of

OM is given by

d[OM]

dt
= −kd[OM] (5.24)

where kd is the rate constant for biodegradation. In the classical literature on this subject, the

concentration of OM is called the oxygen demand and is given the symbol L. Substituting L for

[OM] in the above equation and imposing the initial condition L(t = 0) = L0, the solution for

the consumption of oxygen demand becomes

L(t) = L0 exp(−kdt) (5.25)

where L0 is called the ultimate carbonaceous oxygen demand. The word carbonaceous refers to

the fact that the oxygen consumption is due to conversion of carbon-based organic matter as

opposed to any other chemical reaction that might consume oxygen. Because O2 is consumed

at the same rate as OM, we can write the following relationship:

d[O2]

dt
=

d[OM]

dt
= −kdL0 exp(−kdt). (5.26)

If we define the oxygen deficit, D = ([O2]sat − [O2]), then the production of oxygen deficit is

given by

dD

dt
= kdL0 exp(−kdt). (5.27)

This equation represents a sink term for oxygen due to biodegradation of the waste stream.

At the same time the waste is being degraded the river is being aerated by exchange at the

air-water interface. The mass flux of oxygen, ṁO2
, is derived from the boundary exchange flux

in (5.9)

ṁO2
= −Akr([O2]sat − [O2])

= −AkrD (5.28)

where kr is the river aeration transfer velocity for oxygen and the negative sign indicates a flux

of oxygen goes into the river.

We can now use the control volume in Figure 5.3(b.) to derive the oxygen balance downstream

of the waste source. If we make the one-dimensional assumption and move our control volume

with the mean flow velocity in the river, then the mass balance for our control volume is

dMO2

dt
= ṁO2

− S (5.29)

where S is a sink term representing the biodegradation process. Taking the width of the river as

W and the depth as h, we can write the equation for the concentration of O2 as
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Wδxh
d[O2]

dt
= ṁO2

− S

= Wδxkr([O2]sat − [O2]) − WδxhRO2
(5.30)

where RO2
is the reaction rate law for the consumption of O2. Rewriting this equation for the

oxygen deficit D, we have

dD

dt
= RD − KrD (5.31)

where RD is the rate law for the production of D and Kr = kr/h is the oxygen transfer coefficient.

Substituting (5.27) RD, we obtain the inhomogeneous ordinary differential equation

dD

dt
= kdL0 exp(−kdt) − KrD (5.32)

subject to the initial condition D(t = 0) = D0, which is the initial oxygen deficit just upstream

of the point where the waste stream is introduced. The solution to this equation is the classic

Streeter-Phelps equation:

D(t) =
kdL0

Kr − kd
(exp(−kdt) − exp(−Krt)) + D0 exp(−Krt). (5.33)

The derivation of this solution is given in Appendix C.

5.3 Sediment/water interface

Unlike the air-water interface, where the interface is generally confined to an abrupt transition

at the water surface, the sediment-water interface is very difficult to define and is controlled by a

number of complicated physical and chemical processes. The real difficulty of the sediment-water

interface lies in the multi-phase (dispersive) nature of the interface. At an individual sediment

grain, the interface may be clearly defined. However, since we cannot treat every sediment grain

individually, a continuum description of the system is necessary. Two important quantities are

used to describe dispersed systems. The porosity, n, is the volume of water contained in a unit

volume of mixture

n =
Vw

V
. (5.34)

This parameter can vary widely, but is generally between 0.1 and 0.9 within a porous media

(groundwater system) and is 0.99 and higher within the water column (suspended sediment

system). For suspended sediments, the second parameter is also important: the slip velocity, or

settling velocity, us. The settling velocity is generally taken as the terminal fall velocity of the

sediment in a quiescent system. The porous media/water column interface can then be defined

as the point where n becomes small enough that us goes to zero due to contact with other

sediment particles, forming a (relatively) fixed matrix.

As shown in Figure 5.5 many processes lead to the transport of chemical species in the water

column and through the sediment bed. These processes are organized in the figure into two

categories. On the left are physical processes that do not involve chemical transformation; on

the right are chemical and biological processes.
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Example Box 5.2:
Dissolved-oxygen sag curve.

As an example of the application of the Streeter-
Phelps equation, consider the following waste
stream. A wastewater treatment plant discharges
an oxygen demanding waste stream at a rate of
ṁ = 295 g/s of BOD (biochemical oxygen demand)
into a stream h = 3 m deep, W = 30 m wide, and
with a flow rate Q = 27 m3/s. The waste stream
is introduced through a longitudinal diffuser so that
the we can assume complete lateral and vertical mix-
ing at the source. The initial concentration of BOD
in the river L0 is then

L0 =
ṁ

Q

=
295

27
= 10.9 mg/l.

Based on regular experiments conducted by the fa-
cility operator, the decay rate of the waste is known
to be kd = 0.2 day−1.

A rule of thumb often used for computing the aer-
ation rate is

Kr =
3.9u1/2

h3/2

where Kr is in day−1, u is the mean stream ve-
locity in m/s, and h is the depth in m. For this
stream Kr = 0.4 day−1. The initial oxygen deficit
was measured to be D0 = 1.5 mg/l (the saturation
oxygen concentration is 9.1 mg/l). The plot below
shows the solution (5.33) for the oxygen concentra-
tion ([O2]sat − D) downstream of the mixing zone.
The critical time to reach the minimum oxygen con-
centration is

tc =
1

Kr − kd
ln

[

Kr

kd

(

1 − D0(Kr − kd)

kdL0

)]

which for this case is 2.67 days, or 69 km. This exam-
ple illustrates how slow the aeration process can be
in the absence of aeration devices, such as cascades
and water falls.
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The physical processes are responsible for transport. Within the water column, chemicals can

move with either the solid or liquid phase. Of the transport processes listed in the figure, we

have already discussed advection and diffusion (both turbulent and molecular) in detail. The

other transport processes in the water column (which are specific to the sediment phase) are:

• Flocculation and settling: flocculation is the sticking together of several sediment particles

to form larger particles. Settling is the downward fall of sediment particles due to their negative

buoyancy. Accept for very small particles (colloids), sediment particles always have a negative

vertical velocity component relative to the water column motion.

• Sedimentation: sedimentation is the process whereby sediment is lost from the water column

and gained by the sediment bed. This occurs once the settling sediment particles reach the

channel, lake or ocean bottom and rejoin the sediment bed.
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Fig. 5.5. Schematic of processes occurring at the sediment-water interface, in the water column and in the
sediment bed (porous media).

• Erosion: erosion is the process by which sediment is lost from the sediment bed and entrained

into the water column.

Within the sediment bed, or porous media, further transport processes are at work. For species

in the liquid phase, the processes of advection, diffusion, and dispersion are active throughout

the porous media. For the sediment particles, physical transport occurs only in the upper active

layer due to the process of bioturbation:

• Bioturbation: bioturbation is the name given to the mixing of sediment caused by animals

living in the sediment (mostly worms). These animals move sediment as they dig. Two impor-

tant classes of worms mix the sediment differently. In the one case, sediment is eaten at the

base of the active layer and moved up to the surface. In the other case, sediment is removed

from the surface and carried down to the bottom of the active layer. The net movement of sed-

iment is often modeled by an enhanced diffusion process, where we use bioturbation diffusion

coefficients.

Through the combination of all these transport processes, chemical species move in and out of

the water column and the porous media.

Through transformation processes, chemical species move in and out of the solid and liquid

phases and, also, change to other species. We have already discussed chemical and biological

transformation reactions. These reactions occur both in the water column and in the porous

media. They can also occur in either the liquid phase, the solid phase or at the interface.
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Processes at the sediment interface are particularly important for the transport of chemicals

through these multi-phase systems:

• Adsorption/desorption: the chemical processes of adsorption and desorption control the

distribution of certain chemicals between the solid and liquid phases. Due to complex chem-

ical/physical processes, some molecules have an affinity for sticking to the solid phase (often

due to electrical charge interaction). That is, some molecules would rather stick to a sedi-

ment particle than remain dissolved in the surrounding fluid. The behavior of most organic

compounds and heavy metals is controlled by sorption chemistry.

Because sorption is a dominant process occurring at the sediment-water interface, it is discussed

in more detail at the end of this section.

As discussed in Gschwend (1987), the processes at the sediment-water interface (at the bottom

of a lake or channel) depend on the energetic state of the water body. Beginning with laminar

conditions (as in a deep lake) and progressing to increasingly energetic, turbulent conditions (as

in reservoirs, estuaries, and streams), the progression is as follows. With no motion, exchange

occurs due to direct sorption exchange and diffusion of dissolved species from the pore water.

Next, the system begins to flow, allowing the advective and dispersive flux of groundwater flow.

Bioturbation, which may always be present, adds energy by actively mixing the sediments. As

the water column begins to flow, sediments can be pushed along the top layer of sediments

in a process called bed-load transport. Finally, with an energetic water column, erosion begins,

sediment is carried up into the water column, and suspended transport (advection of sediment in

the water column) becomes important. Hence, the transport of species associated with sediment

is a complex problem dependent on the chemistry of the species and the mobility of the sediment.

5.3.1 Adsorption/desorption in disperse aqueous systems

Ignoring the complex problems that lead to the transport of sediment, we focus in this section

on the exchange at the solid/liquid interface of a mixed solution of suspended sediment particles

in a dispersed (large n) system. An important process controlling the distribution of many

toxins in sediment-laden solutions is adsorption/desorption. Defined above, this process causes

a large fraction of the sorbing compound to attach to the sediment particles. Hence, sorption

controls the concentration of dissolved contaminant, and causes much of the contaminant to be

transported with the sediment.

Figure 5.6 illustrates the situation. Sorbing compounds include most polar and non-polar

organic compounds and heavy metal ions. To describe the situation quantitatively, we define two

concentrations. First, the concentration of substance A that is dissolved in solution is designated

C and is defined as

C =
Mdissolved

Vw
(5.35)

having normal concentration units. Second, the non-dimensional sorbed-fraction concentration,

C∗
s , is defined as
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Fig. 5.6. Schematic of the adsorption/desorption process for the molecule A.

C∗
s =

Madsorbed/Vw

Msediment/Vw

=
Madsorbed

Msediment
. (5.36)

These equations are valid only for highly dispersed systems, where nV ≈ V .

Because sorption kinetics are very fast, we can usually assume that equilibrium exists be-

tween the adsorbed and desorbed fractions. Based on experiments, the following simple type of

equilibrium relationship has been proposed:

C∗
s =

ΓC

K + C
(5.37)

which is called the Langmuir equation. The coefficient K is a constant with units of concen-

tration; the coefficient Γ is a non-dimensional constant, called the Langmuir isotherm, which

gives the asymptotic value of C∗
s as C becomes large. Figure 5.7 plots the Langmuir equation

for Γ = 1 and K = 1. For most toxins in the environment, C � K, and we can simplify the

Langmuir equation to

C∗
s = PC (5.38)

where P is the partition coefficient with units [L3/M]. Typical values of P are between 103 to

106 l/kg.

In order to avoid the confusion caused by C∗
s being non-dimensional, a dimensional concen-

tration of adsorbed contaminant is convenient to define. From the density of the sediment ρs

and the porosity, the dimensional adsorbed concentration is

Cs = C∗
s ρs

(

1 − n

n

)

= KDC (5.39)

where KD is a non-dimensional distribution coefficient. It is important to note that P is a

purely physico-chemical parameter; whereas, KD also depends on the sediment concentration

and physical characteristics (through the porosity and density, respectively).

Summary

This chapter introduced the processes that result in boundary exchange of chemical species. The

general issue in describing boundary exchange is in determining the net boundary flux J . Once
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Example Box 5.3:
Naphthalene partitioning.

Consider the partitioning of the organic toxin
naphthalene, the smallest of the polynuclear aro-
matic hydrocarbons (PAHs). We wish to find the
fraction of dissolved to adsorbed naphthalene, fd.
Using (5.38), this fraction is given by

fd =
C

C + Cs

=
1

1 + ρs

(

1−n
n

)

P
.

For naphthalene P = 103 l/kg. Typical sediment has
a density of 2600 kg/m3. For a mixture with n =
0.99, fd = 4%.

We can see that fd is always large for low concen-
trations C by looking at the range of expected KD.
From above

KD = ρs

(

1 − n

n

)

P.

Making the following order-or-magnitude estimates

ρs = 103

(1 − n)/n = 10−3

P = 103 to 106

KD ranges from 103 to 106; fd ranges from 10−3 to
10−6. Therefore, we can assume that a large fraction
of the contaminant is present in the sorbed state.

If we manage to eliminate the source of a toxic
contaminant that is also sorbed to the sediments,
then the sediment bed itself will start to release its
sediment load into the water column water, creating
a new source (see Exercise 5.3). Unfortunately, be-
cause fd is so large, the sediment load is large, and
it takes a long time before the water column is free
from this sediment source of the contaminant.

that flux is know, boundary exchange becomes a boundary condition on the governing transport

equation. The solution for J in a stagnant water body was used to develop two descriptions of

exchange in turbulent water bodies. The Lewis-Whitman model, the simplest model, assumes

the concentration boundary layer between phases has a constant depth. The film-renewal model

assumes that turbulence constantly refreshes the fluid in the concentration boundary layer, and

that the renewal rate derives from turbulent eddy characteristics. The exchange at the air-water

interface was discussed in more detail, with examples for volatile chemicals and oxygen aeration.

The sediment-water interface was described qualitatively, and the sorption chemistry at the

sediment water interface was described in more detail.
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Table 5.1. Measurements of time and oxygen concentration for a BOD test. (Data taken from Nepf (1995))

Time [O2]

[days] [mg/l]

0 9.00

2 5.21

4 3.81

6 3.30

8 3.11

10 3.04

12 3.01

14 3.01

16 3.00

18 3.00

20 3.00

Exercises

5.1 BOD test. To determine the biodegradation rate coefficient of a particular waste, the waste

is placed in solution in a closed bottle, where the oxygen concentration in monitored over time.

Table 5.1 gives the results of a typical test. Based on all the data in the table, estimate the value

of the rate coefficient, kd.

5.2 Gas exchange rates. A river has the following characteristics: water depth h = 1.0 m, width

B = 100 m, bottom slope S = 9·10−4, and Manning coefficient n = 0.01. The turbulent intensity

is 15%.

• Use the Lewis-Whitman model to estimate the transfer velocity kl. A typical layer thickness

δ is of order O(0.1mm) to O(1mm).

