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ABOUT THE BOOK

This book is intended as an introduction to
classical water wave theory for the college
senior or first year graduate student. The
material is self-contained; almost all
mathematical and engineering concepts
are presented or derived in the text, thus
making the book accessible to practicing
engineers as well.

The book commences with a review of fluid
mechanics and basic vector concepts. The
formulation and solution of the governing
boundary value problem for small amplitude
waves are developed and the kinematic
and pressure fields for short and long waves
are explored. The transformation of waves due
to variations in depth and their interactions
with structures are derived. Wavemaker
theories and the statistics of ocean waves
are reviewed. The application of the water
particle motions and pressure fields are
applied to the calculation of wave forces
on small and large objects. Extension of the
linear theory results to several nonlinear
wave properties is presented. Each chapter
concludes with a set of homework problems
exercising and sometimes extending the
material presented in the chapter. An
appendix provides a description of nine
experiments which can be performed, with
little additional equipment, in most wave tank
facilities.
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Preface

The initial substantive interest in and contributions to water wave mechanics
date from more than a century ago, beginning with the analysis of linear wave
theory by Airy in 1845 and continuing with higher order theories by Stokes in
1847, long wave theories by Boussinesq in 1872, and limiting wave heights by
Michell in 1893 and McCowan in 1894,

Following that half-century of pioneering developments, research con-
tinued at a relatively slow pace until the amphibious landings in the Second
World War emphasized the need for a much better understanding of wave
initiation and growth due to winds, the conservative and dissipative transfor-
mation mechanisms occurring from the source area to the shoaling, and the
breaking processes at the shore. The largely unsuccessful attempt to utilize
portable and floating breakwaters in the surprise amphibious landing at
Normandy, France, stimulated interest in wave interaction with fixed and
floating objects.

After the Second World War, the activity in water wave research
probably would have subsided without the rather explosive growth in ocean-
related engineering in scientific, industrial, and military activities. From the
1950s to the 1980s, offshore drilling and production of petroleum resources
progressed from water depths of approximately 10 meters to over 300 meters,
platforms for the latter being designed for wave heights on the order of 25
meters and costing in excess of $700,000,000 (U.S.). The financial incentives
of well-planned and comprehensive studies of water wave phenomena
became much greater. Laboratory studies as well as much more expensive
field programs were required to validate design methodology and to provide
a better basis for describing the complex and nonlinear directional seas. A
second and substantial impetus to nearshore research on water waves has
been the interest in coastal erosion, an area still only poorly understood. For
example, although the momentum flux concepts were systematized by
Longuet-Higgins and Stewart and applied to a number of relevant problems

xi
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in the 1960s, the usual (spilling wave) assumption of the wave height inside
the surf zone being proportional to the water depth avoids the important
matter of the distribution of the applied longshore stress across the surf zone.
This can only be reconciled through careful laboratory and field measure-
ments of wave breaking. Wave energy provides another example. In the last
two decades remote sensing has indicated the potential of defining synoptic
measures of wave intensity over very wide areas, with the associated benefits
to shipping efficiency. Simple calculations of the magnitudes of the “standing
crop” of wave energy have stimulated many scientists and engineers to devise
ingenious mechanisms to harvest this energy. Still, these mechanisms must
operate in a harsh environment known for its long-term corrosive and
fouling effects and the high-intensity forces during severe storms.

The problem of quantifying the wave climate, understanding the inter-
action of waves with structures and/or sediment, and predicting the associ-
ated responses of interest underlies almost every problem in coastal and
ocean engineering. It is toward this goal that this book is directed. Although
the book is intended for use primarily as a text at the advanced undergraduate
or first-year graduate level, it is hoped that it will serve also as a reference and
will assist one to learn the field through self-study. Toward these objectives,
each chapter concludes with a number of problems developed to illustrate by
application the material presented. The references included should aid the
student and the practicing engineer to extend their knowledge further.

The book is comprised of twelve chapters. Chapter 1 presents a number
of common examples illustrating the wide range of water wave phenomena,
many of which can be commonly observed. Chapter 2 offers a review of
potential flow hydrodynamics and vector analysis. This material is presented
for the sake of completeness, even though it will be familiar to many readers.
Chapter 3 formulates the linear water wave theory and develops the simplest
two-dimensional solution for standing and progressive waves. Chapter 4
extends the solutions developed in Chapter 3 to many features of engineering
relevance, including kinematics, pressure fields, energy, shoaling, refraction,
and diffraction. Chapter 5 investigates long wave phenomena, such as
kinematics, seiching, standing and progressive waves with friction, and long
waves including geostrophic forces and storm surges. Chapter 6 explores
various wavemaker problems, which are relevant to problems of wave tank
and wave basin design and to problems of damping of floating bodies. The
utility of spectral analysis to combine many elemental solutions is explored
in Chapter 7. In this manner a complex sea comprising a spectrum of
frequencies and, at each frequency, a continuum of directions can be repre-
sented. Chapter 8 examines the problem of wave forces on structures. A slight
modification of the problem of two-dimensional idealized flow about a
cylinder yields the well-known Morison equation. Both drag- and inertia-
dominant systems are discussed, including methods for data analysis, and
some field data are presented. This chapter concludes with a brief description
of the Green’s function representation for calculating the forces on large
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bodies. Chapter 9 considers the effects of waves propagating over seabeds
which may be porous, viscous, and/or compressible and at which frictional
effects may occur in the bottom boundary layer. Chapter 10 develops a
number of nonlinear (to second order in wave height) results that, somewhat
surprisingly, may be obtained from linear wave theory. These results, many of
which are of engineering concern, include mass transport, momentum flux,
set-down and set-up of the mean water level, mean pressure under a progres-
sive wave, and the “microseisms,” in-phase pressure fluctuations that occur
under two-dimensional standing waves. Chaper 11 introduces the perturba-
tion method to develop and solve various nonlinear wave theories, including
the Stokes second order theory, and the solitary and cnoidal wave theories.
The procedure for developing numerical wave theories to high order is
described, as are the analytical and physical validities of theories. Finally,
Chapter 12 presents a number of water wave experiments (requiring only
simple instrumentation) that the authors have found useful for demonstrat-
ing the theory and introducing the student to wave experimentation, specifi-
cally methodology, instrumentation, and frustrations.

Each chapter is dedicated to a scientist who contributed importantly to
this field. Brief biographies were gleaned from such sources as The Dictionary
of National Biography (United Kindom scientists; Cambridge University
Press), Dictionary of Scientific Biography (Charles Scribner’s Sons, New
York), Neue Deutsche Biographie (Helmholtz; Duncker and Humblot, Berlin)
and The London Times (Havelock). These productive and influential indivi-
duals are but a few of those who have laid the foundations of our present-day
knowledge; however, the biographies illustrate the level of effort and inten-
sity of those people and their eras, through which great scientific strides were
made.

The authors wish to acknowledge the stimulating discussions and
inspiration provided by many of their colleagues and former professors. In
particular, Professors R. O. Reid, B. W. Wilson, A. T. Ippen, and C. L.
Bretschneider were central in introducing the authors to the field. Numerous
focused discussions with M, P O’Brien have crystallized understanding of
water wave phenomena and their effects on sediment transport. Drs. Todd L.
Walton and Ib A. Svendsen provided valuable reviews of the manuscript, as
have a number of students who have taken the Water Wave Mechanics course
at the University of Delaware. Mrs. Sue Thompson deserves great praise for
her cheerful disposition and faultless typing of numerous drafts of the
manuscript, as does Mrs. Connie Weber, who managed final revision.

Finally the general support and encouragement provided by the Uni-
versity of Delaware is appreciated.

Robert G. Dean
Robert A. Dalrymple






Introduction to Wave
Mechanics

Dedication
SIR HORACE LAMB

Sir Horace Lamb (1849-1934) is best known for his extremely thorough
and well-written book, Hydrodynamics, which first appeared in 1879
and has been reprinted numerous times. It still serves as a compendium
of useful information as well as the source for a great number of papers
and books. If this present book has but a small fraction of the appeal of
Hydrodynamics, the authors would be well satisfied.

Sir Horace Lamb was born in Stockport, England in 1849, edu-
cated at Owens College, Manchester, and then Trinity College, Cam-
bridge University, where he studied with professors such as J. Clerk
Maxwell and G. G. Stokes. After his graduation, he lectured at Trinity
(1822-1825) and then moved to Adelaide, Australia, to become Profes-
sor of Mathematics.

After ten years, he returned to Owens Coliege (part of Victoria
University of Manchester) as Professor of Pure Mathematics; he
remained until 1920.

Professor Lamb was noted for his excellent teaching and writing
abilities. In response to a student tribute on the occasion of his eightieth
birthday, he replied: “I did try to make things clear, first to myself...and
then to my students, and somehow make these dry bones live.”

His research areas encompassed tides, waves, and earthquake
properties as well as mathematics.



2 Introduction to Wave Mechanics Chap. 1
1.1 INTRODUCTION

Rarely can one find a body of water open to the atmosphere that does not
have waves on its surface. These waves are a manifestation of forces acting on
the fluid tending to deform it against the action of gravity and surface
tension, which together act to maintain a level fluid surface. Thus it requires a
force of some kind, such as would be caused by a gust of wind or a falling
stone impacting on the water, to create waves. Once these are created,
gravitational and surface tension forces are activated that allow the waves to
propagate, in the same manner as tension on a string causes the string to
vibrate, much to our listening enjoyment.

Waves occur in all sizes and forms, depending on the magnitude of the
forces acting on the water. A simple illustration is that a small stone and a
large rock create different-size waves after impacting on water. Further,
different speeds of impact create different-size waves, which indicates that
the pressure forces acting on the fluid surface are important, as well as the
magnitude of the displaced fluid. The gravitational attraction of the moon,
sun, and other astronomical bodies creates the longest known water waves,
the tides. These waves circle halfway around the earth from end to end and
travel with tremendous speeds. The shortest waves can be less than a
centimeter in length. The length of the wave gives one an idea of the
magnitude of the forces acting on the waves. For example, the longer the
wave, the more important gravity (comprised of the contributions from the
earth, the moon, and the sun) is in relation to surface tension.

The importance of waves cannot be overestimated. Anything that is
near or in a body of water is subject to wave action. At the coast, this can
result in the movement of sand along the shore, causing erosion or damage to
structures during storms. In the water, offshore oil platforms must be able to
withstand severe storms without destruction. At present drilling depths
exceeding 300 m, this requires enormous and expensive structures. On the
water, all ships are subjected to wave attack, and countless ships have
foundered due to waves which have been observed to be as large as 34 m in
height. Further, any ship moving through water creates a pressure field and,
hence, waves. These waves create a significant portion of the resistance to
motion enountered by the ships.

1.2 CHARACTERISTICS OF WAVES

The important parameters to describe waves are their length and height, and
the water depth over which they are propagating. All other parameters, such
as wave-induced water velocities and accelerations, can be determined
theoretically from these quantities. In Figure 1.1, a two-dimensional schema-
tic of a wave propagating in the x direction is shown. The length of the wave,
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Figure 1.1 Wave characteristics.

L, is the horizontal distance between two successive wave crests, or the high
points on a wave, or alternatively the distance between two wave troughs.
The wave length will be shown later to be related to the water depth # and
wave period T, which is the time required for two successive crests or troughs
to pass a particular point. As the wave, then, must move a distance L in time
T, the speed of the wave, called the celerity, C, is defined as C = L/T. While
the wave form travels with celerity C, the water that comprises the wave does
not translate in the direction of the wave.

The coordinate axis that will be used to describe wave motion will be
located at the still water line, z = 0. The bottom of the water body will be at
z=-h.

Waves in nature rarely appear to look exactly the same from wave to
wave, nor do they always propagate in the same direction. If a device to
measure the water surface elevation, 7, as a function of time was placed on a
platform in the middle of the ocean, it might obtain a record such as that
shown in Figure 1:2. This sea can be seen to be a superposition of a large
number of sinusoids going in different directions. For example, consider the
two sine waves shown in Figure 1.3 and their sum. It is this superposition of
sinusoids that permits the use of Fourier analysis and spectral techniques to
be used in describing the sea. Unfortunately, there is a great amount of
randomness in the sea, and statistical techniques need to be brought to bear.
Fortunately, very large waves or, alternatively, waves in shallow water appear

LONY

Time ¢

Figure 1.2 Example of a possible recorded wave form.
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Figure 1.3 Complex wave form resulting as the sum of two sinusoids.
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to be more regular than smaller waves or those in deeper water, and not so
random. Therefore, in these cases, each wave is more readily described by one
sinusoid, which repeats itself periodically. Realistically, due to shallow water
nonlinearities, more than one sinusoid, all of the same phase, are necessary;
however, using one sinusoid has been shown to be reasonably accurate for
some purposes. It is this surprising accuracy and ease of application that have
maintained the popularity and the widespread usage of so-called linear, or
small-amplitude, wave theory. The advantages are that it is easy to use, as
opposed to more complicated nonlinear theories, and lends itself to superpo-
sition and other complicated manipulations. Moreover, linear wave theory is
an effective stepping-stone to some nonlinear theories. For this reason, this
book is directed primarily to linear theory.

1.3 HISTORICAL AND PRESENT LITERATURE

The field of water wave theory is over 150 years old and, of course, during this
period of time numerous books and articles have been written about the
subject. Perhaps the most outstanding is the seminal work of Sir Horace
Lamb. His Hydrodynamics has served as a source book since its original
publication in 1879.

Other notable books with which the reader should become acquainted
are R. L. Wiegel’s Oceanographical Engineering and A. T. Ippen’s Estuary
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and Coastline Hydrodynamics. These two books, appearing in the 1960s,
provided the education of many of the practicing coastal and ocean engineers
of today.

The authors also recommend for further studies on waves the book by
G. B. Witham entitled Linear and Nonlinear Waves, from which a portion of
Chapter 11 is derived, and the article “Surface Waves,” by J. V. Wehausen and
E.V. Laitone, in the Handbuch der Physik.

In terms of articles, there are a number of journals and proceedings that
will provide the reader with more up-to-date material on waves and wave
theory and its applications. These include the American Society of Civil
Engineers’ Journal of Waterway, Port, Coastal and Ocean Division, the
Journal of Fluid Mechanics, the Proceedings of the International Coastal
Engineering Conferences, the Journal of Geophysical Research, Coastal
Engineering, Applied Ocean Research, and the Proceedings of the Offshore
Technology Conference.



A Review of
Hydrodynamics and
Vector Analysis

Dedication
LEONHARD EULER

Leonhard Euler (1707-1783), born in Basel, Switzerland, was one of the
earliest practitioners of applied mathematics, developing with others
the theory of ordinary and partial differential equations and applying
them to the physical world. The most frequent use of his work here is
the use of the Euler equations of motion, which describe the flow of an
inviscid fluid.

In 1722 he graduated from the University of Basel with a degree in
Arts. During this time, however, he attended the lectures of Johan |.
Bernoulli (Daniel Bernoulli’s father), and turned to the study of mathe-
matics. In 1723 he received a master’s level degree in philosophy and
began to teach in the philosophy department. In 1727 he moved to St.
Petersburg, Russia, and to the St. Petersburg Academy of Science,
where he worked in physiology and mathematics and succeeded Daniel
Bernoulli as Professor of Physics in 1731.

In 1741 he was invited to work in the Berlin Society of Sciences
(founded by Leibniz). Some of his work there was applied as opposed to
theoretical. He worked on the hydraulic works of Frederick the Great's
summer residence as well as in ballistics, which was of national inter-
est. In Berlin he published 380 works related to mathematical physics in
such areas as geometry, optics, electricity, and magnetism. In 1761 he
published his monograph, “Principia motus fluidorum,” which put forth
the now-familiar Euler and continuity equations.

He returned to St. Petersburg in 1766 after a falling-out with
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Frederick the Great and began to depend on coauthors for a number of
his works, as he was going blind. He died there in 1783.
In mathematics, Euler was responsibie for introducing numerous

notations: for example, i = /-1, e for base of the natural log, and the
finite difference Ax.

2.1 INTRODUCTION

In order to investigate water waves most effectively, a reasonably good
background in fluid dynamics and mathematics is helpful. Although it is
anticipated that the reader has this background, a review of the essential
derivations and equations is offered here as a refresher and to acquaint the
reader with the notation to be used throughout the book.

A mathematical tool that will be used often is the Taylor series.
Mathematically, it can be shown that if a continuous function f{x, ¥) of two
independent variables x and y is known at, say, x equal to x,, then it can be
approximated at another location on the x axis, x, + Ax, by the Taylor series.

2 2
fioxo+ A, ) = fixa, ) + L0 Dp o 800 2) (80) 2.1
ax ax’ 2!
LI B
ax" n!

where the derivatives of f{x, y) are all taken at x = x,, the location for which
the function is known. For very small values of Ax, the terms involving
(Ax)", where n > 1, are very much smaller than the first two terms on the
right-hand side of the equation and often in practice can be neglected. If
fix, y) varies linearly with x, for example, f{x, y) = y? + mx + b, truncating
the Taylor series to two terms involves no error, for all values of Ax.'
Through the use of the Taylor series, it is possible to develop relationships
between fluid properties at two closely spaced locations.

4+ e

2.2 REVIEW OF HYDRODYNAMICS
2.2.1 Conservation of Mass

In a real fluid, mass must be conserved; it cannot be created or
destroyed. To develop a mathematical equation to express this concept,
consider a very small cube located with its center at x, y, z in a Cartesian
coordinate system as shown in Figure 2.1. For the cube with sides Ax, Ay, and

'In fact, for any nth-order function, the expression (2.1) is exact as long as (n + 1) terms in the
series are obtained.



8 A Review of Hydrodynamics and Vector Analysis Chap. 2

A E F w
| v
a/ |
PU e 1 B
———— H u
s
y 7
¢ D Velocity
x - Ax x+ Ax components
2

Figure 2.1 Reference cube in a fluid.

Az, the rate at which fluid mass flows into the cube across the various faces
must equal the sum of the rate of mass accumulation in the cube and the mass
fluxes out of the faces.

Taking first the x face at x — Ax/2, the rate at which the fluid mass flows
in is equal to the velocity component in the x direction times the area through
which it is crossing, all multiplied times the density of the fluid, p. Therefore,
the mass inflow rate at x — Ax/2, or side ACEG, is

plx - % v, 2)u(x - % y,2) Ay Az 2.2)

where the terms in parentheses denote the coordinate location.
This mass flow rate can be related to that at the center of the cube by the
truncated Taylor series, keeping in mind the smaliness of the cube,

plx - % v, 2)ulx - %’5, v, 2) Ay Az 2.3)

opu) Ax

= [P(x, Y, 2)u(x, y, z) - + o }Ay Az
ax 2

For convenience, the coordinates of p and u at the center of the cube will not
be shown hereafter. The mass flow rate out of the other x face, at x + Ax/2,
face BDFH, can also be represented by the Taylor series,

{pu +Mﬁ+ . lAy Az 2.4
ax 2

By subtracting the mass flow rate out from the mass flow rate in, the net flux
of mass into the cube in the x direction is obtained, that is, the rate of mass
accumulation in the x direction:

- "(;’”) Ax Ay Az + O(Ax)* (2.5)
X

where the term O(Ax)* denotes terms of higher order, or power, than (Ax)?
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and is stated as “order of (Ax)*.” This term is a result of neglected higher-
order terms in the Taylor series and implicitly assumes that Ax, Ay, and Az
are the same order of magnitude. If the procedure is followed for the y and z
directions, their contributions will also be obtained. The net rate of mass
accumulation inside the control volume due to flux across all six faces is

_[a(pu) R Apv) , How)
dx ay dz

] Ax Ay Az + O(Ax)* (2.6)

Let us now consider this accumulation of mass to occur for a time increment
At and evaluate the increase in mass within the volume. The mass of the
volume at time ¢ is p(f) Ax Ay Az and at time (¢ + At) is p{t + Af) Ax Ay Az,
The increase in mass is therefore

[p(t + At) — p(1)] Ax Ay Az = [% At + O(At)?} AxAy Az (2.7)

where O(At)? represents the higher-order terms in the Taylor series. Since
mass must be conserved, this increase in mass must be due to the net inflow
rate [Eq. (2.6)] occurring over a time increment A¢, that is,

[a_p At + 0(At)2:| Ax Ay Az
at (2.8)

i _[a(pu) RON 6<ﬂw)] Ax Ay Az At + O(Ax)* At
ax  dy 0z

Dividing both sides by Ax Ay Az At and allowing the time increment
and size of the volume to approach zero, the following exact equation results:

op opu  opv _opw _ 2.9)
o dx dy oz

By expanding the product terms, a different form of the continuity equation
can be derived.

l<§B+u-a£+vél—)+w2/3>+6f?'£+a—v+§E= (2.10)
p\ar dx dy az dx dy 9z

Recalling the definition for the total derivative from the calculus, the term
within brackets can be seen to be the total derivative? of p(x, y, z, t) with
respect to time, Dp/Dt or dp/dt, given u = dx/dt, v = dy/dt, and w = dz/dt.
The first term is then (1/p)(dp/dt) and is related to the change in pressure
through the bulk modulus E of the fluid, where

E=,% @.11)
dp

This is discussed later in the chapter.
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where dp is the incremental change in pressure, causing the compression of
the fluid. Thus

Ll LA (2.12)

For water, E =2.07x 10°Nm™, a very large number. For example, a
1 x 10 Nm™ increase in pressure results in a 0.05% change in density of
water. Therefore, it will be assumed henceforth that water is incompressible.

From Eq. (2.10), the conservation of mass equation for an incompressi-
ble fluid can be stated simply as

ou Jdv Iw
—t+—+—=

0 (2.13)
dx dy o9z

which must be true at every location in the fluid. This equation is also
referred to as the continuity equation, and the flow field satisfying Eq. (2.13)
is termed a “nondivergent flow.” Referring back to the cube in Figure 2.1, this
equation requires that if there is a change in the flow in a particular direction
across the cube, there must be a corresponding flow change in another
direction, to ensure no fluid accumulation in the cube.

Example 2.1

An example of an incompressible flow is accelerating flow into a corner in two
dimensions, as shown in Figure 2.2 The velocity components are u = —-A4xt and
w = Azt. To determine if it is an incompressible flow, substitute the velocity com-
ponents into the continuity equation, —At + At = 0. Therefore, it is incompressible.

2.2.2 Surface Stresses on a Particle

The motion of a fluid particle is induced by the forces that act on the
particle. These forces are of two types, as can be seen if we again refer to the
fluid cube that was utilized in the preceding section. Surface forces include
pressure and shear stresses which act on the surface of the volume. Body
forces, on the other hand, act throughout the volume of the cube. These forces

z

-~ Figure 2.2 Fluid flow in a corner.
) Flow is tangent to solid lines.
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include gravity, magnetic, and other forces that act directly on each individ-
ual particle in the volume under consideration.

All of these forces which act on the cube of fluid will cause it to move as
predicted by Newton’s second law, F = ma, for a volume of constant mass m.
This law, which relates the resultant forces on a body to its resultant accelera-
tion a, is a vector equation, being made up of forces and accelerations in the
x, ¥, and z coordinate directions, and therefore all forces for convenience
must be resolved into their components.

Hydrostatic pressure. By definition, a fluid is a substance dis-
tinguished from solids by the fact that it deforms continuously under the
action of shear stresses. This deformation occurs by the fluid’s flowing.
Therefore, for a still fluid, there are no shear stresses and the normal stresses
or forces must balance each other, F = 0. Normal (perpendicular) stresses
must be present because we know that a fluid column has a weight and this
weight must be supported by a pressure times the area of the column. Using
this static force balance, we will show first that the pressure is the same in all
directions (i.e., a scalar) and then derive the hydrostatic pressure relation-
ship.

For a container of fluid, as illustrated in Figure 2.3a, the only forces that
act are gravity and hydrostatic pressure. If we first isolate a stationary prism
of fluid with dimensions Ax, Az, Al [= \/(Ax)* + (Az)*], we can examine the
force balance on it. We will only consider the x and z directions for now; the
forces in the y direction do not contribute to the x direction.

On the left side of the prism, there is a pressure force acting in the
positive x direction, p, Az Ay. On the diagonal face, there must be a balanc-

+z +z

Free
surface

(a) (b)

Figure 2.3 Hydrostatic pressures on (a) a prism and (b) a cube.
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ing component of p,, which yields the following form of Newton’s second law:

Dx Az Ay = p, sin 6 Al Ay (2.14)
In the vertical direction, the force balance yields
D, Ax Ay =p,cos 0 Al Ay +ipg Az Ax Ay (2.15)

where the second term on the right-hand side corresponds to the weight of the
prism, which also must be supported by the vertical pressure force. From the
geometry of the prism, sin 8 = Az/A/ and cos 6 = Ax/Al, and after substitu-
tion we have

Dx = Dn
D:=pat+1pg Az
If we let the prism shrink to zero, then

Dx=Dz:=Dn

which indicates that the pressures in the x-z plane are the same at a point
irrespective of the orientation of the prism’s diagonal face, since the final
equations do not involve the angle 8. This result would still be valid, of
course, if the prism were oriented along the y axis, and thus we conclude ata
point,

Px=Dy=D: (216)

or, the pressure at a point is independent of direction. An important point to
notice is that the pressure is not a vector; it is a scalar and thus has no
direction associated with it. Any surface immersed in a fluid will have a force
exerted on it by the hydrostatic pressure, and the force acts in the direction of
the normal, or perpendicular to the surface; that is, the direction of the force
depends on the orientation of the face considered.

Now, to be consistent with the conservation of mass derivation, let us
examine a small cube of size Ax, Ay, Az (see Figure 2.3b). However, this time
we will not shrink the cube to a point. On the left-hand face at x — Ax/2 there
is a pressure acting on the face with a surface area of Ay Az. The total force
tending to accelerate the cube in the +x direction is

p(x—-A—2x~,y,z> Ay Az = p(x, y, z) Ay Az—j—pézﬁAy Az +--- (2.17)
X

where the truncated Taylor series is used, assuming a small cube. On the other
x face, there must be an equal and opposite force; otherwise, the cube would
have to accelerate in this direction. The force in the minus x direction is
exerted on the face located at x + Ax/2.

p<x+%, ¥, z> Ay Az =p Ay AZ+3—§% Ay Az (2.18)
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Equating the two forces yields

P _g (2.19)
ox

For the y direction, a similar result is obtained,
% _o
ay

In the vertical, z, direction the force acting upward is

(x y,z—A—>AxA _< 4 Z)AxA (2.20)
9z 2

which must be equal to the pressure force acting downward, and the weight of
the cube, pg Ax Ay Az, where g is the acceleration of gravity.
Summing these forces yields

apAZAxA ——a—pA—AxAy pg Ax Ay Az .21)
iz 2 dz 2
or dividing by the volume of the small cube, we have
)
Lo pe (2.22)
dz

Integrating the three partial differential equations for the pressure results in
the hydrostatic pressure equation

p=-pgz+C (2.23)

Evaluating the constant C at the free surface, z =0, where p =0 (gage
pressure),

p=-pgz (2.24)

The pressure increases linearly with increasing depth into the fluid.’

The buoyancy force is just a result of the hydrostatic pressure acting
over the surface of a body. In a container of fluid, imagine a small sphere of
fluid that could be denoted by some means such as dye. The spherical
boundaries of this fluid would be acted upon by the hydrostatic pressure,
which would be greater at the bottom of the sphere, as it is deeper there, than
at the top of the sphere. The sphere does not move because the pressure
difference supports the weight of the sphere. Now, if we could remove the
fluid sphere and replace it with a sphere of lesser density, the same pressure
forces would exist at its surface, yet the weight would be less and therefore the
hydrostatic force would push the object upward. Intuitively, we would say

3Note that z is negative into the fluid and therefore Eq. (2.24) does yield positive pressure
underwater.
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that the buoyancy force due to the fluid pressure is equal to the weight of the
fluid displaced by the object. To examine this, let us look again at the force
balance in the z direction, Eq. (2.21):

-5;-‘3 Az Ax Ay = pg Ax Ay Az = pg AV = dF, (2.25)
VA

which states that the net force in the z direction for the incremental area
Ax Ay equals the weight of the incremental volume of fluid delimited by that
area. There is no restriction on the size of the cube due to the linear variation
of hydrostatic pressure.

If we now integrate the pressure force over the surface of the object, we
obtain

F buoyancy = P8 4 (226)

The buoyancy force is equal to the weight of the fluid displaced by the object,
as discovered by Archimedes in about 250 B.C., and is in the positive z
(vertical) direction (and it acts through the center of gravity of the displaced
fluid).

Shear stresses. Shear stresses also act on the surface; however, they
differ from the pressure in that they are not isotropic. Shear stresses are
caused by forces acting tangentially to a surface; they are always present in a
real flowing fluid and, as pressures, have the units of force per unit area.

If we again examine our small volume (see Figure 2.4), we can see that
there are three possible stresses for each of the six faces of the cube; two shear
stresses and a normal stress, perpendicular to the face. Any other arbitrarily
oriented stress can always be expressed in terms of these three. On the x face
at x + Ax/2 which will be designated the positive x face, the stresses are gy,
Ty, and T,,. The notation convention for stresses is that the first subscript

zZz 1
r4 Uyy
A 1 Tay /-—r Tyx
o
| < 7,
i Txz
Txy ° : L-T—-» Oyx
- | P7xs g e L Ty
UXX // _‘,
-7 -~ sz
y
;Uu Figure 2.4 Shear and normal stresses
on a fluid cube.
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refers to the axis to which the face is perpendicular and the second to the
direction of the stress. For a positive face, the stresses point in the positive
axes directions. For the negative x face at x — Ax/2, the stresses are again oy,
7., and T,, but they point in the direction of negative x, y, and z,
respectively.? Although these stresses have the same designation as those in
the positive x face, in general they will differ in magnitude. In fact, it is the
difference in magnitude that leads to a net force on the cube and a
corresponding acceleration.

There are nine stresses that are exerted on the cube faces. Three of these
stresses include the pressure, as the normal stresses are wriften as

Oxx =P+ Txx

Gy =P + Tpy (2.27)
Op=-P+7Tz
where p= _<—_a"" * GSW + a,,)

for both still and flowing fluids. It is possible, however, to show that some of
the shear stresses are identical. To do this we use Newton’s second law as
adapted to moments and angular momentum. If we examine the moments
about the z axis, we have

M, =TLw, (2.28)

where M, is the sum of the moments about the z axis, I, is the moment of
inertia, and w, is the z component of the angular acceleration of the body.
The moments about an axis through the center of the cube, parallel to the z
axis, can be readily identified if a slice is taken through the fluid cube
perpendicularly to the z axis. This is shown in Figure 2.5. Considering
moments about the center of the element and positive in the clockwise
direction, Eq. (2.28) is written, in terms of the stresses existing at the center of

Figure 2.5 Shear stresses contributing
to moments about the z-axis. Note that e
., Tyx are functions of x and y. X

*Can you identify the missing stresses on the (¥ — Ay/2) face and orient them correctly?
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the cube,
(Tyx - aTyx éZ) Ax Az 'A—y + <Tyx + atyx ﬂ) Ax Az é‘z (229)
ay 2 2 ay 2 2
— (Txy + atxy A—x) A,V AZ Al - (Txy - at"l’ ix.) Ay AZ ﬁ = Izd)z
ax 2 2 ax 2 2

Reducing the equation leaves
T Ax Ay Az — 7, Ax Ay Az = L p[Ax Ay Az (AX* + AyD)]w,  (2.30)

For a nonzero difference, on the left-hand side, as the cube is taken to be
smaller and smaller, the acceleration «, must become greater, as the moment
of inertia involves terms of length to the fifth power, whereas the stresses
involve only the length to the third power. Therefore, in order that the
angular acceleration of the fluid particle not unrealistically be infinite as the
cube reduces in size, we conclude that 7, = 7., (i.e., the two shear stresses
must be equal). Further, similar logic will show that 7, = 1,, T,,=1;.
Therefore, there are only six unknown stresses (G, Txy, Txzs Tz, Oy, and 02;) ON
the element. These stresses depend on parameters such as fluid viscosity and
fluid turbulence and will be discussed later.

2.2.3 The Translational Equations of Motion

For the x direction, Newton’s second law is, again, XF, = ma,, where a,
is the particle acceleration in the x direction. By definition a, = du/dt, where
u is the velocity in the x direction. This velocity, however, is a function of
space and time, u = u(x, y, z, t); therefore, its total derivative is

du du Q_zfidf+@_d_)/+aug

d o adxd dydt dzat
or, since dx/dt is u, and so forth,

du_au ua—u+va—u+wéE 2.32)
dt ot dx dy 9z

This is the total acceleration and will be denoted as Du/Dt. The derivative is
composed of two types of terms, the local acceleration, du/dt, which is the
change of u observed at a point with time, and the convective acceleration
terms

(2.31)

which are the changes of 1 that result due to the motion of the particle. For
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7

X

Figure 2.6 Acceleration of flow through a convergent section.

example, if we follow a water particle in a steady flow (i.e., a flow which is
independent of time so that du/dt = 0) into a transition section as shown in
Figure 2.6, it is clear that the fluid accelerates. The important terms applica-

ble to the figure are the u g_u and thew f;—u terms.

X z
The equation of motion in the x direction can now be formulated:
Du
2 Fe=m—
Dt

From Figure 2.4, the surface forces can be obtained on the six faces via the
truncated Taylor series

(oxx+a;—”ézﬁ>AyAz—<axx—%é£> AyAz+<ryx+aT”‘%>AxAz
X

x 2 ay
- (ryx _ 9 ﬂ) Ax Az + (rzx +
ay

—(z,x—‘””‘£>AxAy+prAyAzX=prAyAz&
oz 2 Dt

The capital X denotes any body force per unit mass acting in the x direction.
Combining terms and dividing by the volume of the cube yields

0T, Az
— JAx A 2.33
32 2 ) y (2.33)

Du 8o, 01y 9T
=<4 —— 4+ —=

ot " ox oy ez F (239
or
&=_16_p+1<0f_n+%+%>+x (2.35)
Dt pox p\dx dy 9z

and, by exactly similar developments, the equations of motion are obtained
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for the y and z directions:

11=_13_P+1<&+"_T2+%>+y (2.36)
Dt poy p\déx dy 9z
D_W=_13_P+l<%+92+"_’£)+z (2.37)
Dt poz p\dx dy o9z

To apply the equations of motion for a fluid particle, it is necessary to
know something about stresses in a fluid. The most convenient assumption,
one that is reasonably valid for most problems in water wave mechanics, is
that the shear stresses are zero, which results in the Euler equations. Express-
ing the body force per unit mass as —g in the z direction and zero in the x and
y directions, we have

Du_ _1dp (2.38a)
Dt p ox
Dy = - 1op the Euler equations (2.38b)
Dt p oy
Dw_ _1dp_, (2.38¢c)
Dt p oz

In many real flow cases, the flow is turbulent and shear stresses are influenced
by the turbulence and thus the previous stress terms must be retained. If the
flow is laminar, that is there is no turbulence in the fluid, the stresses are
governed by the Newtonian shear stress relationship and the accelerations
are governed by

2 2 2
%=_13_P+E(3_"2+?_”;+M2>+X (2.39a)
Dt poax p\dx* dy- 9z
Dv 19 v v v
_=___P+/i<__2+__2+_2>+y (2.39b)
Dt paoy p\dx- ay° 9z

2 2 2
2’2=_13_P+/i<5_!2+£’_’:+i’;>+z (2.39¢)
Dt poz p\ox* dJy° 0z

and u is the dynamic (molecular) viscosity of the fluid. Often u/p is replaced
by v, defined as the kinematic viscosity.