• Use the small-eddy film renewal model to estimate kl.

• Use the large-eddy film renewal model to estimate kl.

• Compare and discuss the three kl’s you obtained.

• Calculate the flux of dissolved oxygen (DO) into the river using the most reasonable kl (use

your own judgment with justification) among the three above. The saturated concentration

[DO]sat is 8.0 mg/L while the measured [DO] near the bottom of the river is 4.0 mg/L.

• What is the total mass transfer of DO into the river for every kilometer of length?

5.3 PCB contamination. An industrial plant releases PCBs (polychlorinated biphenols) through

a diffuser into a river. The river moves swiftly, with a modest sediment load. PCB is volatile

(will off-gas into the atmosphere) and can be adsorbed by the sediment in the river. Describe

the network of complex interactions that must be investigated to predict the fate of PCBs from

this disposal source.
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5.4 Sediment source of phosphorus. Phosphorus, in the form of phosphate (PO3−
4 ), is often

a limiting nutrient for algae production in lakes. Because the uncontrolled growth of algae is

undesirable, the discharge of phosphorus into the environment should be minimized (this is why

you cannot buy laundry detergent any more that contains phosphorus). The U.S. Environmental

Protection Agency recommends a limit of 0.05 mg/l PO3−
4 for streams that flow into freshwater

lakes.

An old chemical plant recently shut off their phosphorus discharge; however, high concentra-

tions of phosphorus are still being measured downstream of the chemical plant. After further

investigation, the following facts were collected:

• The concentration of phosphate in the stream water upstream of the plant is C0 = 0.003 mg/l.

• The sediments in the stream are saturated with sorbed phosphorus for a distance of 2 km

downstream of the plant.

• The phosphate concentration at the sediment bed is kept constant by desorption at a value of

Cb = 0.1 mg/l.

• The design conditions in the stream are h = 2 m deep and u = 0.2 m/s.

• The phosphate transfer velocity at the sediment bed is given approximately by the relationship

(film-renewal model):

kl = 0.002
u3/4

h1/4
in m/s. (5.40)

Based on the above data: What is the concentration of phosphate in the stream just after

passing the region of contaminated sediments? If the stream carries a suspended sediment load,

how would that affect the concentration of phosphate in the stream?
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6. Atmospheric Mixing

Previous chapters have dealt solely with transport in various water bodies and have presented

examples of one-dimensional solutions to the transport equations. We now turn our attention to

transport and mixing in the atmosphere, and by necessity, we will have to give more attention to

three-dimensional solutions. Because of the atmosphere’s unique composition and boundary and

forcing conditions, atmospheric turbulence is more complicated than the idealized homogeneous,

stationary, isotropic case. Moreover, these complications impact transport and mixing because

they determine the values of the turbulent diffusion and dispersion coefficients. Hence, a concise

discussion of atmospheric mixing requires also studying atmospheric turbulence and the resulting

modifications in the behaviour of mixing coefficients from the idealized case.

This chapter begins with an introduction to atmospheric turbulence and a review of turbu-

lent boundary layer structure. The log-velocity profile for a turbulent shear flow is introduced,

and the behaviour of turbulence throughout a neutrally stable atmospheric boundary layer is

described. Because of their importance to turbulence characteristics, the buoyancy effects of

heating and cooling within the boundary layer are discussed qualitatively. The discussion on

mixing begins with a review of turbulent mixing in three-dimensional, homogeneous, stationary

turbulence. The solution for a continuous point source is derived and used to illustrate mixing

in the remaining section. The chapter closes by adapting the idealized solution in homogeneous,

stationary turbulence to the turbulence present in the atmosphere.

Much of the material in this chapter was taken from Csanady (1973) and from Fedorovich

(1999). For further reading, those two sources are highly recommended, along with the classic

books by Lumley & Panofsky (1964) and Pasquill (1962) and more recent contributions by

Garratt (1992) and Kaimal & Finnigan (1994).

6.1 Atmospheric turbulence

In Environmental Fluid Mechanics, we are concerned with local mixing processes in fluids that

interact with living organisms. For the atmosphere, this means that we are interested in mixing

processes near the earth’s surface. Because of the no-slip boundary condition at the surface,

wind in the upper atmosphere generates a near-surface boundary layer, defined by variations in

velocity and often accompanied by variations in temperature (and density). Figure 6.1 shows

this situation schematically. Because of its dominant role in mixing near the earth’s surface, we

present here a short introduction to turbulence in the atmospheric boundary layer.

Copyright c© 2004 by Scott A. Socolofsky and Gerhard H. Jirka. All rights reserved.
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Fig. 6.1. Schematic of the velocity and temperature variation within the atmosphere near the earth’s surface.
The region of high velocity shear is called a boundary layer.
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Fig. 6.2. Schematic of the potential temperature profile in the earth’s troposphere and lower stratosphere showing
the atmospheric planetary boundary layer (APBL).

6.1.1 Atmospheric planetary boundary layer (APBL)

Fedorovich (1999) defines the atmospheric planetary boundary layer (APBL) as the subdomain

of the lower portion of the earth’s planetary atmosphere (troposphere) which is in contact with

the bottom boundary (earth’s surface) and which varies in depth from several meters to a few

kilometers. Figure 6.2 provides a schematic of this definition. The figure depicts the APBL as the

lower part of the troposphere and shows that it is separated from the linearly stratified region of

the troposphere by a strong density gradient, called the capping inversion. The capping inversion

arises due to strong mixing that occurs at the earth’s surface which results in a weaker density

gradient within the APBL than in the upper troposphere. Although the density gradient shown

in the figure is for a neutral APBL (no density gradient), heating and cooling processes within

the APBL can lead to both unstable and stable conditions, discussed below under buoyancy

effects. Above the APBL, the wind has an approximately constant velocity; hence, the APBL

encompasses the full near-surface boundary layer.

6.1.2 Turbulent properties of a neutral APBL

Figure 6.3 shows the development of a general turbulent boundary layer over a flat surface. In the

upper figure, the boundary layer is tripped at x = 0 and begins to grow in height downstream as

an increasing function of x1/2. In the idealized case, the boundary layer is tripped by the edge of
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(a.)  Growth of a boundary layer with increasing fetch.

(b.)  Boundary layer structure at the section x'.

Fig. 6.3. Schematic of the development of a turbulent boundary layer over a flat surface.

a flat plate extending into a free turbulent flow. In nature, boundary layers start in response to

changes in friction (roughness), as when the wind blows over a long, smooth lake and suddenly

encounters a forest on the other side. The distance the wind has blown downstream of a major

change in surface properties is called the fetch.

A turbulent boundary layer at any point x contains three major zones that differ in their

turbulence characteristics (refer to Figure 6.3(b.)). The lowest layer, directly in contact with

the surface, is the viscous sub-layer (VSL). It has a depth of about 5ν/u∗ (of order millimeter

in the atmosphere). The VSL thickness is independent of the total boundary layer depth δ(x),

and velocities in the VSL are low so that the flow is laminar. A transition to turbulence occurs

between 5ν/u∗ and 50ν/u∗. Above this transition zone, and to a height of about 10-20% of the

total boundary layer depth (of order 100 m in the atmosphere), lies the inertial sub-layer (ISL),

also called the Prandtl layer in the atmosphere. The inertial sub-layer is fully turbulent, and

turbulent properties are functions of the friction velocity only (i.e. they are independent of the

total boundary layer depth). The mean longitudinal velocity profile in the ISL is given by the

well-known log-velocity profile

U(z)

u∗
=

1

κ
ln

(

u∗z

ν

)

+ C (6.1)
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where κ ≈ 0.4 is the von Karman constant and C is an integration constant about equal to five.

It is important to note that within this layer U(z) is independent of δ(x). The remaining region

of the boundary layer is called the outer layer, or Ekman layer in the atmosphere, and extends up

to where the velocity becomes U0. Within the atmosphere, the Ekman layer is deep enough that

it experiences Coriolis effects due to the earth’s rotation. In the outer layer, turbulence properties

and the velocity profile are dependent on the total layer depth, and we use a technique called

matching to adjust the log-velocity profile in this layer so that it reaches U0 at z = δ(x).

In general, turbulence measurements in the APBL depend on the height of the measurement,

the roughness of the ground, and the stability (Csanady 1973). Measurements near the surface

(within the ISL) demonstrate that

urms ∝ u∗ (6.2)

where urms = (u′2)1/2. Above this surface layer, urms tends to decay with height. Because the

land surface is quite rough in comparison to an idealized flat plate, the log-velocity profile cited

above is adjusted in the ISL to give

U(z) =
u∗
κ

ln

(

z

z0

)

(6.3)

where z0 is the roughness height (valid for z � z0).

Because the mean wind-speed increases with height and the turbulent fluctuation velocities

are constant with height within the neutral APBL, turbulence intensity decreases with height.

Turbulence intensity is defined as

ix =
(u′2)1/2

U(z)
(6.4)

iy =
(v′2)1/2

U(z)
(6.5)

iz =
(w′2)1/2

U(z)
(6.6)

where iy and iz are the turbulence intensities (non-dimensional), u′ is the longitudinal fluctuation

velocity, v′ is the transverse fluctuation velocity, and w′ is the vertical fluctuation velocity.

Measurements by Panofsky (1967) revealed for a neutral surface layer that

(u′2)1/2 = 2.2u∗ (6.7)

(v′2)1/2 = 2.2u∗ (6.8)

(w′2)1/2 = 1.25u∗. (6.9)

Combining these relationships with the log velocity profile yields

ix = iy =
0.88

ln(z/z0)
(6.10)

iz =
0.50

ln(z/z0)
. (6.11)
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Fig. 6.4. Potential temperature, θ, profiles in the APBL for the three main stability classes: (a.) the convective
boundary layer (CBL), (b.) the neutral boundary layer (NBL), and (c.) the stable boundary layer (SBL).

It is important to note that these data were collected under idealized conditions: large fetch, flat

ground, and uniform roughness (often prairie grass).

6.1.3 Effects of buoyancy

Unfortunately, the idealized neutral conditions described above are rarely strictly valid. Heating

and cooling within the boundary layer result in temperature differences, which equate to density

differences; thus, buoyancy effects and stability/instability are important processes in the APBL.

Shown in Figure 6.4, three general stability types are possible. We have already discussed

the neutral case, where the density is constant throughout the boundary layer (refer to Fig-

ure 6.4(b.)). During the day, solar radiation heats the bottom air, creating an unstable density

profile as shown in Figure 6.4(a.). This case is called a convective boundary layer (CBL). The

warm air at the bottom rises, due to its buoyancy, creating enhanced vertical velocities. Because

of its special kind of instability, convective instabilities are cellular in shape. That is, circular

regions of warm upward-moving air, called thermals, are surrounded by layers of cooler down-

ward moving air. This kind of instability can be seen in a pot of water heated on the stove. The

third stability type is show in Figure 6.4(c.). At night, the bottom layer cools rapidly, and the

boundary layer develops a stable density profile (heavy air below lighter air). This stable den-

sity profile damps the turbulence, in particular the vertical turbulent fluctuation velocities, and

encourages internal wave motion. Because of the cellular instability structure of the CBL, and

internal wave fields of the SBL, these boundary layers have spatially heterogeneous properties.

Despite these complicated and inter-related effects, generalized quantitative results can be

obtained for natural boundary layers. Pasquill (1962) suggested a means of predicting the sta-

bility type as a function of wind speed, time of day, and radiative conditions (in particular,

cloud cover, which provides insulation). Table 6.1 provides this stability categorization. Cramer

(1959) suggested the associated typical turbulent intensities near the ground level as shown in

Table 6.2. As demonstrated in the tables, turbulence intensities are indeed higher in unstable

conditions than for stable conditions, and both the vertical and horizontal turbulence intensities

are affected.

Combining all these processes, Fedorovich (1999) summarizes the processes affecting mixing

as follows:
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Table 6.1. Pasquill stability categories taken from Csanady (1973).

Surface wind Solar insolation Night conditions

speed Strong Moderate Slight mainly overcast or ≤ 3/8 Low

in [m/s] ≥ 4/8 low cloud cloud

2 A A–B B – –

2-3 A–B B C E F

3-5 B B–C C D E

5-6 C C–D D D D

6 C D D D D

A - Extremely unstable, B - Moderately unstable, C - Slightly unstable, D - Neutral, E - Slightly stable,

F - Moderately stable.

Table 6.2. Typical turbulence intensities near the ground level, taken from Csanady (1973)

Thermal stratification iy iz

Extremely unstable 0.40–0.55 0.15–0.55

Moderately unstable 0.25–0.40 0.10–0.15

Near neutral 0.10–0.25 0.05–0.08

Moderately stable 0.08–0.25 0.03–0.07

Extremely stable 0.03–0.25 0.00–0.03

• large-scale meteorologic forcing (U0).

• earth’s rotation (Coriolis)

• external and internal heating/cooling (T (z))

• physical properties of the surface (z0)

• physical properties of air (u∗)

The remaining sections incorporate these processes in a description of atmospheric mixing.

6.2 Turbulent mixing in three dimensions

Before we discuss mixing in the atmospheric boundary layer, we should review the turbulent

transport equation in a simpler turbulent flow. In Chapter 3 we derived the turbulent advective

diffusion equation for homogeneous and stationary turbulence. The transport equation for the

mean concentration field C was found to be

∂C

∂t
+

∂uiC

∂xi
= Dx,t

∂2C

∂x2
+ Dy,t

∂2C

∂y2
+ Dz,t

∂2C

∂z2
(6.12)

where Di,t are the turbulent diffusion coefficients.

In Chapter 3 we only presented the solutions for times greater than the integral time scale

of the turbulence tI , where we could assume the turbulent diffusion coefficients were constant

in time. In general, the turbulent diffusion coefficient in the x direction is given by
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Dx,t =
1

2

dσ2
x

dt
(6.13)

where σx is the standard deviation of the concentration field in the x-direction (Csanady 1973).

Similar relationships are valid for the y- and z-directions. From Taylor’s theorem it follows that

Dx,t = u′2
∫ t

0
R(τ)dτ (6.14)

where R is the velocity correlation function of the turbulent flow (Csanady 1973). Generally, we

consider two limiting solutions to this equation: at short times for t → 0, and at large times for

t → ∞. These solutions are

Dx,t =
(u′2)2

u
x (x → 0) (6.15)

Di,t = (u′2)2tL (x → ∞). (6.16)

Thus, the turbulent diffusion coefficients grow linearly at short times until they reach a constant

value at times greater than tL.

Example: Continuous point release. As an example, consider the classical problem of a

continuous release at a height h above the ground level. We set the coordinate system so that

the mean wind is in the x-direction. The source strength is ṁ in [M/T]. To enforce the solid

boundary condition at z = 0 we use an image source. The solution for the slender plume

assumption (diffusion in the x-direction is negligible) is given in Csanady (1973) as

C(x, y, z) =
ṁ

2πuσyσz

[

exp

{

− y2

2σ2
y

− (z − h)2

2σ2
z

}

+

exp

{

− y2

2σ2
y

− (z + h)2

2σ2
z

}]

. (6.17)

The solution for the concentration at ground level is given by setting z = 0:

C(x, y, 0) =
ṁ

πuσyσz
exp

[

− y2

2σ2
y

− h2

2σ2
z

]

(6.18)

and the solution for the centerline of the plume at ground level is given by setting z = y = 0:

C(x, 0, 0) =
ṁ

πuσyσz
exp

[

− h2

2σ2
z

]

. (6.19)

Figure 6.5 shows the solutions of the latter two equations at short times (t → 0) in non-

dimensional form.

6.3 Atmospheric mixing models

The results for homogeneous, stationary turbulence are extended in this section to applications

in the atmosphere. An underlying assumption for the derivation of (6.12) is that the Eulerian and

Lagrangian descriptions of the velocity field are identical. Csanady (1973) points out that this is

only true for homogeneous and stationary turbulence if the system is unbounded or bounded by
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Fig. 6.5. Concentration distributions for a continuous release at a height h into a homogeneous and stationary
turbulent flow.

rigid, impermeable walls. The atmospheric boundary layer is indeed bounded from below by a

solid boundary, but the top boundary (the capping inversion in Figure 6.2) is permeable. That is,

fluid parcels moving in the APBL can move through the capping inversion, bringing high velocity

fluctuations with them, and these parcels are replaced by fluid with lower turbulence intensities

from above the capping layer. This departure from the idealized case of a solid or semi-infinite

boundary results in changes to the velocity correlation function, R, in the APBL. Csanady

(1973) shows, however, that because the solution for the transport equation is insensitive to the

shape of the velocity correlation function, this limitation is not dramatic and we will continue

to use solutions similar to those in the previous section.

Based on (6.15) and (6.16), we expect different results for short and long times. The processes

at short times occur near the source and are called near-field processes. Similarly, the processes

at long times occur far from the source and are called far-field processes.
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6.3.1 Near-field solution

In the near-field of a release, it is reasonable to assume that the results given above are valid

without modification. This is because, at short times, the release has not fully sampled the

velocity field and does not know that the turbulence field is bounded by a permeable capping

inversion. Hence, the cloud width grows in the near field as

σy =
(v′2)

v
x = iyx (6.20)

σz =
(w′2)

w
x = izx. (6.21)

The relationships for the turbulent intensities at a height z were given above. For a release at

z = h, it is reasonable to use average turbulence intensities. Taking the average from z = 0 to

z = h gives

iy =
0.88

ln(h/z0) − 1
(6.22)

iz =
0.5

ln(h/z0) − 1
. (6.23)

Csanady (1973) shows that the near-field solution is valid for a considerable range, often up to

the distance where the plume grows so large that is touches the ground, in which vicinity also

the maximum ground level concentrations are observed. This is because the Lagrangian time

scale is very large, given approximately by

tL =
zi

u
(6.24)

where zi is the height of the capping inversion.

6.3.2 Far-field solution

Far from the source, the growth of the cloud should depend on the Lagrangian time scale and,

due to the shear velocity profile, should be affected by dispersion. Sutton (1932) and Sutton

(1953) propose power law formulas for the standard deviations

2σ2
y = C2

yx2−n (6.25)

2σ2
z = C2

z x2−n (6.26)

where Cy, Cz, and n are constants, their value depending on atmospheric stability and source

height h (Csanady 1973). Under neutral conditions Sutton found the values n = 0.25, while over

flat grass-land near ground level he proposed Cy = 0.4 cm1/8 and Cz = 0.2 cm1/8 (Csanady 1973).

Though this formula is rarely used today, it is important because it represents observed facts.

Under non-neutral conditions, the coefficients introduced above are functions of the stability.

Looking first at the horizontal growth of the cloud, n has been found to be roughly constant for

all stability regimes; Cy is sufficient to adjust σy to unstable and stable conditions; and, higher

values of Cy are observed in CBLs, and lower values of Cy are observed in SBLs. For vertical
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(a.)  Horizontal dispersion coefficient. (b.)  Vertical dispersion coefficient.
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Fig. 6.6. Horizontal (a.) and vertical (b.) atmospheric mixing coefficients. Taken from Csanady (1973).

cloud growth, both parameters are functions of the stability. Figure 6.6 shows the values of σy

and σz for the range of stability classes introduced above. In CBLs, the vertical growth of the

cloud becomes vary large due to the large upward velocities of the convective currents. In SBLs,

the vertical growth of the cloud is damped due buoyancy effects.

Summary

This chapter introduced mixing in the lower part of the atmosphere, the planetary atmospheric

boundary layer (APBL). Turbulence properties in idealized boundary layers were discussed first

and then extended to the APBL. The effects of heating and cooling in the APBL result in a

range of stability classes, from convectively unstable when heating is from below to stable when

cooling is from below. Turbulent mixing in homogeneous stationary turbulence was reviewed

and solutions for a continuous source at a height h above a solid boundary were introduced. The

results in idealized turbulence were extended in the final section to turbulence in the atmosphere.

Simplified atmospheric mixing models were introduced for the near- and far-field cases.

Exercises

6.1 Boundary influence. The effects of a solid boundary are only felt after a plume grows large

enough to touch the boundary. Assuming a total plume depth of 4σz, find the distance down-

stream of the release point to where a continuous source release at a height h above a solid

boundary first touches the boundary.
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6.2 Smoke-stack exhaust. A power company releases 1 kg/s of CO2 from a height of 30 m into

a wind with average velocity 4 m/s. The sky is partly cloudy and the terrain down-wind of the

release is pasture land. Estimate the turbulence intensities and find the maximum concentration

at ground level downstream of the release. How do the results change if the release point is

lowered by 15 m?

6.3 Urban roughness. The results presented in this chapter were for surfaces with uniform rough-

ness and elevations much greater than the roughness height z0. How do you expect relationships

for turbulence intensity to change near the street level in an urban setting (where the roughness

is largely due to buildings and houses)?
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7. Water Quality Modeling

Until now we have derived governing equations for and sought solutions to idealized cases where

analytical solutions could be found. Many problems in the natural world, however, are complex

enough that simplified analytical solutions are inadequate to predict the transport and mixing

behavior. In these situations, approximations of the governing transport equations (such as finite

difference) must be made so that numerical solutions can be found. These approximations can

be simple or complex, but often result in a large number of equations that must be solved

to predict the concentration distribution. Hence, computer algorithms are used to make the

numerical solutions tractable.

In this chapter, we introduce the field of water quality modeling based on computerized (nu-

merical or digital) tools. This chapter begins by outlining how to select an appropriate numerical

tool. The next two section describe common computer approximations. First, simple numerical

models based on plug-flow and continuously-stirred tank reactors are introduced. Second, an

overview of numerical approximations to the governing equations is presented. Because we are

now dealing with approximate solutions, new procedures are needed to assure that our results

are acceptable. The final section outlines the crucial steps necessary to test the accuracy of a

numerical result. Although computer power is rapidly growing, it remains important to use sim-

ple tools and thorough testing in order to understand and synthesize the meaning of numerical

results.

7.1 Systematic approach to modeling

A model is any analysis tool that reduces a physical system to a set of equations or a reduced-

scale physical model. Moreover, all of the solutions in previous chapters are analytical models of

natural systems. Whether analytical or numerical, the main question the modeler must answer

is: which model should I use?

7.1.1 Modeling methodology

The ASCE & WPCF (1992) design manual Design and Construction of Urban Stormwater

Management Systems outlines a four-step selection processes for choosing a water quality analysis

tool. These steps are discussed in detail in the following and include (1) defining project goals, (2)

describing an acceptable modeling tool, (3) listing the available tools that could satisfy the goals

and model description, and (4) selecting the model to be used based on an optimal compromise

between goals and available tools.

Copyright c© 2004 by Scott A. Socolofsky and Gerhard H. Jirka. All rights reserved.
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1. Define project goals. It may sound like an obvious first step, but it is essential and,

regrettably, often overlooked: define the project goals before even choosing the model. Fischer

et al. (1979) emphasize this step as well, saying that the choice of a model depends crucially on

what the model is to do. Modeling goals are quite variable, ranging from the practical (provide

the analysis necessary to get the client his discharge permit) to the research oriented (develop a

new tool that overcomes some current modeling shortfall).

During this step, as much as possible should be learned about the system to be modeled.

Fischer et al. (1979) suggest that if possible, the investigator should become personally familiar

with the water body by going out on it in the smallest boat that is safe. Then, before venturing

near a computer or a model basin, he or she should make all possible computations, being

approximate where necessary, but seeking a feel for what the model will predict. Only after we

understand our system can we formulate appropriate project goals. In the words of the famous

landscape photographer Ansel Adams, “Visualization is of utmost importance; many failures

occur because of our uncertainty about the final image” (quoted in Fischer et al. (1979)). During

this stage one begins to formulate the necessary attributes of the model. This leads naturally

the next step.

2. Describe an acceptable modeling tool. Before selecting the model for the analysis,

formulate a list of abilities and characteristics that the model must have. These can include

things like input/output flexibility, common usage in the regulatory community, and physical

mixing processes the model must include. Our simplified predictions from step 1 of how the

system behaves are used in this step to formulate the model requirements. For instance, if we

expect rapid near-field mixing, we may suggest using a one-dimensional model. This step should

keep in mind what models are available, but not limit the analysis to known tools if they would

be inadequate to meet the project goals. In this stage the project goals may also need to be

revised. If the only acceptable modeling tool to meet a particular goal is too costly in terms

of computation time and project resources, perhaps that goal can be reformulated within a

reasonable project scope. The purpose, therefore, of this step is to optimize the modeling goals

by describing practical requirements of the modeling tool.

3. List applicable tools. Once the analysis tool has been adequately described, one must

formulate a list of available tools that meet these requirements. In engineering practice, we must

often choose an existing model with a broad user base. Appendix D lists several public-domain

models. Most of them are available free of charge from government sponsor agencies, but some

are also commercial. The purpose of choosing an existing model is that it has been thoroughly

tested by many previous users and that the regulatory agencies are accustomed to seeing and

interpreting its output. However, available tools may not always be adequate to meet the project

goals.

If existing tools are inadequate, then a new tools must be developed, and a list of existing

methods is an important step. Methods are the building blocks of models. A one-dimensional

finite difference model employs two methods: a one-dimensional approximation and a finite

difference numerical scheme. Going a step deeper, the finite-difference method can have many

attributes, such as forward, central, or backward differencing, implicit or explicit formulation,
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and first-, second-, or higher-order solution algorithms. Section 7.3 describes what some of these

terms mean. The point is that, when designing a new tool, there are many existing building

blocks from which to choose, and these can be quite helpful. It may turn out that simply adding

an unsteady algorithm to an existing steady-state model will meet the project goals. Hence,

knowing as much as possible about existing models and methods is essential to implementing

and/or designing an analysis tool.

4. Make an optimal compromise between goals and available tools. In the final step

of choosing a modeling tool, we seek an optimal compromise between the project goals and

the available tools. This is where the decision to proceed with a given modeling tool is made.

The project goals are the guide to choosing the model. It sounds simple, but choose the best

model to meet the project goals, not just the best available model. As computers become faster,

the tendency is to just pick the biggest, boldest model and to force it to meet your needs.

However, the enormous amount of output from such a model may be overwhelming and costly

and unnecessary in the light of certain project goals. Therefore, choose the most appropriate,

simplest model that also satisfies the scientific rigor of the project goals, and when necessary,

develop new tools.

7.1.2 Issues of scale and complexity

Throughout the process of choosing a modeling tool one is confronted with issues of system

scale and complexity. The world is inherently three-dimensional and turbulent, but with current

computer resources, we must often limit our analysis to one- and two-dimensional approximations

with turbulence closure schemes that approximate the real world. Hence, we must make trade

offs between prototype complexity and model ability.

We can evaluate these trade offs by doing a scale analysis to determine the important scales

in our problem. This is the essence of steps one and two, above, where we try to predict what

the model will tell us and use this information to characterize the needed tool. For transport

problems, we must consider the advective, diffusing reaction equation. For illustration, consider

a first-order reaction

∂C

∂t
+

∂(uC)

∂x
+

∂(vC)

∂y
+

∂(wC)

∂z
= Dx

∂2C

∂x2
+ Dy

∂2C

∂y2
+ Dz

∂2C

∂z2
± kC. (7.1)

This equation has three unit scales: mass, time, and length. It also has three processes: advection,

diffusion, and reaction. We would like to formulate typical scales of these three processes from

the typical units in the problem. For example, the advection time scale is the time it takes

for fluid to move through our system. If we are modeling a river reach of length L with mean

velocity U , then the advective time scale is

Ta = L/U. (7.2)

Processes that occur on time scales much shorter than Ta can neglect advection. We can use these

scales to non-dimensionalize the governing equation. To do this, we define the non-dimensional

variables using primes as follows
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x = Lxx′; y = Lyy
′

z = Lzz
′; u = Uu′

v = V v′; w = Ww′

C = C0C
′; t = T0t

′

k = 1/Trk
′ (7.3)

where the upper-case variables are typical scales in the problem. For example T0 is an external

time scale, such as a discharge protocol or the diurnal cycle and Tr is the reaction time scale,

such as the half-life for a dye-off reaction. The L’s are system dimensions and U , V , and W are

average velocities. Substituting into (7.1) gives

1

T0

∂C ′

∂t′
+

U

Lx

∂(u′C ′)

∂x′ +
V

Ly

∂(v′C ′)

∂y′
+

W

Lz

∂(w′C ′)

∂z′
=

Dx

L2
x

∂2C ′

∂x′2 +
Dy

L2
y

∂2C ′

∂y′2
+

Dz

L2
z

∂2C ′

∂z′2
± 1

T1/2
k′C ′. (7.4)

Note that to make this equation fully non-dimensional, we must multiple each term by a time

scale, for example T0. We can now determine the relative importance of each term by considering

their leading coefficients. Comparing the convective terms

Longitudinal advection

Lateral advection
=

U

V
· Ly

Lx
(7.5)

Longitudinal advection

Vertical advection
=

U

W
· Lz

Lx
(7.6)

If these ratios are much greater than one, then longitudinal advection is the only advection term

that we must keep in the equation. Thus, the importance of a given convection term depends

on the velocity scales in our problem and the length of river we are considering. In many river

problems, these ratios are much greater than one, and we only keep the longitudinal advection

term. Likewise, we can compare the diffusion terms to the advection term. For longitudinal

diffusion we have

Longitudinal diffusion

Longitudinal advection
=

Dx

L2
xTa

(7.7)

which is our familiar Peclet number. For large Peclet numbers, we only consider diffusion, and for

small Peclet numbers, we only consider advection. Hence, the important terms in the equation

again depend on the length of river we are considering.