For turbulent flows, where the velocities and pressure fluctuate about
mean values due to the presence of eddies, these equations are modified to
describe the mean and the fluctuating quantities separately, in order to



Sec. 2.3 Review of Vector Analysis 19

facilitate their use. We will not, however, be using these turbulent forms of the
equations directly.

2.3 REVIEW OF VECTOR ANALYSIS

Throughout the book, vector algebra will be used to facilitate proofs and
minimize required algebra; therefore, the use of vectors and vector analysis is
reviewed briefly below.

In a three-dimensional Cartesian coordinate system, a reference system
(x, y, z) as has been used before can be drawn (see Figure 2.7). For each
coordinate direction, there is a unit vector, that is, a line segment of unit
length oriented such that it is directed in the corresponding coordinate
direction. These unit vectors are defined as (i, j, k) in the (x, y, z) directions.
The boldface type denotes vector quantities. Any vector with orientation and
a length can be expressed in terms of unit vectors. For example, the vector a
can be represented as

a=ad+aj+ak (2.40)

where a,, a,, and a, are the projections of a on the x, y, and z axes.

2.3.1 The Dot Product

The dot (or inner or scalar) product is defined as
a-b=lal |b|cos8 (2.41)

where the absolute value sign refers to the magnitude or length of the vectors
and 0 refers to the angle between them. For the unit vectors, the following
identities readily follow:

i-j =

i-k=0 (2.42)
i-i=

j-k=0

k
té.j
a i
Y Unit vectors
Figure 2.7 Unit vectors in a Cartesian

coordinate system. — X
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Figure 2.8 Projections of vector a.

These rules are commutative, also, so that reversing the order of the opera-
tion does not alter the results. For instance,

i-j=j-i (2.43)
ora-b=b.a. Consider taking a dot product of the vector with itself.

a-a=(ad+aj+ak)-(ad+aj+ak) (2.44)

=al+dl+al

A graphical interpretation of a - a can be obtained from Figure 2.8, where the
magnitude of vector a is the length OP. From the Pythagorean theorem, OP?
=0Q?+ PQ*. But PQisjust a, and OQ* = a2 + ai. Therefore, OP* = &%+ &> + d2.
Therefore, the magnitude of vector a can be written as

la] =OP=./a-a (2.45)

The quantity a - b as shown before is a scalar quantity; that is, it has a

magnitude, but no direction (therefore, it is not a vector). Another way to
expressa- bis

a-b=\al| |b|cos8=ab,+ab, +ab, (2.46)

Note that if a - b is zero, but neither a or b is the zero vector, defined as
(0i + 0j + Ok), then cos 6 must be zero; the vectors are perpendicular to one
another.

An important use of the dot product is in determining the projection of
a vector onto another vector. For example, the projection of vector a onto the
x axisis a - i. In general, the projection of a onto the b vector direction would
bea-.-b/|b]|.

2.3.2 The Cross Product

The cross product (or outer, or vector product) is a vector quantity
which is defined asa x b= |a| |b| sin 8, but with a direction perpendicular
to the plane of a and b according to the right-hand rule. For the unit vectors,

ixi=jxj=kxk=0; ixj=k, jxk=i, kxi=j (2.47)
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but this rule is not commutative. So, for example, j x i = —~k. A convenient
method for evaluating the cross product of two vectors is to use a determi-
nant form:

i j k (2.48)
axb= |a, a, a,| =(ab,—ab)}+(ab.- ab,)j+ (a:b, - ab)k
b. b, b,

If neither a nor b is the zero vector, yet their cross product is zero, then from
the definition of the cross product, the two vectors must be parallel, or in
other words, they are collinear vectors.

2.3.3 The Vector Differential Operator and the
Gradient

Consider a scalar field in space; for example, this might be the tempera-
ture 7(x, y, z) in a room. Because of uneven heating, it is logical to expect
that the temperature will vary both with height and horizontal distance into
the room. If the temperature-and spatial gradients atone pointare known; the
truncated three-dimensional Taylor series can be used to estimate the temper-
ature at a small distance dr (= dxi + dyj+ dzk) away.

T(x+ Ax,y + Ay, z + Az) (2.49)

aT(x, y, z) Ay +6T(x, ¥, ) A
ay 0z

The last three terms in this expression may be written as the dot product of
two vectors:

Z)Ax+

- T(x, y, )+ 22 2)
dx

<"—T- i+ 9T, 9Ty ) (Axi + Ayj + AzK) (2.50)

ax ay dz
The first term is defined as the gradient of the temperature and the second is
the differential vector Ar.
The gradient or gradient vector is often written as grad 7 or VT, and can
be further broken down to

vT = (i—a—+ji+ki>T(x, y, ) (2.51)
dx 9y 9z
where the first term on the right-hand side is defined as the vector differential
operator V, and the second, of course, is just the scalar temperature.
The gradient always indicates the direction of maximum change of a
scalar field® and can be used to indicate perpendicular, or normal, vectors to

The total differential dT=VT - dr= | VT| |dr| cos 6. The maximum value occurs when drisin
the direction of |VT|.
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a surface. For example, if the temperature in a room was stably stratified, the
temperature would be solely a function of elevation in the room, or T'(x, y, z)
= T(z). If we move horizontally across the room to a new point, the change in
temperature would be zero, as we have moved along a surface of constant
temperature. Therefore,

ar =% g5 + 9T dy+§zdz 0 (2.52)
ax ay
where
T _oT _ 0, Ar=dxi+dyj+0k (2.53)
ox 9dy
or
VT-Ar=0 (2.54)

which means, using the definition of the dot product, that VT is perpendicu-
lar to the surface of constant temperature. The unit normal vector will be
defined here as the vector n, having a magnitude of 1 and directed perpendic-
ular to the surface. For this example,
VT (2.55)
TvT)

or
n=0i+0j+1k=k

2.3.4 The Divergence

If the vector differential operator is applied to a vector using a dot
product rather than to a scalar, as in the gradient, we have the divergence

V-a=(1i+Ji+ka>-(axi+ayj+azk) (2.56)
dx 48y a9z

da, 0da, oa,

dx ady 9z

We have already seen this operator in the continuity equation, Eq. (2.10),
which can be rewritten as

1Dp

+V-u=0 (2.57)
p Dt
where u is the velocity vector, u = iu + jv + kw,
Veu= ?ﬂ+av+8w (2.58)

dx dy 9z
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For an incompressible fluid, for which (1/p) (Dp/Dt) is equal to zero, the
divergence of the velocity is also zero, and therefore the fluid is divergence-
less. Another useful result may be obtained by taking the divergence of a

gradient,
V-VT=(ii+ji+ké~>-(ia—7—1+ja—z+kal>
dx ay dz ax ay az
2 2 2
=§_T+£’_7_:+3_§ (2.59)
axt ayr oz
=V'T

Del squared (V?) is known as the Laplacian operator, named after the famous
French mathematician Laplace (1749-1827).°

2.3.5 The Curl

If the vector differential operator is applied to a vector using the cross
product, then the curl of the vector results.

vXa=<ii+j_"~+ki>x(axi+ayj+azk) (2.60)
ox 6y 0z

Carrying out the cross product, which can be done by evaluating the follow-
ing determinant, vields

i j k
a ad 9
vxae |2 8 8 =(%_§‘Ly>i+(%_%>j (2.61)
dx dy oz dy oz dz ox
ax ay az

+ (_a_a_y - %)k
dx dy
As we will see later, the curl of a velocity vector is a measure of the rotation in

the velocity field.
As an example of the curl operator, let us determine the divergence of

the curl of a.
v-(vXa)=<ii+j_"_+ki>.Ka_“z_éfl_y)i
ax "9y oz dy oz

+<%_aaz>,-+<%_a_a,x>k}o
dz ox ax ay

*Chapter 3 is dedicated to Laplace.
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Py

Figure 2.9 Integration paths between
» x  tWO points.

This is an identity for any vector that has continuous first and second
derivatives.

2.3.6 Line Integrais

In Figure 2.9, two points are shown in the (x-y) plane, Py and P,. Over
this plane the vector a(x, y) exists. Consider the integral from P, to P, of the
projection of the vector a on the contour line C;. We will denote this integral
as F:

P,
F= fﬁ a-di (2.62)
It is anticipated that should we have chosen contour Cs, a different value of
the integral would have resulted. The question is whether constraints can be
prescribed on the nature of a such that it makes no difference whether we go
from P, to P, on contour C, or C,.
If Eq. (2.62) were rewritten as
P,

F = 1 IdF
Py

where dF is the exact differential of F, then F would be equal to F(P,) — F(Py);
that is, it is only a function of the end points of the integration. Therefore, if
we can require that a - dl be of the form dF, independence of path should
ensue. Now,

a-dl=a,dx+a,dz fortwo dimensions, as dl = dxi+ dzk

and the total differential of F is

dF = ax ¥ g _or. a1 (2.63)
ax az
By equating a - dl with dF, we see that independence of path requires, in two
dimensions,
a, = OF and a.= % or a=VF (2.64)
ox oz
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If this is true for a, and a,, it follows that

da._da:_ (2.65)
9z dx
as
FFE _FF _,
9z dx 0x 9z

Therefore, in summary, independence of path of the line integral requires
that Eq. (2.65) be satisfied. For three dimensions it can be shown that this
condition requires that the curl of a must be zero.

Example 2.2
What is the value of

refua

if V x a = 0 and where the fﬁ indicates a complete circuit around the closed contour
composed of C; and C;? Do this by parts.
Solution.
Py Py
F=§£.) a-dl+fﬁ a-dl=F(P) - F(P)+ F(Py)~F(P)=0

Alternatively, note that by Stokes’s theorem, the integral can be cast into another

form:
F=§a-dl=ff(an)-nds

where dfs is a surface element contained within the perimeter of C, + C,, and n is an
outward unit normal to ds. Therefore, if V x a is zero, F = 0.

2.3.7 Velocity Potential

Instead of discussing the vector a, let us consider u, the vector velocity,
given by

u(x, v, z, t) = ui + vj + wk (2.66)

Now, let us define the value of the line integral of u as —¢:

—¢>=§1u-dl=§.(udx+vdy+wdz) (2.67)

The quantity u - dl is a measure of the fluid velocity in the direction of the
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contour at each point. Therefore, —¢ is related to the product of the velocity
and length along the path between the two points Poand P,. The minus sign is
a matter of definitional convenience; quite often in the literature it is not
present.

For the value of ¢ to be independent of path, that is, for the flow rate
between Pyand P, to be the same no matter how the integration is carried out,
the terms in the integral must be an exact differential d¢, and therefore

oo

u=-22 (2.68a)

yo_9¢ (2.68b)
dy

o 9% (2.68¢)
0z

To ensure that this scalar function ¢ exists, the curl of the velocity vector
must be zero:

Vxu:O:(f’_W_ﬂ>i+<§E_§K>j+<ﬂ_91‘_>k (2.69)
dy 0z dz dx ox ady

The curl of the velocity vector is referred to as the vorticity ®.
The velocity vector u can therefore be conveniently represented as

u=-vo (2.70)

That is, we can express the vector quantity by the gradient of a scalar function
¢ for a flow with no vorticity. Further u flows “downhill,” that is, in the
direction of decreasing ¢.” If ¢ (x, y, z, t) is known over all space, then u, v,
and w can be determined. Note that ¢ has the units of length squared divided
by time.

Let us examine more closely the line integral of the velocity component
along the contour. If we consider the closed path from P, to P, and then back
again, we know, from before, that the integral is zero.

56 u-dl=0 Q.71)

which means that if, for example, the path taken from Py to P, and back again
were circular, no fluid would travel this circular path. Therefore, we expect no
rotation of the fluid in circles if the curl of the velocity vector is zero.

To examine this irrotationality concept more fully, consider the average
rate of rotation of a pair of orthogonal axes drawn on the small water mass

"This is the reason for the minus sign in the defintion of ¢.
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: du Az
0z 2
w
_T , e ieb
s Lo
_L ax 2
— A —
X
Figure 2.10

shown in Figure 2.10. Denoting the positive rotation in the counterclockwise
direction, the average rate of rotation of the axes will be given by Eq. (2.72).

9=9b+9a

5 (2.72)

Now if u and w are known at (xo, zo), the coordinates of the center of the fluid
mass, then at the edges of the mass the velocities are approximated as

au(X(), Zo) éi

Az
ul Xo, 29 + 3‘ = u(xo, ZO) +

2
and
W<xo + Ax—, zo> = w(Xy, Zo) + M ﬁ
2 ax 2

Now the angular velocity of the z axis can be expressed as

g __ Uxo Zo+ Az/2) — u(xo, z0) __Ou

Az/2 az
and similarly for
w
0,=—
’ ox

The average rate of rotation is therefore

9=9b+9a=1<?&_3_”> 2.73)
2 2\dx 9z

Therefore, the j component of the curl of the velocity vector is equal to twice
the rate of rotation of the fluid particles, or V x u = 20 = o, where o is the
fluid vorticity.

A mechanical analog to irrotational and rotational flows can be
depicted by considering a carnival Ferris wheel. Under normal operating
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(a) (b)

Figure 2.11 (a) Irrotational motion of chairs on a Ferris wheel; (b)
rotational motion of the chairs.

conditions the chairs do not rotate; they always have the same orientation
with respect to the earth (see Figure 2.11a). As far as the occupants are
concerned, this is irrotational motion. If, on the other hand, the cars were
fixed rigidly to the Ferris wheel, we would have, first, rotational motion
(Figure 2.11b) and then perhaps a castastrophe.

For an inviscid and incompressible fluid, where the Euler equations are
valid, there are only normal stresses (pressures) acting on the surface of a
fluid particle; since the shear stresses are zero, there are no stresses to impart
a rotation on a fluid particle. Therefore, in an inviscid fluid, a nonrotating
particle remains nonrotating. However, if an initial vorticity exists in the
fluid, the vorticity remains constant. To see this, we write the Euler equations
in vector form:

QE:—le -gk (2.74)
Dt P
Taking the curl of this equation and substituting Vxu=0and VxVp=0
(identically), we have

Do _,
Dt

Therefore, there can be no change in the vorticity or the rotation of the fluid
with time. This theory is due to Lord Kelvin (1869).%

(2.75)

2.3.8 Stream Function

For the velocity potential, we defined ¢ as (minus) the line integral of
the velocity vector projected onto the line element; let us now define the line
integral composed of the velocity component perpendicular to the line

$Chapter 5 is dedicated to Lord Kelvin.
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element in two dimensions.

Py
y= ﬁ u-ndl (2.76)

where dl = |dl|. Consideration of the integrand above will demonstrate that
v represents the amount of fluid crossing the line C, between points P, and
P,. The unit vector n is perpendicular to the path of integration C,.

To determine the unit normal vector n, it is necessary to find a normal
vector N such that

N-dl=0
or Nydx+N,dz=0
This is always true if
Ny=-dz and N, =dx

It would have been equally valid to take N, = dz and N, = —dx; however, this
would have resulted in N directed to the right along the path of integration
instead of the left.

To find the unit normal n, it remains only to normalize N.

ne N _ ~dzi + dxk _ -dzi + dxk
IN|  Jdx?+ dzZ? dl

The integral can thus be written as

P,
W= fﬁ, (—udz +wdx) 2.77)

For independence of path, so that the flow between P, and P, will be
measured the same way no matter which way we connect the points, the
integrand must be an exact differential, dy. This requires that

w =a—!/—,; u ____a_t// (2.78)
ox iz
and thus the condition for independence of path [Eq. (2.65)] is
wm L%y (2.79)
dz dx

which is the two-dimensional form of the continuity equation. Therefore, for
two-dimensional incompressible flow, a stream function exists and if we
know its functional form, we know the velocity vector.

In general, there can be no stream function for three-dimensional flows,
with the exception of axisymmetric flows. However, the velocity potential
exists in any three-dimensional flow that is irrotational.
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Note that the flow rate (per unit width) between points Py, and P, is
measured by the difference between w(P;) and y(P,). If an arbitrary constant
is added to both values of the stream function, the flow rate is not affected.

2.3.9 Streamliine

A streamline is defined as a line that is everywhere tangent to the
velocity vector, or, on a streamline, u-n =0, where n is the normal to the
streamline. From the earlier section,

dx dz dz w
=== or

u-n=-udz+wdx=0 or —_—=— (2.80)
dx u

u w
along a streamline. These are the equations for a streamline in two dimen-
sions. Streamlines are a physical concept and therefore must also exist in all
three-dimensional flows and all compressible flows.

From the definition of the stream function in two-dimensional flows,
dw/ol = 0 on a streamline, and therefore the stream function, when it exists, is
a constant along a streamline. This leads to the result Viz-dl =0 along a
streamline, and therefore the gradient of i is perpendicular to the streamlines
and in the direction normal to the velocity vector.

2.3.10 Relationship between Velocity Potential
and Stream Function

For a three-dimensional flow, the velocity field may be determined
fream a velocity potential ¢ if the fluid is irrotational. For some three-
dimensional flows and all two-dimensional flows for which the fluid is
incompressible, a stream function i exists. Each is a measure of the flow rate
between two points: in either the normal or transverse direction. For two-
dimensional incompressible fluid flow, which is irrotational, both the stream
function and the velocity potential exist and must be related through the
velocity components.

The streamline, or line of constant stream function, and the lines of
constant velocity potential are perpendicular, as can be seen from the fact
that their gradients are perpendicular;

V.V =0
as
<é?i+@k>-(a—wi+a—wk)=
dx 9z ax az
(~ui - wk) - (+wi — uk) = (2.81)

—-uw +uw =0
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The primary advantage of either the stream function or the velocity
potential is that they are scalar quantities from which the velocity vector field
can be obtained. As one can easily imagine, it is far easier to work with scalar
rather than with vector functions.