As an example, when might a one-dimensional steady-state model with dye-off be an accept-

able model for a given river reach? The governing model equation would be

u
∂C

∂x
= Dx

∂2C

∂x2
− kC. (7.8)

By comparing with the non-dimensional equation above, this equation implies several constraints

on the river. Consider first the external time-scale. This model implies

UT0

Lx
� 1. (7.9)
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For the convective terms, this model implies that

ULy

V Lx
� 1 (7.10)

ULz

WLx
� 1 (7.11)

or alternatively

∂C

∂y
=

∂C

∂z
= 0. (7.12)

Similarly, for diffusion this model implies that

UL2
y

LxDy
� 1 (7.13)

UL2
z

LxDz
� 1 (7.14)

or, again, alternatively

∂C

∂y
=

∂C

∂z
= 0. (7.15)

Finally, for the reaction, this model implies that

UT1/2

Lx
≈ 1. (7.16)

Therefore, by comparing the relevant scales in our problem to the approximations made by

models, we can determine just how complex the model must be to approximate our system

adequately.

7.1.3 Data availability

As a final comment on the selection and implementation of an analysis tool, we discuss a few

points regarding the data that are used to validate the model (Section 7.4 below discusses how to

test a model in more detail). The only test available to determine whether the model adequately

reproduces our natural system is to compare model output to data (measurements) taken from

the prototype system. In general, as the model complexity increases, the number of parameters

we can use to adjust the model results to match the prototype also increases, giving us more

degrees of freedom. The more degrees of freedom we have, the more data we need to calibrate

our model. Hence, the data requirements of a model are directly proportional to the model

complexity. If very limited data are available, then complex models should be avoided because

they cannot be adequately calibrated or validated.

7.2 Simple water quality models

Some simple water quality models can be developed for special cases where advection or diffusion

is dominant. As introduced in Chapter 2, the Peclet number is a measure of diffusion to advection

dominance. The Peclet number, Pe, is defined as
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Q Q

Fig. 7.1. Schematic of a plug-flow reactor.

Pe =
D

uL
(7.17)

=
D

u2t
(7.18)

where the two definitions are equivalent. The Peclet number is small when advection is dominant

and large when diffusion is dominant. Two simple models can be developed for the limiting cases

of Pe → 0 and Pe → ∞. A third hybrid model is also introduced in this section for simplified

application to arbitrary Pe.

7.2.1 Advection dominance: Plug-flow reactors

For Pe → 0 we can neglect longitudinal diffusion and dispersion, and we have the so-called

plug-flow reactor. Shown in Figure 7.1, a slab of marked fluid is advected with the mean flow,

perhaps undergoing reactions, but not spreading in the lateral. Taking D = 0, the governing

reactive transport equation becomes

∂C

∂t
+ u

∂C

∂x
= ±R. (7.19)

To solve this equation, we make the familiar coordinate transformation to move our coordinate

system with the mean flow. That is,

ξ = x − ut (7.20)

τ = t. (7.21)

As demonstrated in Chapter 2, using the chain rule to substitute this coordinate transformation

into (7.19) gives

∂C

∂τ
= ±R (7.22)

which is easily solved after defining an initial condition and the transformation reaction R.

For example, consider a first-order die-off reaction for a slab with initial concentration C0.

The solution to (7.22) is

C(τ) = C0 exp(−kτ) (7.23)

or in the original coordinate system, we have the interchangeable solutions

C(t) = C0 exp(−kt) (7.24)

C(x) = C0 exp(−kx/u). (7.25)

The residence time for a plug-flow reactor depends on the distance of interest L0. From the

definition of residence time



7.2 Simple water quality models 131

V

C

Q, C

Q, Cin

Fig. 7.2. Schematic of a continuously-stirred tank reactor (CSTR).

tres =
V

Q

=
L0A

Q
(7.26)

where A is the cross-sectional area of the channel and Q is the steady flow rate. The fluid

residence time, the travel time for a slab to move the distance L0, can also be expressed using

the same variables

tslab =
L0

u

=
L0A

Q

= tres. (7.27)

Hence, the fluid and species residence times are equal.

7.2.2 Diffusion dominance: Continuously-stirred tank reactors

For Pe → ∞ we can neglect advection and we have the so-called continuously-stirred tank reactor

(CSTR). Shown in Figure 7.2, fluid that enters the reactor is assumed to instantaneously mix

throughout the full reactor volume. To write the governing equation, consider mass conservation

in the tank

dM

dt
= ṁin − ṁout. (7.28)

The inflow provides the mass flux into the control volume, ṁin. Loss of mass, ṁout is given by

the outflow and possible die-off reactions. Writing the conservation of mass in concentrations

and flow rates yields

d(CV )

dt
= Q(Cin − Cout) ± S (7.29)

where V is the volume of the tank and S = V R is a source or sink reaction term. Because the

tank is well mixed, we can assume that Cout is equal to the concentration in the tank C. Taking

V as constant, we can move it outside the derivative, and the governing equation becomes

dC

dt
=

Q

V
(Cin − C) ± R. (7.30)

Substituting the definition of the residence time, we have finally
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dC

dt
=

1

tres
(Cin − C) ± R (7.31)

which is the governing equation for a CSTR.

Consider first the conserving case, where R = 0. Taking the initial condition as a clean tank

C0 = 0, the solution to (7.31) is

C(t) = Cin

[

1 − exp

(

− t

tres

)]

. (7.32)

Thus, the concentration in the tank increases exponentially with a rate constant k = 1/tres. The

concentration in the tank reaches steady state asymptotically. If we define steady state as the

time, tss, until C = 0.99C0, then

tss = 4.6tres. (7.33)

Therefore, without reactions, steady state is reached in about 4.6 residence times.

The solution for the reacting case is slightly more complicated because (7.31) is an inhomo-

geneous differential equation with forcing function ±R. Consider the case of a first-order die-off

reaction and an initial tank concentration of C0 = 0. Assuming a particular solution (refer to

Appendix C for an example of solving an inhomogeneous equation) of the form Cp = ACin, the

solution is found to be

C(t) =
Cin

1 + ktres

[

1 − exp

[

−
(

1 + ktres

tres

)

t

]]

. (7.34)

Because of the reaction, the steady state concentration in the tank is no longer the inflow

concentration, but rather

Css =
Cin

1 + ktres
(7.35)

and the coefficient 1/(1 + ktres) is one minus the removal rate. The time to reach steady state,

tss, is the time to reach 0.99Css or

tss =
4.6tres

1 + ktres
. (7.36)

7.2.3 Tanks-in-series models

The simplest type of river-flow model that incorporates some form of diffusion or dispersion

is the tanks-in-series model, which is a chain of linked CSTRs. An example tanks-in-series

model is shown in Figure 7.3. In the example each tank has the same dimensions, and the flow

rate is constant. The method also works for variable volume tanks, and under gradually-varied

flow conditions, stage-discharge relationships can be used to route variable flows through the

tanks. To see why the tanks-in-series model produces diffusion, consider an instantaneous pulse

injection in the first tank. The outflow from that tank would be the solution to the CSTR given

by (7.32). The outflow from the first tank is, therefore, exponential, clearly not the expected

Gaussian distribution. But, this outflow goes into the next tank. At first, that tank is clean,

and the little bit of tracer entering the tank in the beginning is quickly diluted; hence, the

outflow concentration starts at zero and increases slowly. Eventually, a large amount of the
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Fig. 7.3. Schematic of a tanks-in-series model. The model is made up of several CSTR linked in series.

tracer in the first tank has moved on to the second tank and the outflow from the second tank

reaches a maximum concentration. The inflow from the first tank becomes increasingly cleaner,

and the outflow from the second tank also decreases in concentration. Eventually, all the tracer

has flowed through both tanks and the concentration is zero at the outlet of the second tank.

The concentration curve over time for the second tank started at zero, increased smoothly to a

maximum concentration, then decreased slowly back down to zero. These characteristics are very

similar to the Gaussian distribution; hence, we expect that by dimensioning the tanks properly,

we should be able to reproduce the behavior of advective diffusion in the downstream tanks.

To find the proper tank dimensions, consider the mass conservation equation for a central

tank. Inflow comes from the upstream tank, and outflow goes to the downstream tank; thus, we

have

dMi

dt
= Q(Ci−1 − Ci) ± V R. (7.37)

For the remaining analysis we will neglect the reaction term. Assuming each tank has the same

length, the tank volume can be written as V = A∆x = A(xi − xi−1). Using this definition to

write Mi in concentration units gives

dCi

dt
= u

Ci−1 − Ci

xi − xi−1
(7.38)

which is the discrete equation describing the tanks-in-series model.

The difference term on the right-hand-side of (7.38) is very close to the backward difference

approximation to ∂C/∂x:

∂C

∂x
=

Ci − Ci−1

xi − xi−1
(7.39)

which has no error for ∆x → 0. For finite grid size, the Taylor-series expansion provides an

estimate of the error. The second-order Taylor-series expansion of Ci−1 about Ci is

Ci−1 = Ci +
∂Ci

∂x

∣

∣

∣

∣

i
(xi−1 − xi) +

1

2

∂2Ci

∂x2

∣

∣

∣

∣

∣

i

(xi−1 − xi)
2 + · · · (7.40)

as given in Thomann & Mueller (1987). Rearranging this equation, we can obtain

Ci − Ci−1

xi − xi−1
=

∂Ci

∂x
− 1

2

∂2Ci

∂x2
(xi − xi−1). (7.41)

Multiplying this result by −1 gives
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Ci−1 − Ci

xi − xi−1
= −∂Ci

∂x
+

1

2

∂2Ci

∂x2
(xi − xi−1) (7.42)

which can be substituted immediately for the right-hand-side of (7.38) leaving

dCi

dt
= −u

∂Ci

∂x
+

u(xi − xi−1)

2

∂2Ci

∂x2
. (7.43)

Dropping the subscripts and recognizing ∆x = (xi − xi−1) gives the governing equation

dC

dt
+ u

∂C

∂x
=

u∆x

2

∂2C

∂x2
. (7.44)

Thus, our derived governing equation for a tanks-in-series model has the same form as the

advective diffusion equation with a diffusion coefficient of Dn = u∆x/2.

The effective diffusion coefficient, Dn, for a tanks-in-series model is actually a numerical

error due to the discretization. As the discretization becomes more course, the numerical error

increases and the numerical diffusion goes up. For ∆x → 0, the numerical diffusion vanishes,

and we have the plug-flow reactor. Hence, for a tanks-in-series model, we choose the tank size

such that Dn is equal to the physical longitudinal diffusion and dispersion in the river reach.

7.3 Numerical models

Although the tank-in-series model was shown to be a special discretization of the advective

diffusion equation, other numerical techniques specifically set out to discretize the governing

equation. For our purposes, a numerical model is any model that seeks to solve a differential

equation by discretizing that equation on a numerical grid.

7.3.1 Coupling hydraulics and transport

To simulate chemical transport, the velocity field, represented by u in the transport equation

must also be computed. The model that calculates u is called the hydrodynamic or hydraulic

model. Thus, to simulate transport, the hydrodynamic and transport models must be properly

coupled.

Whether the hydrodynamic and transport models must be implicitly coupled or whether

they can be run in series depends on the importance of buoyancy effects. If the system is free

from buoyancy effects, the hydrodynamics are independent of the transport; hence, they can

be run first and their output stored. Then, many transport simulations can be run using the

hydrodynamic data without re-running the hydrodynamic code. If buoyancy effects are present

in the water body, then the transport of buoyancy (heat or salinity or both) must be coupled with

the hydrodynamics, and both models must be run together. Once the output from the coupled

model is stored, further transport simulations can be run for constituents that do not influence

the buoyancy (these are called passive constituents). Because the hydrodynamic portion of the

model is computationally expensive, the goal in transport modeling is to de-couple the two

models as much as possible.
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7.3.2 Numerical methods

There are probably as many numerical methods available to solve the coupled hydrodynamic

and advective transport equations as there are models; however, most models can be classified

by a few key words.

There are three main groups of numerical methods: finite difference, finite volume, and finite

element. For special selections of basis functions and geometries, the three methods can all be

made equivalent, but in their standard applications, the methods are all slightly different. The

finite difference method is built up from a series of nodes, the finite volume method is built up

from a group of cells, and the finite element method is made up of a group of elements, where

each element is comprised of two or more grid points. In the finite difference case, the differential

equation is discretized over the numerical grid, and derivatives become difference equations that

are functions of the surrounding cells. In the finite volume case, the fluxes through the cell

network are tracked and the differential equations are integrated over the cell volume. For finite

elements, a basis function is chosen to describe the variation of an unknown over the element and

the coefficients of the basis functions are found by substituting the basis functions as solutions

into the governing equations. Because finite difference methods are easier to implement and

understand, these methods are more widely used.

A numerical method may further be explicit or implicit. An explicit scheme is the easiest

to solve because the unknowns are written as functions of known quantities. For instance, the

concentration at the new time is dependent on concentrations at the previous time step and

at upstream (known) locations. In an implicit scheme, the equations for the unknowns are

functions of other unknown quantities. For instance, the concentration at the new time may

depend on other concentrations at the new time or on downstream locations not yet computed.

In the implicit case, the equations represent a system of simultaneous equations that must be

solved using matrix algebra. The advantage of an implicit scheme is that it generally has greater

accuracy.