Often, the stream function or the velocity potential is known and the
other is desired. To obtain one from the other, it is necessary to relate the two.
Recalling the definition of the velocity components

__9_
ox dz

_9 _ 9y
9z ox

we have

op _ oy (2.82a)
dx 9dz
b oy
9z ox
These relationships are called the Cauchy-Riemann conditions and enable

the hydrodynamicist to utilize the powerful techniques of complex variable
analysis. See for example, Milne-Thomson (1949).

(2.82b)

Example 2.3

For the following velocity potential, determine the corresponding stream function.
2nt
&d(x, z, t) = (-3x + 52) cos 3

This velocity potential represents a to-and-fro motion of the fluid with the streamlines

slanted with respect to the origin as shown in Figure 2.12. The velocity components
are

u=—ﬁ?=3cos?‘—n—t
ox

w=—aj3=—5005—2£
0z T

Solution. From the Cauchy-Riemann conditions
- 8_‘/1 = 3 cos @
dz

or, integrating,

w(x, z,t) = -3z cos 2'%’ +Gix, t)
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Streamline

\\ils

» Figure 2.12

Note that because we integrated a partial differential, the unknown quantity that
results is a function of both x and ¢. For the vertical velocity,

éﬂ: -5 cos%
ax

or
2nt
wix, z, t) = -5x cos ——T— + Gz, 1)

Comparing these two equations, which must be the same stream function, it is
apparent that

Wix, z,t) =—(5x + 3 z) cos Z—;t + G(t)

The quantity G(¢) is a constant with regard to the space variables x and z and can, in
fact, vary with time. This time dependency, due to G(¢), has no bearing whatsoever on
the flow field; hence G(¢) can be set equal to zero without affecting the flow field.

2.4 CYLINDRICAL COORDINATES

The most appropriate coordinate system to describe a particular problem
usually is that for which constant values of a coordinate most nearly conform
to the boundaries or response variables in the problem. Therefore, for the
case of circular waves, which might be generated when a stone is dropped into
a pond, it is not convenient to use Cartesian coordinates to describe the
problem, but cylindrical coordinates. These coordinates are (r, 6, z), which
are shown in Figure 2.13. The transformation between coordinates depends
on these equations, x = rcos 6,y = rsin 0, and z = z. For a velocity potential
defined in terms of (r, 8,z), the velocity components are

__9%¢
ne-2 (2.83a)
yo=— 130 (2.83b)

r 06
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Figure 2.13 Relationship between
Cartesian and cylindrical coordinate

systems r and @ lie in the x-y plane. x
y, =9 (2.83¢)
oz

As noted previously, the stream function exists only for those three-
dimensional flows which are axisymmetric. The stream function for an
axisymmetric flow in cylindrical coordinates is called the “Stokes” stream
function. The derivation of this stream function is presented in numerous
references, however this form is not used extensively in wave mechanics and
therefore will not be discussed further here.

2.5 THE BERNOULLI EQUATION

The Bernoulli equation is simply an integrated form of Euler equations
of motion and provides a relationship between the pressure field and kine-
matics, and will be useful later. Retaining our assumptions of irrotational
motion and an incompressible fluid, the governing equations of motion in
the fluid for the x-z plane are the Euler equations, Eqs. (2.38).

du du du 1dp
—tU—FW—=——
ot ox az pox

LA LWL L . S (2.84b)

ot dx 9z poz

(2.84a)

Substituting in the two-dimensional irrotationality condition [Eq. (2.69)],

du _ow (2.85)
dz dx
the equations can be rewritten as
2 2
du  Aw/2) w2 1ép (2.86)
ot ax ax pox
2 2
ow  au/2) w2 _ 1dp (2.87)

ot 0z Jaz p oz
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Now, since a velocity potential exists for the fluid, we have

b ad

u=-—; W= —— 2.88
ax a0z ( )
Therefore, if we substitute these definitions into Egs. (2.86) and (2.87), we get
_Ii a(b + (u + w2) + jl 0 (2.89a)
x| a 2 P
_[ 8 Lo wiy s 1’] g (2.89b)
a9z ot 2 p

where it has been assumed that the density is uniform throughout the fluid.
Integrating the x equation yields

_% o1 w+w)+2=Cz, 1) (2.90)
a2 p

where, as indicated, the constant of integration C’ (z, t) varies only with z and
t. Integrating the z equation yields

_9% o1 W +w)+2 = gz + Clx, 1) (2.9
a 2 p

Examining these two equations, which have the same quantity on the left-
hand sides, shows clearly that

C'(z,t)=-gz + C(x, t)

Thus C cannot be a function of x, as neither C’ nor (gz) depend on x.
Therefore, C’ (z, t) = —gz + C(¢). The resulting equation is

—ai)+l(u2+w2)+l—)+gz=C(t) (2.92)
a2 P

The steady-state form of this equation, the integrated form of the equations
of motion, is called the Bernoulli equation, which is valid throughout the
fluid. In this book we will refer to Eq. (2.92) as the unsteady form of the
Bernoulli equation or, for brevity, as simply the Bernoulli equation. The
function C(¢) is referred to as the Bernoulli term and is a constant for steady
flows.

The Bernoulli equation can also be written as

2@ e o
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which interrelates the fluid pressure, particle elevation, and velocity poten-
tial. Between any two points in the fluid of known elevation and velocity
potential, pressure differences can be obtained by this equation; for example,
for points A and B at elevations z, and zjp, the pressure at 4 is

R RTINS
A2 o

Notice that the Bernoulli constant is the same at both locations and thus
dropped out of the last equation. [Another method to eliminate the constant
is to absorb it into the velocity potential. Starting with Eq. (2.93) for the
Bernoulli equation, we can define a function f{¢) such that

af(z) _cw

Therefore, the Bernoulli equation can be written as

_Ap+f) 1] 9P ¢ -
Py +2[<6x> <az>}+p+gz 0 (2.95)

Now, if we define ¢'(x, z, t) = P(x, z, 1) + fit),}

’ N\ 2 7N\ 2
—@+1[<§9> +<‘-’-‘?i”+gz+’—’=o (2.96)
a  2{\dx 9z p
Often we will use the ¢’ form of the velocity potential, or, equivalently, we
will take the Bernoulli constant as zero.] For three-dimensional flows, Eq.
(2.96) would be modified only by the addition of (1/2)(d¢/dy)* on the left-
hand side.

In the following paragraphs a form of the Bernoulli equation will be
derived for two-dimensional steady flow in which the density is uniform and
the shear stresses are zero; however, in contrast to the previous case, the
results apply to rotational flow fields (i.e., the velocity potential does not
exist). In Figure 2.14 the velocity vector at a point on a streamline is shown, as
is a coordinate system, s and n, in the streamline tangential and normal
directions.

By definition of a streamline, at 4 a tangential velocity exists, u;, but
there is no normal velocity to the streamline u,. Referring to Eq. (2.84), the
steady-state form of the equation of motion for a particle at 4 would be

9The kinematics associated with ¢’ (x, z, t) are exactly the same as ¢(x, z, 1), as can be shown
easily by the reader.
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—g sin o = force/unit mass in s direction

X

Figure 2.14 Definition sketch for derivation of steady-state two-dimensional
Bernoulli equation for rotational flows.

written as

saus __lor_ gsina 2.97)
as p as

where sin « accounts for the fact that the streamline coordinate system is

inclined with respect to the horizontal plane. From the figure, sin o = dz/ds,

and therefore the equation of motion is

2
—a—<&+1—)+gz>=0
s\2 p

where again we have assumed the density p to be a constant along the
streamline. Integrating along the streamline, we have

2
Y42 er-Cw) (2.98)
2 p

This is nearly the familiar form of the Bernoulli equation, except that the
time-dependent term resulting from the local acceleration is not present due
to the assumption of steady flow and also, the Bernoulli constant is a function
of the streamline on which we integrated the equation. In contrast to the
Bernoulli equation for an ideal flow, in this case we cannot apply the
Bernoulli equation everywhere, only at points along the same streamline.

REFERENCES

MILNE-THOMSON, L. M., Theoretical Hydrodynamics, 4th ed., The Macmillan Co.,
N.Y., 1960.
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PROBLEMS

2.1 Consider the following transition section:

<~-‘*—IOmﬁj

Truncated conical
section

(a) The flow from left to right is constant at Q = 12z m*/s. What is the total
acceleration of a water particle in the x direction at x = 5 m? Assume that
the water is incompressible and that the x component of velocity is
uniform across each cross section.

(b) The flow of water from right to lefi is given by

Q@) = nt?

Calculate the total acceleration at x = 5 m for 1 = 2.0 s. Make the same
assumptions as in part (a).

2.2 Consider the following transition section:

0.1m

T

D e

04m

(a) If the flow of water from left to right is constant at Q =.1 m?/s, what is the
total acceleration of a water particle at x = 0.5 m? Assume that the water is
incompressible and that the x component of velocity is uniform across
each cross section.

(b) The flow of water from right to left is expressed by

o) = */100

Calculate the total acceleration at x = 0.5 m for ¢ = 4.48 5. Make the same
assumptions as in part (a).
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2.3 The velocity potential for a particular two-dimensional flow field in which the

24

25

density is uniform is

¢ =(-3x + 52) cos 27nt

where the z axis is oriented vertically upward.

(a) Is the flow irrotational?

(b) Is the flow nondivergent? If so, derive the stream function and sketch any
two streamlines for £ = 7/8.

If the water (assumed inviscid) in the U-tube is displaced from its equilibrium

position, it will oscillate about this position with its natural period. Assume

that the displacement of the surface is

2n
ty=A cos—1t
n(t) T

where the amplitude A is 10 cm and the natural period T is 8 s. What will be the
pressure at a distance 20 cm below the instantaneous water surface for n = +10,
0, and —10 cm? Assume that g = 980 cm/s?and p =1 g/cm>.

L

e -]
I
K

N

Suppose that we measure the mass density p at a fixed point (x, y, z) as a
function of time and observe the following:

A

o h——

From this information alone, is it possible to determine whether the flow is
nondivergent?
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2.6 Derive the following equation for an inviscid fluid and a nondivergent steady
flow:
_1ap _auw) N a(vw) N aw?)
p oz ax dy az

2.7 Expand the following expression so that gradients of products of scalar func-
tions do not appear in the result:

v (dyf)

where ¢, v, and fare scalar functions.
2.8 The velocity components in a two-dimensional flow of an inviscid fluid are

Kx
xt+ 72
Kz
xt+ 22

U=

(a) Is the flow nondivergent?

(b) Is the flow irrotational?

(¢) Sketch the two streamlines passing through points A4 and B, where the
coordinates of these points are:

Point4: x=12z=1
PointB: x=1,z=2
2.9 For a particular fluid flow, the velocity components u, v, and w in the x, y, and
z directions, respectively, are

Uu=x+8y+6tz+1t

v= 8x—-Ty + 6z
W= 12x+6y+122c052—;~t«+t2

(a) Are there any times for which the flow is nondivergent? If so, when?

(b) Are there any times for which the flow is irrotational? If so, when?

(c) Develop the expression for the pressure gradient in the vertical (z) direc-
tion as a function of space and time.

2.10 The stream function for an inviscid fluid flow is
w=Axzt

where x, z, t = 0.
(a) Sketch the streamlines ¥ =0and = 64 for¢ =3s.
(b) Fort = 5 s, what are the coordinates of the point where the streamline slope
dz/dx is -5 for the particular streamline y = 1004?
(¢) What is the pressure gradient at x = 2, z = 5 and at time ¢t = 3 s?
A=1.0, p=1.0.
2.11 Develop expressions for sinh x and cosh x for small values of x, using the
Taylor series expansion.
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2.12 The pressures p.(t) and pgp(f) act on the massless pistons containing the
inviscid, incompressible fluid in the horizontal tube shown below. Develop an
expression for the velocity of the fluid as a function of time
p = 1gm/cm3.

P4(t)

Note:
pa(ty=C,sin ot
ps(t) = Cp sin (ot + @)
where o =0.5rad/s
n
o=
2

C4 = Cg = 10dyn/cm’

2.13 An early experimenter of waves and other two-dimensional fluid motions
closely approximating irrotational flows noted that at an impermeable hori-
zontal boundary, the gradient of horizontal velocity in the vertical direction is
always zero. Is this finding in accordance with hydrodynamic fundamentals? If
SO, Prove your answer.

z

u
——
—

— Right angle
I
-

T i e



Small-Amplitude Water

Wave Theory Formulation

and Solution

Dedication
PIERRE SIMON LAPLACE

Pierre Simon Laplace (1749-1827) is well known for the equation that
bears his name. The Laplace equation is one of the most ubiquitous
equations of mathematical physics (the Helmhoitz, the diffusion, and
the wave equation being others); it appears in electrostatics, hydrody-
namics, groundwater flow, thermostatics, and other fields.

As had Euler, Laplace worked in a great variety of areas, applying
his knowledge of mathematics to physical problems. He has been
called the Newton of France.

He was born in Beaumont-en-Auge, Normandy, France, and
educated at Caen (1765-1767). In 1768 he became Professor of Mathe-
matics at the Ecole Militaire in Paris. Later he moved to the Ecole
Normale, also in Paris.

Napoleon appointed him Minister of the Interior in 1799, and he
became a Count in 1806 and a Marquis in 1807, the same year that he
assumed the presidency of the French Academy of Sciences.

A large portion of Laplace’s research was devoted to astronomy.
He wrote on the orbital motion of the planets and celestial mechanics
and on the stability of the solar system. He also developed the hypothe-
sis that the solar system coalesced out of a gaseous nebula.

in other areas of physics, he developed the theory of tides which
bears his name, worked with Lavoisier on specific heat of solids,
studied capillary action, surface tension, and electric theory, and with
Legendre, introduced partial differential equations into the study of
probability. He aiso developed and applied numerous solutions (poten-
tial functions) of the Laplace equation.

41
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3.1 INTRODUCTION

Real water waves propagate in a viscous fluid over an irregular bottom of
varying permeability. A remarkable fact, however, is that in most cases the
main body of the fluid motion is nearly irrotational. This is because the
viscous effects are usually concentrated in thin “boundary” layers near the
surface and the bottom. Since water can also be considered reasonably
incompressible, a velocity potential and a stream function should exist for
waves. To simplify the mathematical analysis, numerous other assumptions
must and will be made as the development of the theory proceeds.

3.2 BOUNDARY VALUE PROBLEMS

In formulating the small-amplitude water wave problem, it is useful to
review, in very general terms, the structure of boundary value problems, of
which the present problem of interest is an example. Numerous classical

z Boundary conditions (B.C.) specified

B.C.
B.C. 7 Region of interest (in general,
;’?f‘g:&?fl can be any shape)
equation
x
B.C. specified

(a)

Kinematic free surface
boundary condition

~N

Dynamic free surface

. boundary condition
Lateral boundary condition

(LBC) (pseudo boundary)

[yl
=]
]

X

w v2¢ = V2 = 0 (Governing differential
L» u equation)

i
I
: Velocity components

4

Bottom boundary condition
(kinematic requirement)

(b)

Figure 3.1 (a) General structure of two-dimensional boundary value problems.
(Note: The number of boundary conditions required depends on the order of the
differential equation.) (b) Two-dimensional water waves specified as a boundary
value problem.



Sec.3.2  Boundary Value Problems 43

problems of physics and most analytical problems in engineering may be
posed as boundary value problems; however, in some developments, this
may not be apparent.

The formulation of a boundary value problem is simply the expression
in mathematical terms of the physical situation such that a unique solution
exists. This generally consists of first establishing a region of interest and
specifying a differential equation that must be satisfied within the region (see
Figure 3.1a). Often, there are an infinite number of solutions to the differen-
tial equation and the remaining task is selecting the one or more solutions
that are relevant to the physical problem under investigation. This selection
is effected through the boundary conditions, that is, rejecting those solutions
that are not compatible with these conditions.

In addition to the spatial (or geometric) boundary conditions, there are
temporal boundary conditions which specify the state of the variable of
interest at some point in time. This temporal condition is termed an “initial
condition.” If we are interested in water waves, which are periodic in space,
then we might specify, for example, that the waves are propagating in the
positive x direction and that at ¢ = 0, the wave crest is located at x = 0.

In the following development of linear water wave theory, it will be
helpful to relate each major step to the general structure of boundary value
problems discussed previously. Figure 3.1b presents the region of interest, the
governing differential equations, and indicates in a general manner the
important boundary conditions.

3.2.1 The Governing Differential Equation

With the assumption of irrotational motion and an incompressible
fluid, a velocity potential exists which should satisfy the continuity equation

V.u=0 (3.1a)
or
V.V =0 (3.1b)

As was shown in Chapter 2, the divergence of a gradient leads to the Laplace
equation, which must hold throughout the fluid.

2 2 2
v2¢=§.(é+ﬂ+_a_¢=0 3.2)
ax? 9y 9z’

The Laplace equation occurs frequently in many fields of physics and
engineering and numerous solutions to this equation exist (see, €.g., the book
by Bland, 1961), and therefore it is necessary to select only those which are

applicable to the particular water wave motion of interest.
In addition, for flows that are nondivergent and irrotational, the
Laplace equation also applies to the stream function. The incompressibility
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or, equivalently, the nondivergent condition for two dimensions guarantees
the existence of a stream function, from which the velocities under the wave
can be determined. Substituting these velocities into the irrotationality
condition again yields the Laplace equation, except for the stream function
this time,

(;_x - % B (33a)
or
iy Fy
2 —
Vl//=a—5+£5— (33b)

This equation must hold throughout the fluid. If the motion had been
rotational, yet frictionless, the governing equation would be

Viy=w 3.4)

where @ is the vorticity.