Finally, numerical methods can be broadly categorized as Eulerian or Lagrangian. Eulerian

schemes compute the unknown quantities on a fixed grid based on functions of other grid quan-

tities. Lagrangian methods use the method of characteristics to track unknown quantities along

lines of known value. For instance, in a Lagrangian transport model, the new concentration at

a point could be found by tracking the hydrodynamic solution backward in time to find the

point where the water parcel originated and then simply advecting that concentration forward

to the new time. Because the Lagrangian method relies heavily on the velocity field, small er-

rors in the velocity field (particularly for fields with divergence) can lead to large errors in the

conservation of mass. The advantage of the Lagrangian method is that it can backtrack over

several hydrodynamic time steps; hence, there is no theoretical limitation on the size of the time

step in a Lagrangian transport model. An example of a one-dimensional Lagrangian scheme is

the Holly-Preissman method. By contrast, for the Eulerian model, the time step is limited by a

so-called Courant number restriction, that says that the time step cannot be so large that fluid

in one cell advects beyond the next adjacent cell over one time step. Mathematically, this can

be written as
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∆t ≤ ∆x

u
(7.45)

where ∆t is the time step and ∆x is the grid size.

7.3.3 Role of matrices

In the case of explicit models, matrices are not a necessity, but for implicit models and models

simulating many contaminant, matrices provide a comfortable (and often necessary) means of

solving the governing equations. For an implicit scheme, the equations for a given node at the

new time are dependent on the solutions at other nodes at the same time. This means that

implicit schemes are inherently a system of equations (sometimes non-linear), which are best

solves with matrices. The general matrix equation is

Ax = b (7.46)

where A is an n x n matrix of equation coefficients, x is an n x 1 vector of unknowns (for

example, flow rates), and b is an n x 1 vector of forcing functions. Writing the equations in such

a way makes derivation of the model equations manageable and implementation in the computer

algorithm straightforward. The solution of (7.46) is

x = A−1b (7.47)

where A−1 is the matrix inverse. Most computer languages have built-in methods for solving

matrices. For the non-linear case, an iteration technique must be employed. A common method

is the Newton-Raphson method.

7.3.4 Stability problems

One limitation already mentioned for an Eulerian transport scheme is the Courant number

restriction. In general, all schemes have a range of similar restrictions that limit the allowable

spatial grid size and time step such that the scheme remains stable. If the time step is set

longer than such a constraint, the model is unstable and will give results with large errors that

eventually blow up. The full hydrodynamic equations are hyperbolic and generally have more

stringent limitations than the parabolic transport equation. Before implementing a model, it is

advised to seek out the published stability criteria for the model; this can save a lot of time in

getting the model to run smoothly.

7.4 Model testing

An unfortunate fact of numerical modeling is that implementation and calibration is very time

consuming, and little time is available for a thorough suite of model tests. This does not excuse

the fact that model testing is necessary, but rather explains why it is often neglected. Even

when using well-known tools, the following suite of tests is imperative to ensure that the model

is working properly for your application. The following tests are specific to transport models,

but apply in a generalized sense to all models.
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7.4.1 Conservation of mass

All transport (water quality models) must conserve mass! This is a zeroth-order test that con-

firms whether the zeroth-moment of the concentration distribution is accurately reproduced in

the solution. Clearly, when reactions are present, a given species may be loosing or gaining mass

due to the reaction. This test must confirm, then, that the total system mass remains constant

and that a species only gains mass at the rate allowed by the reaction equation. This test is

often conducted in conjunction with the next test. However, it should always also be conducted

for the complex real-world case being simulated, where analytical solutions are not available.

7.4.2 Comparison with analytical solutions

The model should be tested in idealized conditions to compare its results to known analytical

solutions. This test confirms whether the model actually solves the governing equation that it

was designed to solve. Deviations may be caused by many sources, most notably programming

errors and numerical inaccuracy. Although most widely used models are free from programming

errors, this cannot be tacitly assumed. In this author’s experience, programming errors have been

found in well-known, government-supported models by running this test. The issue of numerical

inaccuracy arises due to the discretization, as in the case of numerical diffusion mentioned for

the tanks-in-series model described above. Hence, the idealized case should have length and

time scales as close to the prototype as possible in order to accurately assess the importance of

numerical inaccuracy arising from the numerical method and the discretization.

This step can save a lot of time in applying the model to the prototype because the source

of errors can often be identified faster in idealized systems. First, the analytical solution is a

known result. If the model gives another result, the model must be wrong. Second, the complexity

of the real-world case makes it difficult to assess the importance of deviations from measured

results. Once the model has been thoroughly tested against analytical results, deviations can

be explained by physical phenomena in the prototype not present or falsely implemented in the

model. Third, this test helps determine the stability requirements for complex models.

7.4.3 Comparison with field data

Only after it is certain that the model is solving the equations properly and within a known

level of error can the model be compared to field or laboratory measurements of the prototype.

The comparison of model results with these date serves two purposes. First, the model must

be calibrated; that is, its parameters must be adjusted to match the behavior of the prototype.

Second the model must be validated. This means that a calibrated model must be compared to

data not used in the calibration to determine whether the model is applicable to cases outside

the calibration data set. These prototype measurements fall into two categories: tracer studies

and data collection of natural events.



138 7. Water Quality Modeling

Tracer studies. In a tracer study, dye is injected into the natural system, and concentrations

are measured in time and space to record how the dye is transported and diluted. The advantage

of a tracer study is that the source injection rate and location are known with certainty and that

reactions can (often) be neglected. Tracer studies help calibrate the model parameters (such as

diffusion and dispersion coefficients and turbulent closure schemes) to the real-world case. These

studies also help to confirm whether the model assumptions are met (such as the one-dimensional

approximation) and are good tests of both the hydrodynamic and water quality models.

Water quality data. The final set of data available for model testing is actual measurements

of the modeled constituents in the prototype under natural conditions. These measurements

represent true values, but are difficult to interpret because of our incomplete description of the

prototype itself. We often do not know the total loading of constituent, and all the model equa-

tions are approximations of the actual physical processes in the prototype. These measurements

further help to confirm whether the model assumptions are valid and to calibrate model parame-

ters. Once the tests listed above are completed, the modeler should have a good understanding of

how the complex physical processes in the model combine to give the model results. Deviations

between the model and the field measurements should then be explained through the physical

insight available in the model.

It is important to point out that the water quality measurement campaign should compliment

the output available from the model. That is, the data should be collected such that they can

be used to calibrate and test the model. If the model only outputs daily predictions, then the

measurements should be able to predict daily values; instantaneous point measurements are only

useful for a parameter that does not vary much over the diurnal cycle. In summary, the model

is only as good as the data that support it, and the data must be compatible with the model

and flex the parts of the model that are the most uncertain.

Summary

This chapter introduced the concept of water quality modeling. A model is defined as any analy-

sis tool that reduces a physical system to a set of equations or a reduced-scale physical model. A

four-step procedure was suggested to help select the appropriate model: (1) define project goals,

(2) describe an acceptable modeling tool, (3) list the available tools that could satisfy the goals

and model description, and (4) select the model to be used based on an optimal compromise

between goals and available tools. Because analytical solutions are not always adequate, nu-

merical techniques were introduced. These included tank reactor models and numerical solution

methods for differential equations, such as finite difference and finite element. Because numerical

solutions result in a large number of calculations, a rigorous procedure for testing a numerical

model was also suggested. These steps include (1) confirming that model conserves mass, (2)

testing the model in idealized cases against analytical solutions, and (3) comparing the model

to field data in the form of dye studies and the collection of water quality data. Good modeling

projects should follow all of these suggested procedures.
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Fig. 7.4. Measured dye concentration for example dye study. Dye fluctuations are due to instrument uncertainty,
not due to turbulent fluctuations.

Exercises

7.1 Equation scaling. Non-dimensionalize the one-dimensional momentum equation

∂u

∂t
+ u

∂u

∂x
=

1

ρ

∂p

∂x
+ ν

∂2u

∂x2
(7.48)

using the non-dimensional variable definitions

u = U0u
′ ; x = Lx′ (7.49)

t = (L/U0)t
′ ; p = ρU2

0 p′ (7.50)

Divide the equation by the coefficient in front of ∂u′/∂t′. What familiar non-dimensional number

becomes the leading coefficient of the viscous term? When is the viscous term negligible?

7.2 Finite difference. Write the explicit backward-difference approximation to the reaction equa-

tion

dC

dt
= kC. (7.51)

Program this solution in a computer and suggest a criteria for selecting the appropriate time

step ∆t by comparing to the analytical solution

C(t) = C0 exp(kt). (7.52)

7.3 Tanks-in-series model. A river has a cross-section of h = 1 m deep and B = 10 m wide.

The mean stream velocity is 22.5 cm/s. A dye study was conducted my injecting 2.25 g/s of dye

uniformly across the cross-section 150 m upstream of a measurement point. The measurements

of dye concentration at L = 150 m are given in Figure 7.4. From the figure, determine the value

of the dispersion coefficient. Based on this value, how many tanks in a tanks-in-series model

would be needed to reproduce this level of dispersion in the numerical model?
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A. Point-source Diffusion in an Infinite Domain:

Boundary and Initial Conditions

In this appendix we discuss how the boundary and initial conditions for a point source in an

infinite, one-dimensional domain are applied to find the solution of the diffusion equation. The

governing equation is

∂C

∂t
= D

∂2C

∂x2
(A.1)

with boundary conditions C(±∞, t) = 0 and initial condition C(x, 0) = (M/A)δ(x) (for more

detail, refer to Chapter 1).

In this case we will use the Fourier exponential transform instead of the similary method to

obtain our result. Although each method is equally valid, it is easier to see how the boundary

conditions are applied using the Fourier transform. Since the governing equations that is obtained

after applying the boundary conditions will be the same using either method, applying the

Fourier transform method here is the better approach. For this method we use the Fourier

exponential transformation defined by

F(α, t) =

∫ ∞

−∞
F (x, t)e−iαxdx (A.2)

where F(α, t) is the Fourier transformation of F (x, t), α is a transformation variable, and i is

the imaginary number. This method implicitly satisfies the boundary conditions at ±∞. This is

called a behavioral boundary condition (see e.g. Boyd 1989), and it is not necessary to apply the

boundary to fix the values of integration constants—the solution implicitely obeys the boundary

conditions because of our use of the Fourier transform. The following application of this method

to the diffusion equation is taken from Mei (1997).

The Fourier transform of the governing diffusion equation gives

dC
dt

+ Dα2C = 0. (A.3)

The power of the Fourier transform is that it converts partial differential equations into ordinary

differential equations, this time a simple, first-order ODE with solution

C(α, t) = F(α) exp(−Dα2t). (A.4)

F(α) is found by applying the initial condition. Applying the Fourier transform to the initial

condition gives

F(α) = C(α, 0)

=

∫ ∞

−∞
(M/A)δ(x)e−iαxdx

Copyright c© 2004 by Scott A. Socolofsky and Gerhard H. Jirka. All rights reserved.
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= M/A. (A.5)

The drawback of the Fourier transform method is that the inverse transform to get back to our

desired dimensional space is sometimes a difficult integral.

We stop here to take a look at what we have done so far. The Fourier transform method

implicitly satisfies the boundary conditions; therefore, we do not have to think about them

anymore. Further, the initial condition was used to find the solution to the ODE obtained after

the Fourier transform. Thus, our solution

C(α, t) = (M/A) exp(−Dα2t) (A.6)

satisfies all our boundary and initial conditions. The remaining task is to perform a Fourier

inverse transform on this solution.

The Fourier inverse transform is defined in general as

F (x, t) =
1

2π

∫ ∞

−∞
F(α, t)eiαxdα. (A.7)

For our problem, the inverse transform becomes

C(x, t) =
1

2π

∫ ∞

−∞
(M/A) exp(−Dα2t)eiαxdα. (A.8)

We can simplify a little by recognizing that eiαx = cos(αx) + i sin(αx). Since e−Dα2t is an even

function and i sin(αx) is an odd function, we can neglect the sin-contribution, leaving us with

the integral

C(x, t) =
M

2πA

(

2

∫ ∞

0
e−Dα2t cos(αx)dα

)

(A.9)

which we still must solve.

The first step in solving (A.9) is to simplify the exponential using the change of variable

α =
x√
Dt

(A.10)

dα =
dx√
Dt

(A.11)

(note, this in an arbitrary change of variable that puts the integral in a form more likely to be

found in integral tables). Further, we define a new variable

η =
x√
Dt

(A.12)

(note, this is also an arbitrary decision). Substituting these definitions leaves us with

C(x, t) =
M

πA
√

Dt

∫ ∞

0
e−x2

cos(ηx)dx. (A.13)

Thus, our solution simplifies to having to solve the integral

I(η) =

∫ ∞

0
e−x2

cos(ηx)dx. (A.14)

The integral in (A.14) is not a trivial integral, but can be solved by employing the following

tricks. Basically, we need to find the derivative of I with respect to η and then put it in a useful

form. We begin with
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dI

dη
=

∫ ∞

0
−xe−x2

sin(ηx)dx. (A.15)

Next, recognize that xdx = (1/2)d(x2), giving

dI

dη
= −1

2

∫ ∞

0
e−x2

sin(ηx)d(x2). (A.16)

Similarly, we make use of the identity e−x2

d(x2) = −d(e−x2

), which lets us write

dI

dη
=

1

2

∫ ∞

0
sin(ηx)d(e−x2

). (A.17)

Now, we integrate by parts (where u = sin(ηx) and dv = d(e−x2

)) yielding

dI

dη
=

1

2
(e−x2

sin(ηx))

∣

∣

∣

∣

∞

0
− 1

2

∫ ∞

0
e−x2

d(sin(ηx))

= 0 − η

2

∫ ∞

0
e−x2

cos(ηx)dx

= −η

2
I(η). (A.18)

We can rearrange the last line as follows

dI

dη
+

η

2
I(η) = 0 (A.19)

which looks remarkably like (1.49) if C0 is taken as zero. The initial condition necessary to solve

the above ODE is given by

I(0) =

∫ ∞

0
e−x2

dx. (A.20)

If we convert I in the previous two equations to our variables used in the similarity solution,

we obtain

df

dη
+

η

2
f(η) = 0 (A.21)

with initial condition
∫ ∞

−∞
f(η)dη = 1. (A.22)

Therefore, we have shown through a rigorous application of the Fourier transform method, that

the above two equations give the solution to the diffusion equation that we seek in an infinite

domain for an instantaneous point source after having applied the appropriate boundary and

initial conditions.
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B. Solutions to the Advective Reacting

Diffusion Equation

This appendix presents solutions to the advective reacting diffusion equation given by

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= Ex

∂2C

∂x2
+ Ey

∂2C

∂y2
+ Ez

∂2C

∂z2
− kC (B.1)

for homogeneous, anisotropic turbulence with the steady velocity u = (u, v, w). The Ei’s are

the anisotropic turbulent diffusion coefficients, and k is a constant first-order decay rate. In

previous chapters we denoted the turbulent diffusion coefficient by Dt. We use Dt = E here so

that the subscripts do not get too complicate and to expose the reader to another notation for

the turbulent diffusion coefficient common in the literature.