A few comments on the velocity potential and the stream function may
help in obtaining a better understanding for later applications. First, as
mentioned earlier, the velocity potential can be defined for both two and
three dimensions, whereas the definition of the stream function is such that it
can only be defined for three dimensions if the flow is symmetric about an
axis (in this case although the flow occurs in three dimensions, it is
mathematically two-dimensional). It therefore follows that the stream func-
tion is of greatest use in cases where the wave motion occurs in one plane.
Second, the Laplace equation is linear; that is, it involves no products and
thus has the interesting and valuable property of superposition; that is, if
¢, and ¢, each satisfy the Laplace equation, then ¢; = A, + B, also will
solve the equation, where 4 and B are arbitrary constants. Therefore, we can
add and subtract solutions to build up solutions applicable for different
problems of interest.

3.2.2 Boundary Conditions

Kinematic boundary conditions  Atanyboundary whether it is fixed,
such as the bottom, or free, such as the water surface, which is free to deform
under the influence of forces, certain physical conditions must be satisfied by
the fluid velocities. These conditions on the water particle kinematics are
called kinematic boundary conditions. At any surface or fluid interface, it is
clear that there must be no flow across the interface; otherwise, there would
be no interface. This is most obvious in the case of an impermeable fixed
surface such as a sheet pile seawall.

The mathematical expression for the kinematic boundary condition
may be derived from the equation which describes the surface that consti-
tutes the boundary. Any fixed or moving surface can be expressed in terms of
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a mathematical expression of the form F(x, y, z, t) = 0. For example, for a
stationary sphere of fixed radius a, F(x, y, z, t) = x> + y* + z* — a® = 0. If the
surface varies with time, as would the water surface, then the total derivative
of the surface with respect to time would be zero on the surface. In other
words, if we move with the surface, it does not change.

————DF(x’y’z’t)=0=£‘+u@—li+vQE+wa—~}7

(3.5a)
Dt at ox ay 3z | on Fix,p,z0=0

or

_%ﬂ.w:u.mm (3.5b)

where the unit vector normal to the surface has been introduced as
n=VF/|VF].
Rearranging the kinematic boundary condition results:

- dF/dt
n=—"—— onF(x,y,z,)=0 3.6
VE| (x,y,2,1) (3.6)

) ) 3
-5+ (5) (%)
ox ay oz
This condition requires that the component of the fluid velocity normal
to the surface be related to the local velocity of the surface. If the surface does

not change with time, then u - n = 0; that is, the velocity component normal
to the surface is zero.

where

Example 3.1

Fluid in a U-tube has been forced to oscillate sinusoidally due to an oscillating
pressure on one leg of the tube (see Figure 3.2). Develop the kinematic boundary
condition for the free surface in leg 4.

Solution. The still water level in the U-tube is located at z = 0. The motion of the free
surface can be described by z = 7(¢) = a cos ¢, where a is the amplitude of the variation
of n.

If we examine closely the motion of a fluid particle at the surface (Figure 3.2b),
as the surface drops, with velocity w, it follows that the particle has to move with the
speed of the surface or else the particle leaves the surface. The same is true for a rising
surface. Therefore, we would postulate on physical grounds that

w=91
dt | z=no
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Oscillating pressure

=

......

\_j M)

(a)

Figure 3.2 (a) Oscillating flow in a U-tube; (b) details of free surface.

where dn/dt = the rate of rise or fall of the surface. To ensure that this is formally
correct, we follow the equation for the kinematic boundary condition, Eq. (3.6), where
F(z, t) = z — n(t) = 0. Therefore,

u-n=2

ot
where n = 0i + 0j + 1k, directed vertically upward and u = ui + vj + wk, and carrying
out the scalar product, we find that

w=n
at

which is the same as obtained previously, when we realize that dn/dt = dn/at, as n is
only a function of time.

The Bottom Boundary Condition (BBC). Ingeneral, the lower bound-
ary of our region of interest is described as z = —h(x) for a two-dimensional
case where the origin is located at the still water level and h represents the
depth. If the bottom is impermeable, we expect that u - n = 0, as the bottom
does not move with time. (For some cases, such as earthquake motions,
obviously the time dependency of the bottom must be included.)

The surface equation for the bottom is F(x, z) = z + h(x) = 0. There-
fore,

n-n=0 3.7
where

@i+lk

VF dx

" IVF| B Jdh/dx)* + 1

(3.8)
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Carrying out the dot product and multiplying through by the square root, we
have

u dh +w=0 on z = —h(x) (3.9a3)
dx
or
w=—Uu dh on z = —h(x) (3.9b)
dx

For a horizontal bottom, then, w =0 on z = —-h. For a sloping bottom, we
have

U (3.10)

Referring to Figure 3.3, it is clear that the kinematic condition states that the
flow at the bottom is tangent to the bottom. In fact, we could treat the bottom
as a streamline, as the flow is everywhere tangential to it. The bottom
boundary condition, Eq. (3.7), also applies directly to flows in three dimen-
stons in which 4 is A(x, y).

Kinematic Free Surface Boundary Condition (KFSBC). The free sur-
face of a wave can be described as F(x, y, z,¢t) = z - n(x, y, £) = 0, where
n(x, y, t) is the displacement of the free surface about the horizontal plane,
z = 0. The kinematic boundary condition at the free surface is

a-m= on/ot
V(3n/8x)* + (3n/dy)* + 1

on z=nXx,y,1) (3.11¢

s ol N
y

Figure 3.3 [llustration of bottom boundary condition for the two-dimensional
case.
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where
- g—” i- z—” j+ 1k
n= x (3.11b)
V(@n/3xy’ + (an/ay) + 1
Carrying out the dot product yields
w=£’)—'—7+u£’ﬂ+v§1Z (3.11¢c)

ot ax (')y on z=n(x,p,)

This condition, the KFSBC, is a more complicated expression than that
obtained for (1), the U-tube, where the flow was normal to the surface and
(2) the bottom, where the flow was tangential. In fact, inspection of Eq. (3.11¢)
will verify that the KFSBC is a combination of the other two conditions,
which are just special cases of this more general type of condition.’

Dynamic Free Surface Boundary Condition. The boundary condi-
tions for fixed surfaces are.relatively easy to prescribe, as shown in the
preceding section, and they apply on the known surface. A distinguishing
feature of fixed (in space) surfaces is that they can support pressure varia-
tions. However, surfaces that are “free,” such as the air-water interface,
cannot support variations in pressure’ across the interface and hence must
respond in order to maintain the pressure as uniform. A second boundary
condition, termed a dynamic boundary condition, is thus required on any
free surface or interface, to prescribe the pressure distribution pressures on
this boundary. An interesting effect of the displacement of the free surface is
that the position of the upper boundary is not known a priori in the water
wave problem. This aspect causes considerable difficulty in the attempt to
obtain accurate solutions that apply for large wave heights (Chapter 11).

As the dynamic free surface boundary condition is a requirement that
the pressure on the free surface be uniform along the wave form, the
Bernoulli equation {Eq. (2.92)] with p, = constant is applied on the free
surface, z = n(x, t),

—%+1(u2+w2)+&+gz=C(t) (3.12)
a 2 p

where p, is a constant and usually taken as gage pressure, p, = 0.

Conditions at “Responsive” Boundaries. Asnoted previously, an addi-
tional condition must be imposed on those boundaries that can respond to
spatial or temporal variations in pressure. In the case of wind blowing across

'The reader is urged to develop the general kinematic free surface boundary condition for a wave
propagating in the x direction alone.

Neglecting surface tension.



Sec. 3.2 Boundary Value Problems 43

a water surface and generating waves, if the pressure relationship were
known, the Bernoulli equation wouid serve to couple that wind field with the
kinematics of the wave. The wave and wind field would be interdependent
and the wave motion would be termed “coupled.” If the wave were driven by,
but did not affect the applied surface pressure distribution, this would be a
case of “forced” wave motion and again the Bernoulli equation would serve
to express the boundary condition. For the simpler case that is explored in
some detail in this chapter, the pressure will be considered to be uniform and
hence a case of “free” wave motion exists. Figure 3.4 depicts various degrees
of coupling between the wind and wave fields.

Surface pressure distribution
affected by interaction of

——» Wind wind and waves

% AL

(a)

Translating pressure field
(not affected by waves)

n A

00,

(b)

p = atmospheric everywhere

/\ ) N
4 N_" N

770

(©)

Figure 3.4 Various degrees of air-water boundary interaction and coupling to
atmospheric pressure field: (a) coupled wind and waves; (b) forced waves due to
moving pressure field; (c) free waves—not affected by pressure variations at air-
water interface.



80 Small-Amplitude Water Wave Theory Formuiation and Solution Chap. 3

The boundary condition for free waves is termed the “dynamic free
surface boundary condition” (DFSBC), which the Bernoulli equation
expresses as Eq. (3.13) with a uniform surface pressure p,:

_9 b 1{(1@)2 <§g§ﬂ . i
o p o 2l\ex/) T\az) | TE @, z=nx,n (313

where p, is a constant and usually taken as gage pressure, p, = 0.

If the wave lengths are very short (on the order of several centimeters),
the surface is no longer “free.” Although the pressure is uniform above the
water surface, as a result of the surface curvature, a nonuniform pressure will
occur within the water immediately below the surface film. Denoting the
coefficient of surface tension as ¢’, the tension per unit length 7 is simply

T=0 (3.14)

Consider now a surface for which a curvature exists as shown in Figure
3.5. Denoting p as the pressure under the free surface, a free-body force
analysis in the vertical direction yields

T [-sin @], + Sin &} xai] + (P — Py) Ax + terms of order Ax? =0

in which the approximation d7/dx =~ sin a will be made. Expanding by

Taylor’s series and allowing the size of the element to shrink to zero yields
,8'n

P=pPy—0 @ (3-15)

Thus for cases in which surface tension forces are important, the
dynamic free surface boundary condition is modified to

1 a2 2 2

A o, 1 [("#’?) + <@> } +gz=C@), z=n(x1) (3.16)
& p p axt 2| \dx dz

which will be of use in our later examination of capillary water waves.

Lateral Boundary Conditions. At this stage boundary conditions
have been discussed for the bottom and upper surfaces. In order to complete
specification of the boundary value problem, conditions must also be speci-

x + Ax

Figure 3.5 Definition sketch for
x surface element.
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fied on the remaining lateral boundaries. There are several situations that
must be considered.

If the waves are propagating in one direction (say the x direction),
conditions are two-dimensional and then “no-flow” conditions are appropri-
ate for the velocities in the y direction. The boundary conditions to be
applied in the x direction depend on the problem under consideration. If the
wave motion results from a prescribed disturbance of, say, an object at x = 0,
which is the classical wavemaker problem, then at the object, the usual
kinematic boundary condition is expressed by Figure 3.6a.

Consider a vertical paddie acting as a wavemaker in a wave tank. If the
displacement of the paddle may be described as x = S(z, ¢), the kinematic
boundary condition is

2
u-n=——as(z’t)/ Vl+i 6;5‘)
ot 0z

where
li -—ﬁk
0z
n=———-+“——
J1 +(85/9z)?
z
A
\\ / - NN\
/
| M\ - N
x =85, t) -/\(//
\f
N
(a)
z
1} Outgoing waves only
y X L4 4N
T N’ N
u=f@, 1)
L1
7 2 7 77 7

(b)

Figure 3.6 (a) Schematic of wavemaker in a wave tank; (b) radiation condition
for wavemaker problem for region unbounded in x direction.
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or, carrying out the dot product,

Uu—w 98 = ) 3.17)
0z Ot | onx=S@zn
which, of course, requires that the fluid particles at the moving wall follow
the wall.

Two different conditions occur at the other possible lateral boundaries:
at a fixed beach as shown at the right side of Figure 3.6a, where a kinematic
condition would be applied, or as in Figure 3.6b, where a “radiation”
boundary condition is applied which requires that only outgoing waves occur
at infinity. This precludes incoming waves which would not be physically
meaningful in a wavemaker problem.

For waves that are periodic in space and time, the boundary condition
is expressed as a periodicity condition,

dx, t)=Pp(x+L,1) (3.182)
d(x, 1) =d(x, t + T) (3.18b)

where L is the wave length and T is the wave period.

3.3 SUMMARY OF THE TWO-DIMENSIONAL PERIODIC
WATER WAVE BOUNDARY VALUE PROBLEM

The governing second-order differential equation for the fluid motion under
a periodic two-dimensional water wave is the Laplace equation, which holds
throughout the fluid domain consisting of one wave, shown in Figure 3.7.

Vi =0, 0<x<L, —h<z<n (3.19)

<
~
hgl
I
<
(]
A}
I
=}
>

| Periodic lateral boundary

) condition (PLBC)
| !
I

% Z

Figure 3.7 Boundary value problem specification for periodic water waves.
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At the bottom, which is assumed to be horizontal, a no-flow condition applies
(BBC):

w=0 onz=-h (3.20a)
or
_% 0 onz—-h (3.20b)
0z
At the free surface, two conditions must be satisfied. The KFSBC, Eq. (3.11c),
b _an _ adan
sl St st & onz=n(x,t 3.1lc
dz dt 9dxox 0. 1) ( )

The DFSBC, Eq. (3.13), with p, = 0,

R e
6t+2[<ax>+ 5, ) |T81=C) onz=mnlx,n) (3.13)

Finally, the periodic lateral boundary conditions apply in both time and
space, Eqgs. (3.18).

dx,)=d(x+L,1) (3.18a)
d(x, ) =d(x, 1+ T) (3.18b)

3.4 SOLUTION TO LINEARIZED WATER WAVE
BOUNDARY VALUE PROBLEM FOR A HORIZONTAL
BOTTOM

In this section a solution is developed for the boundary value problem
representing waves that are periodic in space and time propagating over a
horizontal bottom. This requires solution of the Laplace equation with the
boundary conditions as expressed by Egs. (3.19), (3.20b), (3.11¢), (3.13), and
(3.18).

3.4.1 Separation of Variables

A convenient method for solving some linear partial differential equa-
tions is called separation of variables. The assumption behind its use is that
the solution can be expressed as a product of terms, each of which is a
function of only one of the independent variables. For our case,

d(x, z, 1) = X(x)- Z(2)- T(¢t) 3.21)

where X(x) is some function that depends only on x, the horizontal coordi-
nate, Z(z) depends only on z, and 7 (¢) varies only with time. Since we know
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that ¢ must be periodic in time by the lateral boundary conditions, we can
specify T(¢) = sin ot. To find o, the angular frequency of the wave, we utilize
the periodic boundary condition, Eq. (3.18b).

sinagf =sino(t + T)
or
sin ot = sin of cos aT + cos ot sin 6T

which is true for 6T = 27 or 6 = 271/ T. Equally as likely, we could have chosen
cos gt or some combination of the two: A cos ot + B sin ot. Since the
equations to be solved will be linear and superposition is valid, we can defer
generalizing the solution in time until after the solution components have
been obtained and discussed. The velocity potential now takes the form

d(x, z, 1) = X(x)- Z(z)-sin ot (3.22)
Substituting into the Laplace equation, we have
2
a"X(zx ) - Z(z)-sin ot + X(x)- 4Z0) -sinot =0
dx dz?
Dividing through by ¢ gives us
2 2
18X+laZ (3.23)
X ox? Z oz

Clearly, the first term of this equation depends on x alone, while the second
term depends only on z. If we consider a variation in z in Eq. (3.23) holding x
constant, the second term could conceivably vary, whereas the first term
could not. This would give a nonzero sum in Eq. (3.23) and thus the equation
would not be satisfied. The only way that the equation would hold is if each
term is equal to the same constant except for a sign difference, that is,

d*X(x)/dx? i

o) (3.24a)
dzzz(i)./)_dzz I (3.24b)
zZ

The fact that we have assigned a minus constant to the x term is not of
importance, as we will permit the separation constant k to have an imaginary
value in this problem and in general the separation constant can be complex.

Equations (3.24) are now ordinary differential equations and may be
solved separately. Three possible cases may now be examined depending on
the nature of k; these are for k real, k =0, and k a pure imaginary number.
Table 3.1 lists the separate cases. (Note that if k consisted of both a real and an
imaginary part, this could imply a change of wave height with distance,
which may be valid for cases of waves propagating with damping or wave
growth by wind.)
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TABLE 3.1 Possible Solutions to the Laplace Equation, Based on Separation

of Variables
Character of k, the Ordinary Differential
Separation Constant Equations Solutions
Real %+kzX=0 X(x) = A cos kx + B sin kx
Ix
k>0 LZ_ 127 g Z(2) = Cé* + De™
dz?
k=0 .j%ﬁo X(x)=Ax+ B
/X
£z Z(z)=Cz +D
dz?
Imaginary
k<0, k=ijk| %22(—|k|2,¥=0 X(x)=Ae' k1% 4 BelkIx
/X
| k | = magnitude of k d2_€+|k|22=0 Z(z)=Ccos |k|z + Dsin |k|z
dz

3.4.2 Application of Boundary Conditions

The boundary conditions serve to select, from the trial solutions in
Table 3.1, those which are applicable to the physical situation of interest. In
addition, the use of the boundary conditions allows determination of some of
the unknown constants (e.g., 4, B, C, and D).

Lateral periodicity condition. All solutions in Table 3.1 satisfy the
Laplace equation; however, some of them are not periodic in x; in fact, the
solution is spatially periodic only if k is real® and nonzero. Therefore, we have
as a solution to the Laplace equation the following velocity potential:

d(x, z, t) = (A cos kx + B sin kx) (Ce** + De™) sin ot (3.25)
To satisfy the periodicity requirement (3.18a) explicitly,
Acoskx +Bsinkx=Acosk(x+ L)+ Bsink(x+L)
= A(cos kx cos kL — sin kx sin kL)
+ B(sin kx cos kL + cos kx sin kL)

which is satisfied for cos kL =1 and sin kL = 0; which means that kL = 2r or
k (called the wave number) = 27/L.

Using the superposition principle, we can divide ¢ into several parts.
Let us keep, for present purposes, only ¢ = A cos kx(Ce** + De™ ) sin at. Lest

3For k =0, 4 is zero. This ultimately yields ¢ = B sin at.
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this be thought of as sleight of hand, the B sin kx term will be added back in
later by superposition.

Bottom boundary condition for horizontal bottom.  Substituting in the
bottom boundary condition yields

w=-— %—(—é = —A cos kx(kCe*” — kDe™)sinat =0 onz=-h (3.26)
z

or
—Ak cos kx(Ce™ - De**) sin 6t = 0

For this equation to be true for any x and ¢, the terms within the parentheses
must be identically zero, which yields

C - D€2kh
The velocity potential now reads
¢ = A cos kx(De*" ¢ + De ™) sin ot

or, factoring out De**,

¢ = ADe" cos kx(e"®*? + e***?)) sin ot
or

¢ = G cos kx cosh k(h + z) sin gt 3.27)
where G = 24De*”, a new constant.

Dynamic free surface boundary condition. As stated previously, the
Bernoulli equation can be used to specify a constant pressure on the surface
of the water. Yet the Bernoulli equation must be satisfied on z = 5(x, t), which
is a priori unknown. A convenient method used to evaluate the condition,

then, is to evaluate it on z = n(x, t) by expanding the value of the condition at
z =0 (a known location) by the truncated Taylor series.

(Bernoulli equation).., = (Bernoulli equation),.o

P (3.28)
+7 % (Bernoulli equation),q +- - -
z
or
2 2 2 2
<gz_@+u +w ) =<gz_@+u +w>
ot 2 z=n ot 2 20

b 19 , ]
+ -t (U +w +-- - =C(¢
n{g dz 3t 262( )z= ©

wherep=0onz=n.
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Now for infinitesimally small waves, 7 is small, and therefore it is
assumed that velocities and pressures are small; thus any products of these
variables are very small: 7 << 1, but 7 << 1, or un << 1. If we neglect these
small terms, the Bernoulli equation is written as

(— i + gn) =C@)
61 z=0

This process is called linearization. We have retained only the terms that are
linear in our variables.* The resulting linear dynamic free surface boundary
condition relates the instantaneous displacement of the free surface to the
time rate of change of the velocity potential,

p19®| L CO (3.29)
g ot | z=0 g
If we substitute the velocity potential, as given by Eq. (3.27),
n= Go cos kx cosh k(h + z)cos ot | ,o + v
4 4
(3.30)
= [“—GU cosh kh} cos kx cos at + 40
g 8

Since by our definition # will have a zero spatial and temporal mean,
C(1) = 0.° The terms within the brackets are constant; therefore, nis given as
a constant times periodic terms in space and time plus a function of time. We
can rewrite 7 as

n= g cos kx cos at (3.31)

The last substitution came about by comparing the analytical representation
of 1 to the physical model, as shown in Figure 3.7. G can now be obtained
from

c.__fHg
20 cosh kh

The velocity potential is now

¢ = Hg cosh k(h + 2)

cos kx sin at (3.32)
20 cosh kh

The velocity potential is now prescribed in terms of H, g, &, and k. The

“Linear in the sense that variables are only raised to the first power.
Had we not used p(7) = 0, how would C(¢) be changed?
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first three of these would be available from the data or alternatively the wave
length might be known and ¢ unknown.

Kinematic free surface boundary condition. The remaining free sur-
face boundary condition will be utilized to establish the relationship between
oand k. Using the Taylor series expansion to relate the boundary condition at
the unknown elevation, z = 77(x, t) to z = 0, we have

()3
ot ox z=n ot 0x /z=0

nd (w20
a9z ot 0x/z=0

Again retaining only the terms that are linear in our small parameters, 7, u,
and w, and recalling that 77 is not a function of z, the linearized kinematic free
surface boundary condition results:

w1 (3.33a)
6t z=0
or
_9 _on (3.33b)
0Z | z=0 ot
Substituting for ¢ and 7 gives us
_Eﬁwﬁcosusinatlzw
2 o coshkh
=—gacoskxsinat
or
o* = gk tanh kh (3.34)

Rewriting this equation as 6°4/gkh = tanh kh and plotting each term versus
kh for a particular value of 6h/g yields Figure 3.8. The solution is deter-
mined by the intersection of the two curves. Therefore, the equation has only
one solution or equivalently one value of k for given values of g and 4.
Noting that by definition a propagating wave will travel a distance of
one wave length L, in one wave period T, and recalling that ¢ = 2n/7T and
k =2n/L, it is clear that the speed of wave propagation C can be expressed

from Eq. (3.34) as
2
<2—”> — ¢ 2% tanh kh
T L
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20 o’k I o’h _ 1
g(kh) g
1.0 b—
tanh-kh
Solution
0 L | l
0 1.0 2.0 3.0

kh

Figure 3.8 [llustrating single root to dispersion equation.

or
2
=L _& tanh ki (3.35)
Tk

A similar algebraic manipulation of Eq. (3.34) will yield a relationship for the
wave length,
L =272 anh 2™ (3.36)
2n L
In deep water, kh is large and tanh 27h/L = 1.0; therefore, L = Lo = gT?/2m,
where the zero subscript is used to denote deep water values. In general, then,

L = L tanh kh (3.37)

Thus the wave length continually decreases with decreasing depth for a
constant wave period.

Equations (3.34), (3.35), and (3.37), which are really the same equation
expressed in slightly different variables, are referred to as the “dispersion”
equation, because they describe the manner in which a field of propagating
waves consisting of many frequencies would separate or “disperse” due to the
different celerities of the various frequency components.

The wave speed, or celerity, C, has been defined as C = L/T. Therefore,

c- 5}-" tanh kh (3.38a)
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or
C = C, tanh kh (3.38b)

since, as will be shown later, the wave period does not change with depth.
Waves of constant period slow down as they enter shallow water. Figure 3.9
presents, as a function of 4/ L, the ratio C/Cy (= L/Ly = ko/k) and a number
of other variables commonly occuring in water wave calculations. This figure
provides a convenient graphical means to determine intermediate and shal-
low water values of these variables.

3.4.3 Summary of Standing Waves

One solution of the boundary value problem for small-amplitude
waves has been found to be

Hg cosh k(h + z)

b= cos kx sin ot
20 coshkh
nx, t) = 1 % = i cos kx cos at (3.39)
8 ot |z=0 2

where o = gk tanh kh.

The wave form is shown in Figure 3.10. At af = 7/2, the wave form is
zero for all x, at ot =0, it has a cosine shape and at other times, the same
cosine shape with different magnitudes. This wave form is obviously a
“standing wave,” as it does not propagate in any direction. At positions
kx = n/2, and 37/2, and so on, nodes exist; that is, there is no motion of the
free surface at these points. Standing waves often occur when incoming
waves are completely reflected by vertical walls. At which phase position
would the wall be located? See Figure 4.6 for a hint.

. , |
n(x, 0) —’

n(x, T/2)

Figure 3.10 Water surface displacement associated with a standing water wave.
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3.4.4 Progressive Waves

Consider another standing wave,

H g cosh k(h + z)
206 coshkh

This velocity potential is also a solution to the Laplace equation and all the
boundary conditions, as may be verified readily. It is, in fact, one of the
solutions that we discarded. It differs from the previous solution in that the x
and ¢ terms are 90° out of phase. The associated water surface displacement is

d(x, z, 1) = sin kx cos ot (3.40)

nx, 1) = 1 @ =- g sin kx sin ot (3.41)

g ot | z=0
as determined from the linearized DFSBC. Remembering that the Laplace
equation is linear and superposition is valid, we can add or subtract solutions
to the linearized boundary value problem to generate new solutions. If we
subtract the present velocity potential in Eq. (3.40) from the previous
solution we had, Eq. (3.32), we obtain

H g cosh k(h + 2)

b= (cos kx sin at — sin kx cos o)
2 0 coshkh
(3.42)
__Hgcosh k(h + 2) sin (kx — a1)
2 ¢ coshkh
This new velocity potential has a water surface elevation, given as
nx, t)= 1o il cos (kx — at) (3.43)
b4 ot | z=0 2

Had we just subtracted the two n(x, t) corresponding to the two velocity
potentials, we would have had

nix, t)= g cos kx cos ot + g sin kx sin ot = g cos (kx - at)

which is the same result. This should not have been a surprise, as the total
boundary value problem has been linearized and superposition is valid for all
variables in the problem.

Examining the equation for the water surface profile, it is clear that this
wave form moves with time. To determine the direction of movement, let us
examine the same point on the wave form at two different time values,
t, and ¢,. The x location of the point also changes with time. In Figure 3.11,
the locations of the point at time ¢, and ¢, are shown. The speed at which the
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nlxy, )

n(x,y, t3) ~

Figure 3.11 Characteristics of a propagating wave form.

wave propagated from one point to the other is C, given as
X2— X
Cc=22""1
1 - t 1

We further point out that the same point on the wave crest implies that we are
examining the wave at the same phase, that is, at constant values of the
argument of the trigonometric function of x and ¢. Therefore, we expect that

n(xy, 1) = n(x2, 1)
or, in fact,
kx, - ot, = kx; — ot,
k(xy - x2) = o(t: - 1)
or

g___27t/T_C_x.—x2_X2—X1
k 2n/L -0 LH-1

as before. Therefore, if ¢, > ¢,, x, > x;, the wave form propagates from left to
right. Had the argument of the trigonometric function been (kx + at), the
waves would propagate from right to left (i.e., in the negative x direction).

Simplifications for shallow and deep water. The hyperbolic functions
have convenient shallow and deep water asymptotes, and often it is helpful to
use them to obtain simplified forms of the equations describing wave
motion. For example, the function cosh kh, which appears in the denomina-
tor for the velocity potential, is defined as

kh + e—kh

cosh kh = e fe
2

For a small argument, the exponential function ¢ can be expanded to z = kA
in a Taylor series about zero as

(khY ..

z=0 2'

2,2
kh + 9

de’
0k _ 0 4 %€ 4
z=0 dZ

dz
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or

2
=1+kh +(kh)

Of course, e would then equal

2
i kh+
2
Therefore, for small kA,
2 kh 2
coshkh=—;—[(l v+ 4 a —kh+(2)...)]
- (kh)?
=1+ 2

For large kh, cosh kh = /2 as e™" becomes quite small. Table 3.2 presents
the asymptotes.

TABLE 3.2 Asymptotic Forms of Hyperbolic Functions

Function Large kh Small kh
cosh kh e y2 1
sinh kA 2 kh
tanh kh 1 kh

It is worthwhile to distinguish the regions within which these asymp-
totic approximations become valid. Figure 3.12 is a plot of hyperbolic
functions together with the asymptotes, f; = k4, f> = 1.0, f3 = /2. The per-
centage values presented in Figure 3.12 represent, for particular ranges of k4,
the errors incurred by using the asymptotes rather than the actual value of the
function. The largest error is 5%. The lower scale on the figure is the relative
depth. Note that due to this dimensionless representation a 200-m-long wave
in 1000 m of water has the same relative depth as a 0.2-m wave in 1 m of
water. Limits for three regions are denoted in the figure: kh < n/10,
n/10 < kh <, and kh > n. These regions are defined as the shallow water,
intermediate depth, and the deep water regions, respectively. It may be
justified to modify the limits of these regions for particular applications.

The dispersion relationship in shallow and deep water. The disper-
sion relationship for shallow water reduces in the following manner:

o’ = gk tanh kh = gk’h
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Figure 3.12 Relative depth and asymptotes to hyperbolic functions.
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or
02
P = C2 = gh
and
C=./gh (3.44)

The wave speed in shallow water is determined solely by the water depth.
Recall that the definition of shallow water is based on the relative depth. For
the ocean, where # might be ~ 1 km, a wave with a length of 20 km is in
shallow water. For example, tsunamis, which are waves caused by earth-
quake motions of the ocean boundaries, have lengths much longer than this.
The speed in the ocean basins for long waves would be about 100 m/s
(225 mph).
For deep water, kh > m,

o® = gk tanh kh ~ gk
L=L,
where

L& 5.127? (English system of units, ft)
0= =
2n 1.56 7% (SI units, meters)

and (3.45)

Coo 8 T 5.12T7 (English system of units, ft/s)
p=-T =
27 1.56T (SI units, m/s)

3.4.5 Waves with Uniform Current U,

As an example of the procedure just followed for the solution for
progressive and standing waves, it is instructive to repeat the process for a
different case: water waves propagating on a current. For example, for waves
in rivers or on ocean currents, a first approximation to the waves and
currents is to assume that the current is uniform over depth and horizontal
distance and flowing in the same direction as the waves.

An assumed form of the velocity potential will be chosen to represent
the uniform current U, and a progressive wave, which satisfies the Laplace
equation.

¢ =-Upx + A cosh k(h + z) cos (kx — at) (3.46)

The form of this solution guarantees periodicity of the wave in space and
time and satisfies the no-flow bottom boundary condition. It remains neces-
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sary to satisfy the linearized form of the KFSBC and the DFSBC. Yet we
cannot just apply the forms that we arrived at earlier, as errors would be
incurred because the velocity U, is no longer necessarily small; we must
rederive the linear boundary conditions.

The dynamic free surface boundary condition. Again, we will expand
the Bernoulli equation about the free surface on which a zero gage pressure is
prescribed.

o2 oo 6¢J [1 2, 2 aﬂ
—(ur+w)+gz-— o~ U +w)+gz-——
|72(u ) gz 6t z2=n(x,1) 5( ) gz 8[ z=0
(3.47)
alt , aﬂ
— (u’ + +gz——| +---=C(t
i az[z(u W)+ ez ot =0 @

Now the horizontal velocity is

u=—%?=U0+Akcoshk(h+z)sin(k.x—at)
X

Therefore, the u? term is
u? = U3 + 24kU, cosh k(h + z) sin (kx — ot)
+ A%k? cosh? k(h + z) sin? (kx — ot)

For infinitesimal waves, it is expected that the wave-induced horizontal
velocity component would be small (i.e., 4k small), and therefore (4k)
would be much smaller. We will then neglect the last term in the equation
above.

The linearized Bernoulli equation [i.e., dropping all terms of order
(4k)*, evaluated on z = 0, is now

JLUS + 24k U, cosh kh sin (kx ~ at)]
— Ao cosh kh sin (kx — at) + gn = C(t)
or

2
nx,t)=- Y + 1_4_0<1 - U—Ok> cosh kh sin (kx — at) + C(¢) (3.48)
2¢ g g
To determine the Bernoulli term C(¢), we average both sides of Eq. (3.48)
over space. Since the space average of 7(x, ¢) is taken to be zero, it is clear that
C(t) = constant = U3/2g. Also, if we define a water surface displacement,
n(x, t) = H/2 sin (kx - ot), then

gH

A= (3.49)
20(1 — Uy/C) cosh kh
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The kinematic free surface boundary condition. The remaining
boundary condition to be satisfied is the linearized form of the KFSBC.

n_opon__ob

) z=n
at  0x ox 0z

Expanding about the still water level, we have

(@_@@>+ni(@_@@)+...
ot Ox ox 0z \dt 0x dx

=_@_ni<@>+...’ z=0
0z 9z \ 9z

or, retaining only the linear terms,
i}
"ﬂ + Uo % = — %, z=0
ot ox 9z

Substituting for 7 and ¢ yields the following dispersion equation for the
case of a uniform current Uy:

(3.50)

o = gk tanh kh
(1 - Uy/CY
or, another form can be developed by using the relationship o = kC:

2
02<1 - U—Ok-> = gk tanh kh
g

(3.51)

or

o= Uok + \/gk tanh kh (3.52)

The second term on the right-hand side is the angular frequency formula
obtained without a current.
In terms of the celerity, the dispersion relationship can be written as

(C = U = % tanh kh (3.53)

It is worthwhile noting that it is possible to solve the preceding problem
of a uniform current simply by adopting a reference frame which moves with
the current U, With reference to our new coordinate system, there is no
current and the methods, equations, and solutions obtained are therefore
identical to those obtained originally for the case of no current.

When relating this moving frame solution for a stationary reference
system, it is simply necessary to recognize that (1) the wavelength is the same
in both systems; (2) the period T relative to a stationary reference system is
related to the period 7~ relative to the reference system moving with the
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current U, by

T=L=T'<l——U—O) (3.549)
1+ Uy/C’ C

where C” is the speed relative to the moving observer; and (3) the total water
particle velocity is Uy + u,, where u,, is the wave-induced component. It is
noted that in the case of arbitrary depth, when T and 4 are given, it is
necessary to solve for the wave length from Eq. (3.54) by iteration.®
For shallow water, we have, from Eq. (3.53),
c L

o= Us + \Jgh (3.55)

That is, since the celerity of the wave is independent of wave length, it is
simply increased by the advecting current U,. For deep water, the
corresponding result is determined by solving Eq. (3.53) for C using the
quadratic solution and replacing k with ¢/C, that is,

2
C=<Uo+—g—>+ Yt 108 (3.56)
20 c 4\o

For small currents with respect to C (i.e., Uy < g/0),

c~8420,
(42

Capillary waves. As indicated in Eq. (3.16), the surface tension at the
water surface causes a modification to the dynamic free surface boundary
condition. To explore the effects of surface tension, we proceed as before by
choosing a velocity potential of the form

¢ = A cosh k(h + z) sin (kx — ot) (3.57)

which is appropriate for a progressive water wave, satisfies the Laplace
equation, and all boundary conditions except those at the upper surface. The
surface displacement associated with Eq. (3.57) will be of the form

n=%c0s (kx - at) (3.58)

Substituting Eqgs. (3.57) and (3.58) into the linearized form of Eq. (3.16), and
employing the linearized form of the kinematic free surface boundary
condition, Eq. (3.33a), the dispersion equation is found to be

2
=& (1 + a’k—> tanh kh (3.59)
k Pg

This technique has been applied to nearly breaking waves by Dalrymple and Dean (1975).
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and it can be seen that the effect of surface tension is to increase the celerity
for all wave frequencies. The effect of surface tension can be examined most
readily by considering the case of deep water waves.