B.1 Instantaneous point source

An instantaneous point source has an injection of mass, M , at the point x = (x1, y1, z1) at time

t = 0. The following solutions cover different ambient conditions.

B.1.1 Steady, uni-directional velocity field

For a steady velocity field u = (U, 0, 0), the solutions is

C(x, y, z, t) =
M

4πt
√

4πExEyEzt
exp

(

−((x − x1) − Ut)2

4Ext

− (y − y1)
2

4Eyt
− (z − z1)

2

4Ezt
− kt

)

. (B.2)

B.1.2 Fluid at rest with isotropic diffusion

For isotropic diffusion, Ex = Ey = Ez = E, and, in a stagnant ambient without decay, (B.2)

simplifies to

C(x, y, z, t) =
M

(4πEt)3/2
exp

(

− r2

4Et

)

(B.3)

where r =
√

x2 + y2 + z2 and x1 = y1 = z1 = 0.
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B.1.3 No-flux boundary at z = 0

The no-flux boundary condition at z = 0 is enforced by an image source at x = (x1, y1,−z1),

giving the solution for z > 0 neglecting decay and crossflow as

C(x, y, z, t) =
M

4πt
√

4πExEyEzt
·

exp

(

−(x − x1)
2

4Ext
− (y − y1)

2

4Eyt
− (z − z1)

2

4Ezt

)

+
M

4πt
√

4πExEyEzt
·

exp

(

−(x − x1)
2

4Ext
− (y − y1)

2

4Eyt
− (z + z1)

2

4Ezt

)

. (B.4)

B.1.4 Steady shear flow

The following solution, presented in Okubo & Karweit (1969), is for the special shear flow given

by u = (u0(t) + λyy + λzz, 0, 0), where λy and λz are the velocity gradients defined by

λy =
∂u

∂y
(B.5)

λz =
∂u

∂z
. (B.6)

The solution is

C(x, y, z, t) =
M

4πt
√

4πExEyEzt
√

1 + φ2t2
·

exp






−

(

x −
∫ t
0 u0(t

′)dt′ − 1
2(λyy + λzz)t

)2

4Ext(1 + φ2t2)

− y2

4Eyt
− z2

4Ezt
− kt

)

, (B.7)

where the injection is at (0, 0, 0) and φ2 is given by

φ2 =
1

12

(

λ2
y

Ey

Ex
+ λ2

z

Ez

Ex

)

. (B.8)

B.2 Instantaneous line source

An instantaneous line source has an injection of mass, m′, per unit length along the line through

x = (x1, y1) for z = ±∞ at time t = 0. The following solutions cover different ambient conditions.

B.2.1 Steady, uni-directional velocity field

For a steady velocity field u = (U, 0, 0), the solutions is
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C(x, y, z, t) =
m′

4πt
√

ExEy
·

exp

(

−((x − x1) − Ut)2

4Ext
− (y − y1)

2

4Eyt
− kt

)

. (B.9)

B.2.2 Truncated line source

For the line source along the line x = (0, 0) for z = ±z2, the solution is

C(x, y, z, t) =
m′

8πt
√

ExEy

(

erf

(

z + z2√
4Ezt

)

− erf

(

z − z2√
4Ezt

))

·

exp

(

−(x − Ut)2

4Ext
− y2

4Eyt
− kt

)

. (B.10)

B.3 Instantaneous plane source

An instantaneous plane source has an injection of mass, m′′, per unit area distributed uniformly

on the y-z plane passing through x1. The solution for the uni-directional velocity field given by

u = (U, 0, 0) is

C(x, y, z, t) =
m′′

√
4πExt

exp

(

−((x − x1) − Ut)2

4Ext
− kt

)

. (B.11)

B.4 Continuous point source

The solution for a continuous point source is obtained by the time-integration of the solution for

an instantaneous point source. The injection duration is t1, and the general form of the solution

is

C(x, y, z, t) = γ

∫ t1

0

1

(t − τ)3/2
exp

(

− α

(t − τ)
− β(t − τ)

)

dτ (B.12)

where

α =
(x − x1)

2

4Ex
+

(y − y1)
2

4Ey
+

(z − z1)
2

4Ez
(B.13)

β =
U2

4Ex
+ k (B.14)

γ =
ṁ exp

(

(x−x1)U
2Ex

)

4π
√

4πExEyEz
(B.15)

and ṁ is the time rate of mass injection ∂M/∂t.
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B.4.1 Times after injection stops

Assuming an injection period from t = 0 to t = t1, the solution for times greater than t1 (i.e.

after injection stops) is

C(x, y, z, t) =
γ
√

π

2
√

α

{

exp(2
√

αβ)

(

erf

(
√

α

(t − t1)
+
√

β(t − t1)

)

−erf

(
√

α

t
+
√

βt

))

+ exp(−2
√

αβ)

(

erf

(
√

α

(t − t1)
−
√

β(t − t1)

)

−erf

(
√

α

t
−
√

βt

))}

(B.16)

B.4.2 Continuous injection

A continuous injection in an injection from time t = 0 to the current time t, and the solution is

C(x, y, z, t) =
γ
√

π

2
√

α

{

exp(2
√

αβ) erfc

(
√

α

t
+
√

βt

)

+

exp(−2
√

αβ) erfc

(
√

α

t
−
√

βt

)}

. (B.17)

The steady-state solution is found for t → ∞ to be

C(x, y, z) =
γ
√

π√
α

exp(−2
√

αβ). (B.18)

For the special case of a homogeneous, isotropic diffusion at steady state, we have

C(x, y, z) =
ṁ

4πEr
exp

(

−r
√

U2 + 4Ek − xU

2E

)

(B.19)

where r =
√

x2 + y2 + z2.

B.4.3 Continuous point source neglecting

longitudinal diffusion

The steady-state solution for homogeneous turbulence and neglecting longitudinal diffusion is

found from the governing equation

U
∂C

∂x
= Ey

∂2C

∂y2
+ Ez

∂2C

∂z2
− kC. (B.20)

For an infinite domain, the solution is

C(x, y, z) =
ṁ

4πx
√

EyEz
exp

(

− y2U

4xEy
− z2U

4xEz
− kx

U

)

. (B.21)
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B.4.4 Continuous point source in uniform flow with

anisotropic, non-homogeneous turbulence

Here, we treat a special type of non-homogeneous turbulence, where the turbulent diffusion co-

efficients are functions of x, only, and where we will neglect longitudinal diffusion. The governing

equation at steady state is

U
∂C

∂x
= Ey(x)

∂2C

∂y2
+ Ez(x)

∂2C

∂z2
. (B.22)

where the diffusivities are taken from Walters (1962) as

Ey = ayx
α (B.23)

Ez = azx
β . (B.24)

The solution for this special case is

C(x, y, z) =
ṁ

2π

√

(1 + α)(1 + β)

ayaz
x−(1+ α+β

2 ) ·

exp

(

−(1 + α)U

4x1+α

y2

ay
− (1 + β)U

4x1+β

z2

az

)

. (B.25)

B.4.5 Continuous point source in shear flow with

non-homogeneous, isotropic turbulence

Smith (1957) investigated the specific case of a shear flow of the from

u(z) = a0z
µ (B.26)

where a0 is a constant and µ = 1/2. For this case the turbulent diffusion coefficient can be taken

as

Ez(z) = b0z
1−µ (B.27)

where b0 is another constant. The governing equation at steady state is

u(z)
∂C

∂x
= Ez(z)

∂2C

∂y2
+

∂

∂z

(

Ez(z)
∂C

∂z

)

, (B.28)

and the solution is found to be

C(x, y, z) =
ṁa

1/4
0

2(b0x)5/4
√

3π
exp

(

−a0(y
2 + z2)

4b0x

)

. (B.29)

B.5 Continuous line source

The solution for a continuous line-source injection is obtained by integrating the solution of an

instantaneous line-source (B.9). Taking the line source along the z-axis and assuming a uniform

crossflow in the x-direction, the solution is derived by integrating
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C(x, y, t) =

∫ t

0

ṁ′

4π(t − τ)
√

ExEy
·

exp

(

−(x − U(t − τ))2

4Ex(t − τ)
−

y2

4Ey(t − τ)
− k(t − τ)

)

dτ (B.30)

where ṁ′ is the time rate of mass injection per unit length.

B.5.1 Steady state solution

The solution to (B.30) for t → ∞ is given by

C(x, y) =
ṁ′

2π
√

ExEy
exp

(

Ux

2Ex

)

K0(2β2) (B.31)

where K0 is the modified Bessel function of second kind of order zero and

β2 =

√

(Eyx2 + Exy2)(U2Ey + 4ExEyk)

4ExEy
. (B.32)

B.5.2 Continuous line source neglecting longitudinal

diffusion

For the special case where we can neglect longitudinal diffusion, Ex, the solution becomes

C(x, y) =
ṁ′

√

4πxUEy
exp

(

− Uy2

4Eyx
− kx

U

)

. (B.33)

B.6 Continuous plane source

The time integral solution for a continuous infinite (in the y- and z-directions) plane source is

given by integrating the solution for an instantaneous plane, namely:

C(x, t) =

∫ t1

0

ṁ′′
√

4πEx(t − τ)
·

exp

(

−(x − U(t − τ))2

4Ex(t − τ)
− k(t − τ)

)

dτ, (B.34)

where ṁ′′ is the time rate of mass injection per unit area.

B.6.1 Times after injection stops

Assuming an injection period from t = 0 to t = t1, the solution for times greater than t1 is
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C(x, t) =
ṁ′′eUx/(2Ex)

2Ω

(

exp

(

xΩ

2Ex

){

erf

(

x + Ωt√
4Ext

)

−

erf

(

x + Ω(t − t1)
√

4Ex(t − t1)

)}

− exp

(−xΩ

2Ex

)

·
{

erf

(

x − Ωt√
4Ext

)

− erf

(

x − Ω(t − t1)
√

4Ex(t − t1)

)})

, (B.35)

where Ω =
√

U2 + 4kEx.

B.6.2 Continuous injection

For an injection from time t = 0 to the current time t, the solution is

C(x, t) =
ṁ′′eUx/(2Ex)

2Ω

(

exp

(

xΩ

2Ex

){

erf

(

x + Ωt√
4Ext

)

∓ 1

}

−

exp

(−xΩ

2Ex

){

erf

(

x − Ωt√
4Ext

)

∓ 1

})

. (B.36)

For the location x = 0, the solution simplifies to

C(0, t) =
ṁ′′

Ω
erf

(

Ωt√
4Ext

)

. (B.37)

For the limiting case where the system reaches steady state (t → ∞), the solution becomes

C(x) =
ṁ′′

Ω
exp

(

x

2Ex
(U ∓ Ω)

)

. (B.38)

B.6.3 Continuous plane source neglecting

longitudinal diffusion in downstream section

If we neglect longitudinal diffusion (diffusion in the flow direction) downstream of the injection

plane, then the solution at steady state for x > 0 simplifies to

C(x) =
ṁ′′

U
exp

(

−kx

U

)

. (B.39)

B.6.4 Continuous plane source neglecting

decay in upstream section

If we neglect decay upstream of the injection plane, then the solution at steady state for x < 0

simplifies to

C(x) =
ṁ′′

U
exp

(

Ux

Ex

)

. (B.40)
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B.7 Continuous plane source of limited extent

B.7.1 Semi-infinite continuous plane source

For a source over the region −∞ < y < 0, −∞ < z < ∞, the governing differential equation for

steady state is

U
∂C

∂x
= Ey

∂2C

∂y2
− kC, (B.41)

and the solution is

C(x, y) =
ṁ′′ekx/U

2U
erfc

(

y

2

√

U

Eyx

)

. (B.42)

B.7.2 Rectangular continuous plane source

For a continuous plane source over the domain −b/2 < y < b/2, −∞ < z < ∞, Brooks (1960)

gives the steady-state solution for a series of cases.

Homogeneous turbulence. For homogeneous turbulence (Ey = constant), the solution is

C(x, y)

C0
=

ekx/U

2

(

erf

(

y + b/2

2

√

U

Eyx

)

− erf

(

y − b/2

2

√

U

Eyx

))

, (B.43)

where C0 is the concentration at the source. The solution for y = 0 simplifies to

C(x, 0)

C0
= ekx/Uerf

(

b

4

√

U

Eyx

)

. (B.44)

The relationship for the plume width, defined by L(x) = 2
√

3σy(x) is given by

L

b
=

√

1 +
24Eyx

Ub2
. (B.45)

Non-homogeneous turbulence. For non-homogeneous turbulence of the form Ey = Ey0(L/b),

the center-line solution and plume width are given by

C(x, 0)

C0
= ekx/Uerf

√

√

√

√

√

3/2
(

1 +
12Ey0x

Ub2

)2
− 1

(B.46)

and
L

b
= 1 +

12Ey0x

Ub2
, (B.47)

respectively.

For non-homogeneous turbulence of the form Ey = Ey0(L/b)4/3 (the so-called 4/3-power

law), the center-line solution and plume width are given by

C(x, 0)

C0
= ekx/Uerf

√

√

√

√

√

3/2
(

1 +
8Ey0x
Ub2

)3
− 1

(B.48)
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and

L

b
=

(

1 +
8Ey0x

Ub2

)3/2

, (B.49)

respectively.

B.8 Instantaneous volume source

For the one-dimensional case of an instantaneous injection of mass M over the range L1 < x <

L2, producing the initial concentration Ci given by

Ci =
M

A(L2 − L1)
, (B.50)

where A is a cross-sectional area perpendicular to the x-axis, the solution is

C(x, t)

Ci
=

e−kt

2

(

erf

(

(x − L1) − Ut√
4Ext

)

− erf

(

(x − L2) − Ut√
4Ext

))

. (B.51)

For the special case of L1 = −∞ and L2 = 0, the solution is

C(x, t)

Ci
=

1

2

(

1 − erf

(

x − Ut√
4Ext

))

. (B.52)
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C. Streeter-Phelps Equation

The Streeter-Phelps equation is the solution to the differential equation

dD

dt
= kdL0 exp(−kdt) − KrD, (C.1)

derived in Section 5.2.2. The oxygen deficit is D = [O2]sat − [O2], kd is the degradation rate

of organic matter, L0 is the total carbonaceous oxygen demand, and Kr is the river oxygen

aeration coefficient. The solution is subject to the initial condition D(t = 0) = D0.

Since this is an inhomogeneous equation, we first find the complimentary solution, which is

the solution to the homogeneous equation

dD

dt
= −KrD, (C.2)

which has the solution

Dc(t) = C1 exp(−Krt), (C.3)

where C1 is a constant that must satisfy the initial condition in the final solution.

To find a particular solution, we assume the solution has the same form as the forcing function

(kdL0 exp(−kdt)). Thus, we assume the solution

Dp(t) = A exp(−kdt). (C.4)

Substituting into (C.1) and solving for A, we obtain

A =
kdL0

Kr − kd
. (C.5)

The general solution is the sum of the complimentary and particular solutions:

D(t) =
kdL0

Kr − kd
exp(−kdt) + C1 exp(−Krt). (C.6)

Setting t = 0 and equating with the initial condition, leads to

C1 = D0 −
kdL0

Kr − kd
. (C.7)

Substituting this result into the general solution yields the classic Streeter-Phelps equation:

D(t) =
kdL0

Kr − kd
(exp(−kdt) − exp(−Krt)) + D0 exp(−Krt). (C.8)

Copyright c© 2004 by Scott A. Socolofsky and Gerhard H. Jirka. All rights reserved.
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D. Common Water Quality Models

In this appendix we introduce a few of the common models used in water quality analysis. This

is by no means a complete list, but does provide a starting point from which to work. Much

of the text in this appendix was copied from the internet home pages describing each of the

models. The web page1 for this course provides links to each of these models in the web.

D.1 One-dimensional models

One-dimensional models are most commonly used in rivers, but can also be used in special cases

in estuaries and lakes with large length-to-width ratios. Accept for the ATV model, these models

are publicly available free of charge, and most can be downloaded over the internet. The list of

models below progresses from steady-state models, to dynamic tanks-in-series models, to fully-

dynamic numerical models. Refer to Chapter 7 for an introduction to water quality modeling

and its methodology.

D.1.1 QUAL2E: Enhanced stream water quality model

The qual2e series of models has a long history in stream water quality modeling. It was pri-

marily developed by the U.S. Environmental Protection Agency (EPA) in the early 1970s. Since,

it has gained a broad user base, including applications outside the U.S. in Europe, Asia, and

South and Central America.

The Enhanced Stream Water Quality Model (qual2e) is applicable to well mixed, dendritic

streams. It simulates the major reactions of nutrient cycles, algal production, benthic and car-

bonaceous demand, atmospheric reaeration and their effects on the dissolved oxygen balance.

It can predict up to 15 water quality constituent concentrations. It is intended as a water qual-

ity planning tool for developing total maximum daily loads (TMDLs) and can also be used in

conjunction with field sampling for identifying the magnitude and quality characteristics of non-

point sources. By operating the model dynamically, the user can study diurnal dissolved oxygen

variations and algal growth. However, the effects of dynamic forcing functions, such as headwa-

ter flows or point source loads, cannot be modeled with qual2e. Qual2e-u is an enhancement

allowing users to perform three types of uncertainty analyses: sensitivity analysis, first-order

error analysis, and Monte Carlo simulation.

1 http://ceprofs.tamu.edu/ssocolofsky/CVEN489/Book/Book.htm

Copyright c© 2004 by Scott A. Socolofsky and Gerhard H. Jirka. All rights reserved.
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The model only simulates steady-state streamflow and contaminant loading conditions; the

reference to dynamic modeling above refers only to water quality forcing functions of climatologic

variables (air temperature, solar radiation, among others). The transport scheme in the model

is the implicit backward-difference finite difference method.

D.1.2 HSPF: Hydrological Simulation Program–FORTRAN

Developed in the late 1970s by the EPA, hspf is a union between the Stanford Watershed

Model, an advanced, continuous-simulation, process-oriented hydrologic model, and several wa-

ter quality models developed by the EPA, including the Agricultural Runoff Model (arm) and

the NonPoint Source model (nps). The model is intended for both conventional and toxic organic

pollutants. Contaminant loads are either user-input point sources or nonpoint sources modeled

by build-up and wash-off parameterizations. It is the only comprehensive model of watershed

hydrology and water quality that allows the integrated simulation of land and soil contaminant

runoff processes with in-stream hydraulic and sediment-chemical interactions. However, make

no mistake: it is not a three-dimensional model.

An advantage of hspf is in its software development, which resulted in a complete data-

management tool. A disadvantage of hspf is its large data requirements, which include physical

data such as watershed data, river network discretization, soil types, geologic setting, vegetative

cover, towns, and other regional data, meteorologic data such as hourly data for precipitation,

solar radiation, air temperature, dew-point temperature, and wind speed and daily evapotran-

spiration. In addition, the model has a wealth of empirical calibration parameters that must be

determined from handbook values and by calibrating to field measurements.

The river transport model is a tanks-in-series model that uses flood routing via stage-

discharge relationships (which must be input by the user from external knowledge).

D.1.3 SWMM: Stormwater Management Model

In urban settings, where pressurized pipe flow in sewer systems is to be modeled, the EPA

model swmm is recommended. The swmm model is actually a package of models. In one mode,

it can function as a design model which undertakes detailed simulations of storm events, using

relatively short time steps and as much catchment and drainage system detail as necessary. In

another mode it can be used as a routine planning model for an overall assessment of the urban

runoff problems and proposed abatement options. The planning mode is typified by continuous

simulation for several years using long (e.g. hourly) time steps and minimum detail in the

catchment scheme. Like hspf, the model requires a great deal of input data (both physical and

meteorological).

The modular nature of Swmm allows it to simulate diverse situations. Both single-event

and continuous simulation can be performed on catchments having storm sewers, or combined

sewers and natural drainage, for prediction of flows, stages and pollutant concentrations. The

Extran Block solves complete dynamic flow routing equations (St. Venant equations) for accu-

rate simulation of backwater, looped connections, surcharging, and pressure flow. The modeler
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can simulate all aspects of the urban hydrologic and quality cycles, including rainfall, snowmelt,

surface and subsurface runoff, flow routing through drainage networks, storage and treatment.

Statistical analyses can be performed on long-term precipitation data and on output from con-

tinuous simulation.

The strength of this model is in its hydrodynamics. The transport modules, which are also

quite flexible, use simple tanks-in-series formulation, and are not available in the Extran Block

(where the complete dynamic flow equations are solved).

D.1.4 DYRESM-WQ: Dynamic reservoir water quality model

The model dyresm-wq is a one-dimensional hydrodynamics model for predicting the vertical

distribution of temperature, salinity and density in lakes and reservoirs. It is assumed that the

water bodies comply with the one-dimensional approximation in that the destabilizing forcing

variables (wind, surface cooling, and plunging inflows) do not act over prolonged periods of time.

Dyresm-wq has been used for simulation periods extending from weeks to decades. Thus, the

model provides a means of predicting seasonal and inter-annual variation in lakes and reser-

voirs, as well as sensitivity testing to long term changes in environmental factors or watershed

properties.

Dyresm-wq can be run either in isolation, for hydrodynamic studies, or coupled to caedym

for investigations involving biological and chemical processes. The computational demands of

dyresm-wq are quite modest and multi-year simulations can be performed on PC platforms

under Windows operating systems. The code is written in modular fashion to support future

updates and improvements.

D.1.5 CE-QUAL-RIV1: A one-dimensional, dynamic flow and water quality model

for streams

Administered and developed by the U.S. Army Corps of Engineers, ce-qual-riv1, or more

commonly just riv1, is a fully dynamic (flow and water quality) one-dimensional model. The

hydrodynamic portion is computed first, solving the St. Venant equations using the four-point

implicit finite difference scheme. The hydrodynamic model does not allow for super-critical flow.

This can lead to problems for natural streams under low flow where steep river sections form

cataracts. Following the hydrodynamics, the transport equation is solved using an explicit two-

point, fourth-order accurate Holly-Preissman scheme. The Holly-Preissman scheme is a backward

method of characteristics; however, because the search routine in RIV1 for finding the feet of

the characteristic lines only searches the upstream segment, the Courant number restriction still

applies. The water quality model can predict variations in each of 12 state variables: temperature,

carbonaceous biochemical oxygen demand (CBOD), organic nitrogen, ammonia nitrogen, nitrate

+ nitrite nitrogen, dissolved oxygen, organic phosphorus, dissolved phosphates, algae, dissolved

iron, dissolved manganese, and coliform bacteria. In addition, the impacts of macrophytes can be

simulated. Because of the use of the characteristic method, numerical accuracy for the advection

of sharp gradients is preserved.
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D.1.6 ATV Gewässergütemodell

The ATV Gewässergütemodell, also called the AVG (allgemein verfügbares Gewässergütemodell)

or in English the ATV water quality model, was developed in Germany as a new model to

bridge the problems (limitations) inherent in some of the models listed above. It is designed as

a series of building blocks, each building block to be implemented as needed. The first building

block is the hydrodynamic model, which solves the St. Venant equations for either the steady

or unsteady case. The remaining building blocks can be added to the hydraulics as needed,

including water temperature, conservative tracers, (C)BOD, phosphorus, nitrogen cycle, silicon,

algae, zooplankton, sediment/water exchange, suspended sediment transport, oxygen dynamics,

pH dynamics, heavy metals, and organic chemicals. The solution to the transport equation

uses the method of characteristics and does not have a Courant number constraint. Because of

the model’s modular design, simulations can be made as simple or as complicated as desired;

however, the numerical expense of the hydrodynamic routine should not be underestimated.

D.2 Two- and three-dimensional models

Two- and three-dimensional models are typically used in reservoirs, lakes, and estuaries. They

are almost exclusively finite element, finite volume, or finite difference. Because large water

bodies are generally stratified, they must simulate buoyancy effects; thus, the hydrodynamic

and transport equations are coupled. Because buoyancy effects are a major complication in

these models (and the subject of next semester) this section briefly summarizes each model

without discussing the details.

D.2.1 CORMIX: Cornell Mixing-Zone Model

Begun at Cornell and currently under continued development at the Oregon Graduate Institute,

the cormix system is a near-field model for the analysis, prediction, and design of aqueous toxic

or conventional pollutant discharges into diverse water bodies. Major emphasis is on computation

of plume geometry and dilution characteristics within a receiving water’s initial mixing zone so

that compliance with regulatory constraints can be judged. It also computes discharge plume

behavior at larger distances. The model has three modules: cormix1 for submerged single-point

discharges, cormix2 for submerged multi-port diffuser discharges, and cormix3 for buoyant

surface discharges. As implied by the title, the model predicts mixing (dilution) of the input

chemicals, but does not allow for interaction among multiple chemicals (though first-order decay

of a single species is implemented).

The model equations are based on jets and plumes, which traditionally are modeled using

integral equations. Integral equations rely on self-similarity to reduce the three-dimensional

equations to a one-dimensional ODE. The model then solves for the three-dimensional trajectory

of the plume centerline using the one-dimensional integral equations. Hydrodynamic conditions

(though allowed to be unsteady) must be supplied as input to the model.
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D.2.2 WASP: Water Quality Analysis Simulation Program

The wasp system is a generalized framework for modeling contaminant fate and transport in

surface waters. The model does not solve a set of multi-dimensional dynamical equations, but

rather is based on the flexible compartment modeling approach. Wasp can be applied in one,

two, or three dimensions. Problems that have been studied using the wasp framework include

biochemical oxygen demand and dissolved oxygen dynamics, nutrients and eutrophication, bac-

terial contamination, and organic chemical and heavy metal contamination.

Because wasp in an EPA model, input and output linkages also have been provided to other

stand-alone models. Flows and volumes predicted by the link-node hydrodynamic model dynhyd

can be read and used by wasp. Loading files from przm and hspf can be reformatted and read

by wasp. Toxicant concentrations predicted by toxi can be read and used by both the wasp

Food Chain Model and the fish bioaccumulation model fgets.

A body of water is represented in WASP as a series of computational elements or segments.

Environmental properties and chemical concentrations are modeled as spatially constant within

segments. Segment volumes and type (surface water, subsurface water, surface benthic, subsur-

face benthic) must be specified, along with hydraulic coefficients for riverine networks.

D.2.3 POM: Princeton ocean model

Pom is the precursor to ecom-si (see the next section), and was developed in the late 1970s. It is

a fully three-dimensional hydrodynamic numerical model, designed to predict ocean circulation.

The pom model is freely available to non-commercial applications.

The pom model contains an imbedded second moment turbulence closure sub-model to pro-

vide vertical mixing coefficients. It is a sigma coordinate model in that the vertical coordinate is

scaled on the water column depth. The horizontal grid uses curvilinear orthogonal coordinates.

The horizontal time differencing is explicit whereas the vertical differencing is implicit. The lat-

ter eliminates time constraints for the vertical coordinate and permits the use of fine vertical

resolution in the surface and bottom boundary layers. The model has a free surface and a split

time step. The external mode portion of the model is two-dimensional and uses a short time step.

The internal mode is three-dimensional and uses a long time step. Complete thermodynamics

have been implemented.

D.2.4 ECOM-si: Estuarine, coastal and ocean model

Ecom-si is a three-dimensional ocean circulation model developed principally by Alan Blumberg

of HydroQual. It is similar to the pom model, but incorporates a semi-implicit scheme for solving

the gravity wave so that the need for separate barotropic (external) and baroclinic (internal)

time steps is eliminated. The ecom-si model is not freely available, but must be obtained through

HydroQual.