28,7k (3.60)
k p

That is, the contributions due to the speed of short waves (large wave
numbers) is small due to the effect of gravity and large due to the effect of
surface tension. There is a minimum speed C,, at which waves can propagate,
found in the usual way:

aC
—=0 3.61
% (3.61)

Ko = ‘/51,’ (3.62)
ag
\/E§+ V%=2 Vg_g (3.63)
p 4 4

That is, the contributions from gravity and surface tension to C? are equal.
For a reasonable value of surface tension, 0’ = 7.4 x 102 N/m, C,, ~23.2 cm/s,
which occurs at a wave period of approximatély 0.074 s. Figure 3.13 presents

which leads to

m
2
Cn=

c},,=2\/¥
o =

’

Total Eq. (3.64)
c?

Ch Capillary contribution

Gravity contribution

Figure 3.13 Capillary and gravitational components of the square of wave celer-
ity in deep water.
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the relationship

C? 1( 1 k)
e 1 LS 3.64
- N\kjk, Ko (3.64)

3.4.6 The Stream Function for Small-Amplitude
Waves

For convenience, the velocity potential has been used to develop the
small-amplitude wave theory, yet often it is convenient to use the stream
function representation. Therefore, we can use the Cauchy-Riemann equa-
tions, Egs. (2.82), to develop them from the velocity potentials.

Progressive waves.

H g cosh k(h + z) .
L Z )= —2 7 kx — ot 3.65
¢x, 2,0 2 g coshkh sin ( o) ( )

H g sinh k(h + 2)
wix,z,)=——2———"——"cos (kx — at) 3.66)
2 0 coshkh (

It is often convenient for a progressive wave that propagates without
change of form to translate the coordinate system horizontally with the speed
of the wave, that is, with the celerity C, as this then gives a steady flow
condition,

_Egsinhk(h«t—z)c

=Cz
v 2 0 coshkh

os kx (3.67)

Standing waves. From before,

¢=£§coshk(h+z)

cos kx sin at (3.68)
2 0 coshkh

w=—£g—%—)sin kx sin ot (3.69)
2 6 coshkh
The streamlines and velocity potential for both cases are shown in Figure

3.14. The streamlines and potential lines are lines of constant ¥ and ¢.

3.5 APPENDIX: APPROXIMATE SOLUTIONS TO THE
DISPERSION EQUATION

The solution to the dispersion relationship, Eq. (3.34), for k is not difficult to
obtain for given g and 4. However, since the relationship is a transcendental
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- ~--— — Streamlines
Velocity potential
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Progressive wave, Progressive wave, Standing wave,
stationary reference reference frame moving stationary reference
frame with speed of wave frame

Figure 3.14 Approximate streamlines and lines of constant velocity potential for vari-
ous types of wave systems and reference frames.

equation, in that it is not algebraic, graphical (see Figure 3.8) and iterative
techniques are used (see Problem 3.15).

Eckart (1951) developed an approximate wave theory with a corre-
sponding dispersion relationship,

o =gk \/tanh —h
4

This can be solved directly for k and generally is in error by only a few
percent. This equation therefore can be used as a first approximation to k for
an iterative technique or can be used to determine k directly if accuracy is not
a paramount consideration.

Recently, Hunt (1979) proposed an approximate solution that can be
solved directly for kh:

(khy = y* + —2—
1+ 2 dy"
n=1t

where y = *h/g = koh and d, = 0.666. .. .,d,=0.355. .., d;=0.1608465608, d,
=0.0632098765, ds = 0.0217540484, and d = 0.0065407983. The last digits in
d\ and d, are repeated seven more times. This formula can be conveniently
used on a programmable calculator.

The wave celerity was also obtained

2

Qh =[y + (1 +0.6522y + 0.4622) + 0.0864y* + 0.0675y°)']"!
8

which is accurate t0 0.1% for 0 < y < 0.
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PROBLEMS

3.1 The linearization of the kinematic and dynamic free surface boundary condi-
tions involved neglecting nonlinear terms. Show, for both the conditions, that
this linearization implies that

kH
—<<1
2

3.2 Near the bow of a moving submarine, the hull can be represented as a moving
parabola,

D(z -AP =—(x-Up)

where U is the speed of the submarine, A represents the depth of the centerline
of the submarine below the free surface, and D is a constant.

(a) Plot the hull shape at¢t =0and ¢ = 1 s if the submarine is moving at 2 m/s.
(b) Determine the kinematic boundary condition at the hull.

3.3 The equation for the stationary boundary {(x) of an incompressible fluid is
{x)=Ae™

$(x)

Boundary

R 000

The horizontal velocity component may be regarded to be approximately
uniform in the z direction. If u(x=0) = 40cm/s, 4 =30cm, and
K =0.02 cm™, calculate w at the upper boundary for x = 50 cm.
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The equation for the upper moving boundary {,(x, t) of an incompressible
fluid is
Lu(x, t) = Ae™&x-MD

The lower boundary {, is expressed by

{dx,1)=0
A=30cm
k =0.02cm™
M=015s"

(a) Sketch the boundaries for ¢ =0.

(b) Discuss the motional characteristics of the upper boundary (i.e., speed and
direction).

(c) The horizontal velocity component (¥) may be regarded to be approxi-
mately uniform in the z direction. If

u(x=0,1=10s)=40cm/s
calculate w at the upper boundary for x = S0cmand ¢ = 10 s.

Using separation of variables, solve in cylindrical coordinates the problem of
steady flow past a cylinder. Given Laplace’s equation

b, + 1 b, + lz dee=0  intwo dimensions
r r
in which the subscripts denote partial differentiation with respect to the
subscripted variable. The boundary conditions are
¢=Urcos®  atrlarge

and
(br | r=q = 0

A two-dimensional horizontal flow is described by
d(x, y) = 10(x* - )
Find the point of maximum pressure if p = 0 at (x, y) = (1, 1).

A wave field is observed by satellite. The wave lengths are determined to be
312 m in deep water and 200 m over the continental shelf. What is the shelf
depth?

Formulate the boundary value problem for the situation below, which
represents a model to study the effects of waves on a harbor with a narrow
entrance. The stroke S of the wavemaker is considered to be small compared to
the depth 4.
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3.9 Setup, butdo not solve, the complete two-dimensional (x, z, ) boundary value
problem as illustrated, which was designed to simulate earthquake motions of
the continental shelf. The sloping bottom oscillates with a period T and has an
amplitude g. State all assumptions.

Neglect corner effects
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3.10 A horizontal cylindrical wavemaker is oscillating vertically in the free surface.
Examining the two-dimensional problem shown below, develop the kinematic
boundary condition for the fluid at the cylinder wall. Discuss the results.

where T is period of oscillation.
3.11 The stream function for a progressive small-amplitude wave is

W=_I_{.5M(h_+_z)cos(k‘x_at)

2 0 coshkh
Draw the streamlines fort =0, when T=5s, 7 =10m,and H =2.0 m.

3.12 You are on a ship (100 m in length) on the deep ocean traveling north. The
(regular) waves are propagating north also and you note two items of informa-
tion: (1) when the ship bow is positioned at a crest, the stern is at a trough, and
(2) a different crest is positioned at the bow every 20 s.

(a) Do you have enough information to determine the ship speed?

(b) Ifthe answer to part (a) is “‘no,” what additional item(s) of information are
required?

(c) Ifthe answer to part (a) is “yes,” what is the ship speed?

3.13 A tsunami is detected at 12:00 h on the edge of the continental shelf by a
warning system. At what time can the tsunami be expected to reach the
shoreline?

Warning system sensor —»
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3.14 A rigid sinusoidal form is located as shown in the sketch. The form is forced to
move in the +x direction at speed V.
(a) Derive an expression for the velocity potential for the water motion
induced by the moving form.
(b) Evaluate p. — p, for the following cases:

(1) V2 <& tanh kh
k
() V= % tanh kh

3) V> i_' tanh kh

where p. and p, denote the pressure just below the form at the crest and
trough, respectively.
(c) Discuss the special significance of b(2).

- L |

Rigid form ] r, 14

7,(___1 X :

h

N

3.15 Develop an iterative technique to solve the dispersion relationship for k given
o and h. Note: It is somewhat easier to first solve for kk. (Hint: A Newton-
Raphson technique could be used.)

3.16 Determine the celerity of a deep water wave on a current equal to 50 cm/s and
T =5 s. What is the wave period seen by an observer moving with the current?

3.17 Develop the boundary value problem for small-amplitude waves in terms of
the pressure, assuming that Euler’s equations are valid and the flow is incom-
pressible.
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Properties

Dedication
SIR GEORGE BIDDELL AIRY

Sir George Biddell Airy (1801-1892) was an astronomer who worked in a
variety of areas of science, as did his contemporary and personal
acquaintance, Laplace. His major work with respect to this book is his
development of small-amplitude water wave theory published in an
article in the Encyclopedia Metropolitan.

Airy "'was born in Ainwich, Northumberland, England, and
attended Trinity Coliege, Cambridge, from 1819 to 1823. In 1826 he was
appointed the Lucasian Chair of Mathematics at Cambridge (once held
by Isaac Newton). At that time he worked in optics and drew a great deal
of attention to the problem of astigmatism, a vision deficiency from
which he suffered.

In 1828 he was named the Plumian Professor of Astronomy and
Director of the Cambridge Observatory. He became the Astronomer
Royal in 1835, a position he held for 46 years. During that time, he and
the observatory staff reduced ail measurements made by the observa-
tory between 1750 and 1830.

His research (over 377 papers) encompassed magnetism, tides,
geography, gravitation, partial differential equations, and sound. In 1867
his paper on suspension bridges received the Telford Medal of the
Institution of Civil Engineers.

His Numerical Theory of Tides was published in 1886 despite the
presence of several inexplicable errors. He attempted (unsuccessfully)
to resolve these until 1888. He died in 1892.
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4.1 INTRODUCTION

The solutions developed in Chapter 3 for standing and progressive small-
amplitude water waves provide the basis for applications to numerous
problems of engineering interest. For example, the water particle kinematics
and the pressure field within the waves are directly related to the calculation
of forces on bodies. The transformation of waves as they propagate toward
shore is also important, as in many cases coastal engineering design involves
the forecasting of offshore wave climates or the use of offshore data, for
example, those obtained from ships. It is obviously necessary to be able to
determine any modifications that occur to these waves as they encounter
shallower water and approach the shore.

4.2 WATER PARTICLE KINEMATICS FOR PROGRESSIVE
WAVES

Consider a progressive wave with water surface displacement given by
n= % cos (kx — ot)

The associated velocity potential is

_ M gcoshkh*2) G (ks — on) @1
2 0 coshkh
By introducing the dispersion relationship, o = gk tanh kA, this can be
written as

H _coshk(h+2z) .
=-=—C————= kx - at 4.2
¢ 2 sinh kh sin ( o) (42)

4.2.1 Particle Velocity Components

The horizontal velocity under the wave is given by definition, Eq.
(2.68), as

_@_gacoshk(h +2)
x 2 sinh kh

cos (kx — at) (4.3a)

or

Y= gHFk cosh k(h + z)
20 cosh kh

cos (kx — at) (4.3b)
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The local horizontal acceleration is then

ou H ,coshk(h+2z)
o 2 sinh kA
and the vertical velocity and local acceleration are
_%zﬂasinh k(h +2)
dz 2 sinh k#
6_w=__£alsinhk(h+z)
ot 2 sinh kh

Examining the horizontal and vertical velocity components as a func-
tion of position, it is clear that they are 90° out of phase; the extreme values of
the horizontal velocity appear at the phase positions (kx - at) =0, 7,...
(under the crest and trough positions), while the extreme vertical velocities
appear at /2, 3n/2,...(where the water surface displacement is zero).

The vertical variation of the velocity components is best viewed by
starting at the bottom where k(h + z) = 0. Here the hyperbolic terms involv-
ing z in both the ¥ and w velocities are at their minima, 1 and 0, respectively.
As we progress upward in the fluid, the magnitudes of the velocity com-
ponents increase. In Figure 4.1, the velocity components are plotted for four
phase positions. The accelerations are such that the maximum vertical
accelerations occur as the horizontal velocities are extremes and the same is
true for the vertical velocities and the horizontal accelerations.

sin (kx — ot) (4.4)

sin (kx — ot) 4.5)

cos (kx - ot) (4.6)

4.2.2 Particle Displacements

A water particle with a mean position of, say, (x,, z,) will be displaced
by the wave-induced pressures and the instantaneous water particle position
will be denoted as (x; + {, z; + &), as shown in Figure 4.2. The displacement
components ({, &) of the water particle can be found by integrating the
velocity with respect to time.

C(.xl,Zl, t)=fu(x1+C,Z|+C)dt (47)

&(xy, Zl,t)=fw(xl+c,21+'f)dt (4.8)

In keeping with our small-amplitude wave considerations, { and & will be
small quantities and therefore we can replace u(x, + ¢, z, + &) with u(x,, z;)."

.. . u . .
'This involves neglecting terms such as p {, as can be seen from a Taylor series expansion.
X
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Figure 4.1 Water particle velocities in a progressive wave.

Integrating the equations above then yields

B I_Jg_k cosh k(h + z))

¢= 2 6> coshkh

sin (kx, — at) 4.9)

or

_H cosh k(h + z))
2 sinh kh

using the dispersion relationship. The vertical displacement is determined
similarly:

(= sin (kx, — ot)

_ H sinh k(h + z))
2 sinh kh

— ]

§ ————

& cos (kx, — at) (4.10)

Water particle
of interest

Figure 4.2 Elliptical form of water particle trajectory.
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The displacements { and & can be rewritten as

Ux, 21, t) = —A sin (kx, — 61) 4.11)
&x,, z1, t) = B cos (kx, ~at) (4.12)

Squaring and adding yields the water particle trajectory as

VLY.
<A> +<B> =1 @13)

which is the equation of an ellipse with semiaxes A and B in the x-z direction,
respectively (Figure 4.2). We should note also that A is always greater than or
equal to B. In fact, at the locations of the mean water level, the water particles
with mean elevation z = 0, follow a closed trajectory with vertical displace-
ment H/2; that is, these particles comprise the surface. There are no water
particles with mean locations higher than z = 0.

In shallow water (h/L < 1/20), using the shallow water approximations,
the major semiaxis reduces to

2 sinh kh 2 kh 4nh 4n

where the equality for shallow water, L = CT = +/gh T, has been introduced.
The minor semiaxis B can be determined similarly.

_ H sinh k(h +z,)=H(1 +ﬁ>
2 sinh kA 2 h

Note that 4 is not a function of elevation. The horizontal excursion of a water
particle is a constant distance for all particles under the wave. The total
vertical excursion increases linearly with elevation, being zero, of course, at
the bottom and being H at the mean water surface, z = 0.

For deep water waves (h/L > 1) it can be shown that the semiaxes
simplify to

Hcoshk(h+zl) H 1 HL HTvg (4.14)
; .

(4.15)

kh k21
_ _1;! - g o (4.16)
B= g i = 4 (4.17)

The trajectories are circles which decay exponentially with depth. For a depth
of z = —L/2, the values of 4 and B have been reduced by the amount e™", or
the radii of the circles are only 4% of the surface values, essentially negligible.
Figure 4.3 displays the shapes of the water particle trajectories for different
relative depths.
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Figure 4.3 Water particle trajectories in progressive water waves of different
relative depths.

4.3 PRESSURE FIELD UNDER A PROGRESSIVE WAVE

The pressure field associated with a progressive wave is determined from the
unsteady Bernoulli equation developed for an ideal fluid and the velocity
potential appropriate to this case, Eq. (2.92):

2, gz +4 (Ut +wh - i =C(1) (4.18)
P ot

Equating the relationship above at any depth z, and at the free surface 7,
where the pressure is taken as zero, and linearizing yields

P 6¢> o
—t+gz—— | =gn-—-— 4.19
(p & ot /: & dt | n=0 ( )
Recalling from Chapter 3 that the linearized DFSBC reduces to
n= 1 (—3? (4.20)
14 ot | z=0
it is seen that the pressure can be expressed as
P g+ (4.21)
p ot

where the small velocity squared terms have been neglected.

For a progressive wave described by the velocity potential in Eq. (4.1),
we have

H cosh k(h + z)
=— el Wl M kx — ot 4.22
P=-pgz+pg = cosh kh cos ( ot) (4.22)

p = -pgz + pgnk,(z) (4.23)
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where

cosh k(h + z)
cosh kh

The first term on the right-hand side of the pressure equation (4.23) is, of
course, the hydrostatic term, which would exist without the presence of the
waves. The second term is called the dynamic pressure. The term K,(z) is
referred to as the “pressure response factor” and below the mean water
surface is always less than unity.

The dynamic pressure is a result of two contributions; the first and most
obvious contributor is the surcharge of pressure due to the presence of the
free surface displacement. If the pressure response factor were unity, the
pressure contribution from the free surface displacement would be purely
hydrostatic. However, associated with the wave motion is the vertical accel-
eration, which is 180° out of phase with the free surface displacement. This
contribution modifies the pressure from the purely hydrostatic case. The
reader may wish to verify that Eq. (4.22) can be obtained by integrating the
linearized vertical equation of motion, Eq. (2.38c¢), from any depth z up to the
free surface 7. In Figure 4.4, the effect of the dynamic pressure in modifying
the hydrostatic pressure is shown.