Ecom-si includes a free surface, nonlinear advective terms, coupled density and velocity fields,

river runoff, heating and cooling of the sea surface, a 2.5 level turbulence closure scheme to
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represent vertical mixing, and is designed to easily allow “realistic” simulations. In addition, the

combination of orthogonal curvilinear coordinates in the horizontal plane and sigma-coordinates

in the vertical dimension allows grid refinement in regions of interest without sacrificing the

well-known characteristics of Cartesian grid schemes. For water quality modeling, both pom

and ecom-si must be combined with a transport model.
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Glossary

adjacent [angrenzend o. benachbart ]:

Next to, nearby, or having a common endpoint or border.

advection [Advection]:

Transported by an imposed ambient current, as in a river or coastal waters.

ambient (fluid) [umgebend(es Fluid)]:

Ambient means “existing or present on all sides.” Ambient fluid is the fluid surrounding the

region of interest.

application [Anwendung ]:

An act of putting to use new techniques. A use to which something is put.

approach [Vorgehensweise]:

In science: a methodology applied to solve a problem.

assumption [Annahme]:

A fact or statement (as in a propostition, axiom, postulate, or notion) that is taken for

granted (assumed).

average [Durchschnitt ]:

A single value (as a mean, mode, or median) that summarizes or represents the general

significance of a set of unequal values.

boundary condition [Randbedingung ]:

A constraint applied to a differential equation at a physical location (boundary) in space.

buoyancy [Auftrieb]:

The tendency of a body to float or to rise when submerged in a fluid; the power of a fluid to

exert an upward force on a body placed in it, also, the upward force exerted on the body.

coherent [zusammenhängend o. kohrent ]:

Ordered of integrated in way that produces an interdependence.

control volume [Kontrollvolumen]:

The three-dimensional region defined by the boundaries of a system. Usually, a differential

element used to derive conservation laws.

convection [Konvektion]:

Vertical transport induced by hydrostatic instability, such as the flow over a heated plate,

or below a chilled water surface in a lake.

current [Strömung ]:

The part of a fluid body (such as air or water) moving continuously in a certain direction.

decay [Abbau o. Zerfall ]:

To decrease gradually in quantity, activity, or force.

density [Dichte]:

The mass of a unit volume.

derivation [Ableitung o. Herleitung ]:

The act or processes of forming a physical relationship from basic, accepted relationships.
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diffusion (molecular) [Diffusion (molekulare)]:

The scattering of particles by random molecular motions, which may be described by Fick’s

law and the classical diffusion equation.

diffusion (turbulent) [Diffusion (turbulente)]:

The random scattering of particles by turbulent motion, considered roughly analogous to

molecular diffusion, but with eddy diffusion coefficients (which are much larger than molec-

ular diffusion coefficients).

dilution [Verdünnung ]:

The act of reducing the strength, or concentration by adding more liquid.

discharge [Abfluß ]:

A flow, generally of contaminants, that is emitted into the environment, usually from a

localized source.

dispersion [Dispersion]:

The scattering of particles or a cloud of contaminants by the combined effects of shear and

transverse diffusion.

dissolve [lösen]:

To cause to pass into solution.

droplets [Tröpfchen]:

Small drops (as of a liquid), such as rain drops, drops of oil, and others. The liquid-phase

version of a gas bubble.

dye [Farbstoff ]:

A soluble or insoluble coloring matter.

eddy [Wirbel ]:

A current of water or air running contrary to the main current. In turbulent flow, especially,

a circular current or current with vorticity.

effluent [Ausfluß o. ausfließend ]:

The fluid flowing out from a discharge.

entrainment [Einmischung ]:

To draw in and transport (as solid particles or ambient fluid) by the flow of a fluid.

environmental impact statement [Umweltverträglichkeitsstudie]:

Legal document reporting the projected positive and negative results to the environment of

a proposed engineering project.

equation [Gleichung ]:

A mathematical statement of equality or inequality.

estuary [Flußmündung o. Meeresbucht o. Ästuar ]:

The a tidal region where fresh water (from continental sources) mixes with ocean water.

The estuary is generally defined up to the point where salt concentrations equal the ambient

ocean salinity.

evaporation [Evaporation]:

The transport of water vapor from a water or soil surface to the atmosphere.
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fluctuation [Schwankung ]:

A shirt back and forth uncertainly, or to ebb and flow in waves.

gauge (water gauge) [Meßgerät (Wasserstandsanzeiger)]:

An instrument with a graduated scale or dial for measuring or indicating quantity.

impact [Auswirkung o. Einfluß ]:

The changes, both positive and negative, on a natural system due to an external influence

(as an engineering project).

inertia [Trägheit ]:

a property of matter by which it remains at rest or in uniform motion in the same straight

line unless acted upon by some external force

initial condition [Anfangsbedingung ]:

A constraint applied to a differential equation at a physical moment in time (generally at

t = 0).

interface [Grenzfläche]:

The boundary between two fluids.

jet [Strahl ]:

A momentum-driven boundary-layer flow. A usually forceful stream of fluid (as water or gas)

discharged from a narrow opening or a nozzle.

manifold [Verteiler- bzw. Sammelrohr ]:

A pipe fitting with several lateral outlets.

mean [Mittel ]:

See average.

mixing [Mischung ]:

Diffusion or dispersion as described above; turbulent diffusion in buoyant jets and plumes;

any process which causes one parcel of water to be mingled with or diluted by another.

momentum [Impuls]:

A property of a moving body that the body has by virtue of its mass and motion and that

is equal to the product of the body’s mass and velocity.

nozzle [Düse]:

A short tube with a taper or constriction used (as on a hose) to speed up or direct a flow of

fluid.

order of magnitude [Größenordnung ]:

A range of magnitude extending from some value to ten times that value.

orifice [Düse o. Öffnung o. Mündung ]:

An opening (as a vent, mouth, or hole) through which something may pass.

particle entrainment [Teilcheneinmischen]:

The picking up of particles, such as sand or organic detritus, from the bed of a water body

by turbulent flow past the bed.

particle settling [Teilchenabsetzen]:

The sinking (or rising) of particles having densities different from the ambient fluid, such
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as sand grains or dead plankton. (In lakes and oceans the latter may be the dominant

mechanism for downward transport of nutrients, often all the way to the bottom.)

persistent [beständig ]:

Existing for a long or longer than usual time or continuously; continuing without change in

function or structure. Also, degraded only slowly by the environment (as persistent contam-

inants).

plume [Fahne]:

A buoyancy-driven boundary-layer flow. A stream of fluid (as water or gas) with density

different from the ambient, recieving fluid, discharged from a narrow opening or nozzle, or

the fluid flow resultant from a discharge of heat.

plunge [eintauchen]:

To cause to penetrate or enter quickly and forcibly into something. To descend or dip sud-

denly.

pollutant [Schmutzstoff ]:

A substance that makes physically impure or unclean. To contaminant especially with man-

made waste.

porous media flow [Strömung in porösem Medium]:

Groundwater flow. Flow through a solid matrix containing many interconnected pores or

cavities (voids).

port [Öffnung ]:

An opening (as in a diffuser manifold) for intake or exhaust of a fluid. See also orifice.

precipitation [Niederschlag ]:

A deposit on the earth of hail, mist, rain, sleet, or snow. Also refers to the quantity of water

deposited.

probability [Wahrscheinlichkeit ]:

The chance that a given event will occur. The branch of mathematics concerned with the

study of probabilities.

radiation [Strahlung ]:

The flux of radiant energy, such as at a water surface.

random [Zufall ]:

Without a definite aim, direction, rule, or method; lacking a definite plan, purpose, or pat-

tern.

residual [Rest ]:

The remaining product or substance.

salinity [Salzgehalt ]:

A measure of the salt content of seawater, specifically, the ratio of the mass of dissolved salts

to the total mass of water and salt.

saturated [gesättigt ]:

Being a solution that is unable to absorb or dissolve any more of a solute at a given temper-

ature and pressure.
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sewage [Abwasser ]:

The raw refuse liquids or waste matter carried off by sewers.

sewage treatment plant [Klärwerk o. Kläranlage]:

The facility where sewage is prepared (cleaned) before releasing it into the environment as

effluent.

shear flow [Scherströmung ]:

The advection of fluid at different velocities at different positions; this may be simply the

normal velocity profile for a turbulent flow where the water flows faster with increasing

elevation above the bed of the stream; or shear may be the changes in both magnitude and

direction of the velocity vector with depth in complex flows such as in estuaries or coastal

waters.

shear stress [Scherspannung ]:

A force exerted from one fluid layer to another, due to differences in their velocity, that tends

to pull on, push against, or compress or twist the fluid body.

soluble [löslich]:

The property of being able to be dissolved in a fluid (the dissolving fluid is referred to as

the solute).

source [Quelle]:

The location and flux of a flow (usually of a contaminant or substance of interest).

spatial [räumlich]:

Relating to, occupying, or having the character of space. A spatial distribution is the de-

scription of the variation of a quantity in space. Compare with temporal.

standard deviation [Standardabweichung ]:

A statistical quantity describing the degree of spread of a distribution. Defined as the square

root of the variance. The variance is the mean of the squared deviations from the mean.

steady [stationär ]:

In steady state, or unchanging. The mathematical representation is that the time derivative

is zero.

stratification [Schichtung ]:

The property of being stratified. An organization of a fluid body based on density. The most

common form of density stratification is the stable form, where density decreases as height

increases.

submerged [abgetaucht ]:

The state of being emersed within a fluid (as being underwater).

temporal [zeitlich]:

Relating to, occupying, or having the character of time. A temporal distribution is the

description of the variation of a quantity in time. Compare with spatial.

tracer [Tracer ]:

Any conservative (non-transforming) substance that moves exactly with the fluid (i.e. does

not move relative to the fluid).
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transformation [Transformation]:

The changing of a chemical substance into another chemical substance, usually accompa-

nied by the loss of the original substance (i.e. carbon dioxide transformed into oxygen by

photosynthesis).

transport [Transport ]:

The movement of a parcel of water or tracer by advection, diffusion, or mixing.

unsteady [instationär ]:

Changing, or developing in time. The mathematical representation is that the time derivative

is not zero. See also steady.

volatile [flüchtig ]:

Readily vaporizable at a relatively low temperature.

vortex [Wirbel ]:

See eddy.

vorticity [Wirbelstärke]:

A vector measure of the local rotation in a fluid flow.

wake [Nachlaufwirbel ]:

The region of velocity deficit behind an object held stationary relative to an ambient fluid

flow.

wastewater [Abwasser ]:

An effluent flow of fluid no longer of use. See also sewage.
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Index

e-folding time, 85

adsorption, 107
advection, 29
– advective-diffusion equation, see diffusion
aeration rate, 105
atmosphere, 113
– APBL, see boundary layer
– atmospheric boundary layer, see boundary layer
– atmospheric turbulence, 113
– capping inversion, see capping inversion

biochemical oxygen demand (BOD), 105
biodegradation, 102
biological transformation, see transformation
bioturbation, 106
boundaries
– exchange, see interfaces
– flux, see interfaces
– no-flux, 37
boundary layer, 95
– atmospheric boundary layer (APBL), 113, 114
– concentration boundary layer, 97
– turbulent boundary layer, 114
Buckingham π theorem, see dimensional analysis

calibrate, 129
calibration, 137
capping inversion, 114
chain rule, 16, 31, 62
characteristic scales, 33
chemical transformation, see transformation
conservation equations
– mass, 11, 137
conservative system, 81
conservative tracer, see tracer
continuity equation, see conservation equations
continuously-stirred tank reactor, 131
coordinate transformation, 31
crossflow, see currents
currents, 163

delta function, 15
desorption, 107
diffusion, 8, 29
– advective-reacting diffusion equation, 89

– advective diffusion equation, 29
– diffusion coefficient, 10, 12
– diffusion equation, 11
– diffusive transport, see transport
– Fick’s law, 10
– Fickian diffusion, 9, 10
dimensional analysis, 7
– Buckingham π-theorem, 7
– dimensionless variable, 7
– similarity solution, see similarity solution
dispersion, 59
– longitudinal dispersion coefficient, 64, 71
dissipation, ε, see turbulence
distribution coefficient, 108
dye study, 67
– breakthrough curve, 71

environmental fluid mechanics, 1
erosion, 106
error function, erf(u), 35
Eulerian reference frame, 53, 135
examples
– arsenic contamination, 20
– fish nursery, 41
explicit, 135

far field, 121
fetch, 115
Fick’s law, see diffusion
film renewal model, 98
– renewal frequency, 99
finite difference, 135
finite element, 135
finite volume, 135
flocculation, 105
flux boundary condition, 91
frame of reference, 29, 34

gas exchange, 95, 101
– gas transfer coefficient, 102

half-life, 82, 83, 85, 92
heterogeneous reaction, 81, 82, 90, 95
homogeneous reaction, 81, 82, 89, 95

image source, 39
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implicit, 135
inertial sub-layer (ISL), 115
interface, 95
– air-water, 95
– boundary fluxes, 95
– exchange, 95
– sediment-water, 95, 104

Lagrangian reference frame, 53, 135
laminar flow, 52
Langmuir isotherm, 108
Lewis-Whitman model, 98
log-velocity profile, 57, 115
longitudinal dispersion, see dispersion

Marriot bottle, 69
mass conservation, see conservation equations
mixture, 82
model, 125
momentum conservation, see conservation equations
multi-phase, 82

near field, 121
numerical diffusion, 134

particle entrainment, see entrainment
particle settling, see settling
partition coefficient, 108
passive tracer, see tracer
Peclet number, 33, 128
photosynthesis, 83
physical transformation, see transformation
plug-flow reactor, 130
porosity, 104
Prandtl layer, 115
products, 83

radioactive decay, 82
rate law, see transformation
reactants, 83
reaction, see transformation
reactive, 81
respiration, 83
Reynolds decomposition, see turbulence

scale analysis, 63
sedimentation, 105
settling, 82, 105
settling velocity, see slip velocity
shear flow, 59
shear velocity, 56
similarity solution, 14, 16, 18

– self similarity, 20
single-phase, 82
sink, 81, 82, 89
slip velocity, 104
solutions
– fixed concentration, 36
– spatial concentration distribution, 34
source, 81, 82, 89
stability, 117
– neutral, 117
– stable, 117
– unstable, 117
standard deviation, 19
Streeter-Phelps equation, 102, 104
superposition, 29, 34

tanks-in-series model, 132
Taylor series expansion, 30
Taylor series expansion, 13
terminal velocity, see slip velocity
tracer, 12
transfer velocity, 97, 99
transformation, 81, 95
– e-folding time, see e-folding time
– biological, 81, 83
– chemical, 81, 82
– first-order, 81, 82, 85
– half-life, see half-life
– higher-order, 81, 88
– kinetics, 81, 83
– physical, 81, 82
– rate law, 84
– second-order, 81, 86
transport
– advective transport, see advection
– diffusive transport, 9, 22
turbulence, 51, 52
– dissipation, ε, 53
– energy cascade, 53
– fluctuating velocity, 54
– homogeneous, 53
– integral scales, 54
– production, 53
– root mean square velocity, urms, 54
– turbulence intensity, 116

validate, 129
validation, 137
viscous sub-layer (VSL), 115

wastewater treatment plant, 81, 91