The pressure response factor has a maximum of unity at z =0, and a
minimum of 1/cosh k# at the bottom. To determine the pressure above the
mean water level we again must use the Taylor series for a small positive
distance z; (0 <z, < n):

Kz)= (4.24)

9
p(z1) = (-pgz + pgnKp).0 + z, P (-pgz + pgnKy)eeo + - - - (4.25)

= pgn —pgz, to the first order

=pg(n — z1) (4.26)
Thus to this approximation the pressure is hydrostatic under the wave crest

4

t /7 . 1)

Hydrostatic

/ x

|- Hydrostatic

Dynamic

Dynamic

A i

Figure 4.4 Hydrostatic and dynamic pressure components at various phase
positions in a progressive water wave.
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down to z = 0. Below that depth, however, it deviates from the hydrostatic
law. Note also that Eq. (4.26) predicts a zero pressure at the instantaneous free
surface, z, = 7. Figure 4.5 shows the isolines of pressure under a wave for
h/L =0.2.

One method of measuring waves in either the laboratory or field is by
sensing the pressure fluctuations and then calculating the associated water
surface displacements by Eq. (4.23). From Eq. (4.23), a bottom-mounted
pressure gage would record a steady hydrostatic pressure plus the oscillating
dynamic pressure, which for a particular wave period is proportional to the
free surface displacement 7, the variable of interest. If the dynamic pressure
ppis isolated by subtracting out the mean hydrostatic pressure, then 7 is

n——P> _ and K, (ch)——1 (4.27)
peK,(—h) cosh kh
where K, (—4) is a function of the angular frequency of the waves. Thus the
dispersion relationship must be used to determine k4 from the frequency of
the observed waves. If a mean current is present, the wave number must be
computed via Eq. (3.52); otherwise, significant errors can occur.

Even though we have derived the pressure response factor for only one
frequency component, it is interesting to note that for cases in which the
linear assumption is reasonably valid, Eq. (4.27) can be used to determine the
composite wave system containing many (or an infinite) number of com-
ponents from a measured pressure time series.

Because of the dependency of the pressure response factor on the wave
frequency, short-period waves have a very small K, (at the bottom), while for
long-period waves K, approaches unity. In other words, very short period
waves may not even be recorded by the pressure gage. The reader may wish to
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Figure 4.5 Isolines of pp/[y(H/2)] for progressive wave of /L = 0.20.
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show that the shallow and deep water asymptotes for the pressure response
factor are unity and €**, respectively.

4.4 WATER PARTICLE KINEMATICS FOR STANDING

WAVES

The original velocity potential we derived represented a pure standing wave,
H.g cosh k(h + z)

=20 YOO AT T 27 cos kx sin ot 4.28
¢ 20  cosh kh € e ( )
with
n= % cos kx cos ot (4.29)
o = gk tanh kh (4.30)

where H, denotes the height of the standing wave and is twice the height of
each of the two progressive waves forming the standing wave.

The velocity potential for a standing wave can be rederived by subtract-
ing the velocity potential for two progressive waves of the same period with
heights H, propagating in opposite directions.

H, g cosh k(h + z)

=— in (kx — ot
¢ 2 o coshkh sin ( o)
+ & g M sin (kx + 0-[) (431)
2 o coshkh

Sin (kx + at) can be rewritten as sin kx cos ¢ + cos kx sin of, (from
trigonometry) and thus the velocity potential is rewritten as

b = H,g cosh k(h + 2)
o cosh kh

Comparing the two velocity potentials, it is clear that H, = H,/2. Therefore, a
standing wave of height H, is composed of two progressive waves propagat-
ing in opposite directions, each with height equal to one-half that of the
standing wave.

cos kx sin ot (4.32)

4.4.1 Velocity Components

The velocities under a standing wave are readily found to be
__9¢ _Hgkcoshkih +2)

dx 2 o coshkh
ddp  H gk sinh k(h + z)

W=—-——=——2-— " ¢os kx sin ot (4.34)
a9z 2 o coshkh

sin kx sin ot (4.33)
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where for convenience the subscript s has been dropped. Using the dispersion
relationship,

H cosh k(h + z)
U=—0o———->

: sin kx sin ot (4.35a)
2 sinh kh
w =—Has—lw cos kx sin gt (4.35b)
2 sinh kh

As with the velocities under a progressive wave, these velocities
increase with elevation above the bottom. The extreme values of ¥ and w in
space occur under the nodes and antinodes of the water surface profile as
shown in Figure 4.6, where u# and w are zero under the antinodes and nodes,
respectively. It is of interest that the horizontal and vertical components of
velocity under a standing wave are in phase; that is, the time-varying term
“sin ot modifies both velocity components and, at certain times, the veloc-
ity is zero everywhere in the standing wave system. It is therefore evident that
at some times all the energy is potential and, by reference to Eqgs. (4.35), at
other times all the energy is kinetic.

If a progressive wave were normally incident on a vertical wall, it would
be reflected backward without a change in height, thus giving a standing wave
in front of the wall. The lateral boundary condition at the vertical wall would
be one of no flow through the wall, or u = —9¢/dx = 0 at x = Xyay, where Xya is
the location of the wall. Inspection of the equation for the horizontal velocity,
Eq. (4.33), shows that at locations kx = nn (where n is an integer), the no-flow
boundary condition is satisfied. Therefore, a standing wave could exist
within a basin with two walls situated at two antinodes of a standing wave.
This is, in fact, the simplest model of uniform depth lakes, estuaries, and
harbors where standing waves, called seiches, can be generated by winds,
earthquakes, or other phenomena. We examine these waves further in
Chapter S.

The local accelerations under a standing wave are

6_u=§alcoshk(h +2)
a 2 sinh kA

Antinode

sin kx cos ot (4.36)

N

! ~
-
-y T —— - e
L 007777

Figure 4.6 Distribution of water particle velocities in a standing water wave.
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8_w__ﬁolsinhk(h+z)
ot 2 sinh kA

Under the wave antinodes, the vertical accelerations are maxima, while the
horizontal accelerations are zero, and under the nodes, the opposite is true.

cos kx cos at 4.37)

4.4.2 Particle Displacements

The displacements of a water particle (£, &) from its mean position
(x1, z;) under a standing wave are defined in a linearized fashion as before.

C=fu(x)+ & zi+ & dt ~ [u(x,, z,) dt (4.38)
E=fwlx + & zi+ O dt =~ [wlx, z,) dt (4.39)
or
{=-— H M sin kx| cos ot = —A4 cos a6t (4.40)
2 sinh kh
E= H SI—M}M cos kx, cos ot = B cos ot (4.41)
2 sinh kh

The displacement vector is r = {i + £k; its magnitude |r| is
[r| = JA® + B? cos ot (4.42)
or

H cos ot

Ir(1)| = S b Jeosh? k(h + z,) sin’kx, + sinh? k(A + z,) cos’kx; (4.43)
Sin

For infinitesimally small motions, the displacement vector is a straight line,’
the amplitude and inclination being dependent on position (x;, z;). The
water particle under the standing wave moves back and forth along the line
with time. Substituting the trigonometric identities,

cosh? k(h + z,) = } [cosh 2k(h + z;) + 1]
sin’kx, = (1 - cos 2kx,)
sinh’k(4 + z) = 4 [cosh 2k(h + z)) ~ 1]

cos® kx, =3 (1 + cos 2kx,)

yields from Eq. (4.43),

H cos at
Q)| =———
4 sinh kh

V2[cosh 2k(h + z,) - cos 2kx]

2From Equations (4.40) and (4.41), we obtain ¢ = —(B/A){ which may be compared
with Eq. (4.13), the equation for the trajectories of a progressive wave.
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Note that at the bottom under the antinodes |r| is zero. The maximum value
of |r| occurs under the nodes, where cos 2kx; = -1.

The motion of the water particles under a standing wave can thus be
described as a simple harmonic motion along a straight line. The slope of the
displacement vector € is given by

é:_tanhk(h+zl) (4.44)

{ tan kx;

which is not a function of time. Clearly, at the bottom, the trajectories are
horizontal (6 = 0), as is to be expected by the bottom boundary condition.
Figure 4.6 portrays the water particle trajectories at several phase positions
under a standing wave.

tan 6 =

4.5 PRESSURE FIELD UNDER A STANDING WAVE

To find the pressure at any depth under a standing wave, the unsteady
Bernoulli equation is used as in the case for progressive waves,

2 2
pLUAW 9D o) (4.45)
p 2 ot

Linearizing and evaluating as before between the free surface and at some
depth (z) in the fluid, the gage pressure is

p=-pgz+p %?
or
D =—pgz +pg H cosh k(h + 2) cos kx cos at
2 cosh kh
= —pgz + pgKy(z)n (4.46)

where the pressure response factor K, (z) is the same as determined for
progressive waves. Note that under the nodes, the pressure is solely hydro-
static. Again, the dynamic pressure is in phase with the water surface
elevation, and as before it is a combined result of the local water surface
displacement and the vertical accelerations of the overlying water particles.

The force exerted on a wall at an antinode can be calculated by
integrating the pressure over depth per unit width of wall

e 0 cosh k(h + z) f T
F= j_h p(z)dz = J:h \:—ng + PN W} dz + o pg(n. - z) dz

from Eqgs. (4.26) and (4.46) and where n,, = (H/2) cos at, the water surface
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displacement at the wall. It should be stressed that this formulation is not
entirely consistent, as the second integral on the right-hand side representing
the force contribution of the wave crest region is of second order; yet second-
order terms in the form of the square of the velocity components have
already been dropped from the first term of the right-hand side. Integrating,
we get

h? + r)z) tanh kh
F= — 1y poh w 4.47
pg( > peh—> n (4.47)
To first order,
gh’ tanh kA
F = f)— 4+ h w 4.48
p 5 tren—r n (4.48)

The force on the wall consists of the hydrostatic contribution, plus an
oscillatory term due to the dynamic pressure. The maximum force occurs
when n, = H/2,

’ (4h* + (H)))

H
Fmax= ’4 +pgh_M

4.49
8 2 kh (449

4.6 PARTIAL STANDING WAVES

For the case just considered of pure standing waves, two waves of the same
period and height, but propagating in opposite directions, were superim-
posed, as one expects from the perfect reflection of an incident wave from a
vertical wall. Quite often in nature, however, when waves are reflected from
obstacles, not all of the wave energy is reflected; some is absorbed by the
obstacle and some is transmitted past the obstacle. For example, waves are
reflected from breakwaters and beaches; in each case wave energy is not
perfectly reflected. To examine this case, let us assume that the incident wave
has a height H,, but that the reflected wave has a smaller height H, and
different phase than the incident wave, The wave periods of the incident and
reflected waves will be the same. The total wave profile seaward of the
obstacle is then

n= % cos (kx - at) + I—;-’ cos (kx + ot +¢€) (4.50a)

where € is the phase lag induced by the reflection process. If the water surface
displacements are plotted, they appear as in Figure 4.7. Due to the imperfect
reflection, there are no true nodes in the wave profile.

Quite often in measuring wave heights in a wave tank, reflections occur
and it is necessary 1o be able to separate out the incident and reflected wave
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heights. To do this, we rewrite 7, using trigonometric identities.

n o= % (cos kx cos ot + sin kx sin ot)

H . .
+ «2—'(cos (kx + €) cos gt — sin (kx + €) sin o1)
Grouping similar time terms,

n = {% cos kx + % cos (kx + e)} cos ot

+ [% sin kx — %isin (kx + e)] sin ot

or, for convenience, denoting the bracketed terms by /(x) and F(x),
n. = I(x) cos at + F(x) sin ot (4.50b)

Thus 7, is a sum of standing waves. To find the extreme values of #, for any x,
that is, the envelope of the wave heights, denoted by the dotted lines in the
figure, it is necessary to find the maximas and minimas of #, with respect to
time. Proceeding as usual by taking the first derivative and setting it equal to
zero to find the extremes yields

%’% = -I(x)o sin at + F(x)o cos ot =0 (4.51)
or
tan (o1), = ix)
I(x)

Upper envelope

o - \ ” s
2NN —
Cad '-. '\
X N * — ~ ‘
..\-r\"(or=180° ; ~ —

Lower envelope

Figure 4.7 Instantaneous water surface displacements and envelope in a partial
standing wave system.
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F(x)

Figure 4.8 Relationships among (1),
F(x), and I(x).

I(x)

Therefore, to find the maxima and minima of n,, (6¢),, is substituted into Eq.
(4.50a). Examining Figure 4.8, it is clear that

cos (ot),, = __ﬁx)_
V(%) + FY(x)
sin (0t), = Fx)

V(%) + F(x)

Substituting into Equation (4.50b),> we have

2 2
(m =L P+ e (4.52)
VI (x) + F(x)
Substituting for I(x) and F(x) from Eq. (4.50b), it is seen readily that the
extreme values of 7, for any location x are

[0 = £ \/(%)2 + (%)2 + H—zH— cosQkx+e) (453

[n{x)}» obviously varies periodically with x. At the phase positions
(2kx,+€)=2nn(n=0,1,...), [n(x)]» becomes a maximum of the envelope

(M)max = W(H;+ H,),  the quasi-antinodes (4.54)

whereas at the phase positions, (2kx; + €) = (2n + Dn(n =0, 1,...), the value
of [n.(x)]~ becomes a minimum of the envelope:

(M)min = ¥(H; — H)), the quasi-nodes (4.55)

The distance between the quasi-antinode and node can be found by subtract-
ing the phases

(kx;+€) - Qkx, +€)=2n+ )m - 2nn

or
2k(x2—x1)=7r
X2— X “'£
2 1 4

3This exercise shows simply that the maximum and minimum of (4 sin ot + B cos at) are
+ JA*+ BL.
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For a laboratory experiment, where reflection from a beach or an obstacle is
present, if the amplitude of the quasi-antinodes and nodes are measured by
slowly moving a wave gage along the wave tank, the incident and reflected
wave heights are found simply from Eqgs. (4.54) and (4.55) as

Hi = (nt)max + (nt)min (456)
H" = (r]r)max - (”I)min (457)
The reflection coefficient of the obstacle is defined as
H
K= 4.58
H (4.58)

Figure 4.9 presents such data for the case of extremely small waves and nearly
perfect reflection. To find the phase €, it is necessary to find the distance from
origin to the nearest maximum or minimum Xx,, and to solve one of the
following equations:

2nr, n=0,1,2,... for the maximum

2kx, + €= ..
@Qn+Dn, n=0,12,... for the minimum

The reader should verify that the dynamic and hydrostatic pressure
under a partial standing wave system can be expressed as

D(X, z, 1) = —pgz + pEK,(2)n
where n(x, t) and K,(z) are given by Eqgs. (4.50a) and (4.24), respectively.

4.7 ENERGY AND ENERGY PROPAGATION IN
PROGRESSIVE WAVES

The total energy contained in a wave consists of two kinds: the potential
energy, resulting from the displacement of the free surface and the kinetic
energy, due to the fact that the water particles throughout the fluid are
moving. This total energy and its transmission are of importance in deter-
mining how waves change in propagating toward shore, the power required
to generate waves, and the available power for wave energy extraction
devices, for example.

n + 1y, x <0

Position of wave gage for x <0
x=-6 -7’ -8’ -9’ -10 -1 -12'

Figure 4.9 Water surface displacement as measured from a slowly moving car-
riage for the case of nearly perfect reflection. (From Dean and Urseli, 1959.)
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4.7.1 Potential Energy

Potential energy as it occurs in water waves is the result of displacing a
mass from a position of equilibrium against a gravitational field. When water
is at rest with a uniform free surface elevation, it can be shown readily that
the potential energy is a minimum. However, a displacement of an assem-
blage of particles resulting in the displacement of the free surface will require
that work be done on the system and results in an increase in potential energy.

We will derive the potential energy associated with a sinusoidal wave by
two different methods. First consider the wave shown in Figure 4.10; we will
determine the average potential energy per unit surface area associated with
the wave as the difference between the potential energy with and without the
wave present. The potential energy of a small column of fluid shown in Figure
4.10 with mass dm relative to the bottom is

d(PE) = dmgz 4.59)

in which z is the height to the center of gravity of the mass, and can be written
as

h+n
2
and the differential mass per unit width is

E:

(4.60)

dm=p(h+n)dx

The potential energy averaged over one wave length for a progressive wave of
height H is then

pE), = L [apmy L [ et

(PE); = — f d(PE) = f pe 2 dx (4.61)
_re f [1 (h2+2nh+nz)} dx 4.62)
L Jx 2

nix, t)

7 : it
—

B‘»dz
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Figure 4.10 Definition sketch for determination of potential energy.
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The subscript T signifies that the potential energy of the total water volume is
being considered. For n = (H/2) cos (kx — at), the average potential energy is

BT pgll ., fx+L le+L )
PE)r =2\ -h’L + h dx + = d 4.63
()TL<2 h | omdec | (4.63)

The integration is straightforward. For the last integral, we recognize
that the sum of the squares of the sine and cosine functions is identically
equal to unity, and it can be seen readily that the average of the square of each
function over an integral number of one-half wave lengths is one-half. Since
this integration is used often in water wave mechanics, the reader should
verify this result. The potential energy is now

2 2

— h H
PE)r=pg — + pg — 4.64
(PE)r=pg 5 rg 16 (4.64)

The potential energy due to the waves is the difference between the potential
energy with waves present and with no waves present, that is,

(ﬁi—)waves = (ﬁ)T - (ﬁ)w/o (465)
or
2
PE = (PE)m =255 (4.66)

The potential energy of the waves per unit area depends solely on the wave
height. Also, although the development was presented for progressive waves,
examination of the details of the derivation will show that the results are
equally applicable to the case of standing waves which are sinusoidal in form.

Anticipating, the application of this result to more realistic cases, we
represent the sea surface #r by a number N of components, each given by

N = gz-" cos (k,x — ont — €,) (4.67)
and

Mn (4.68)

INZE:!

Nr=

n

Although it is beyond the scope of the presentation here, the total average
potential energy in this case is

N
PE-2 > (4.69)

16 n=i
To return to the case of potential energy due to a sinusoid, it may be
worthwhile for the reader to derive the results by a different approach by
simply calculating the increase in potential energy required to elevate the
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water formerly in the trough to the crest location through a vertical distance
2- z4, where zq is shown in Figure 4.11. Note that this area is HL/2r and the
vertical distance from the mean waterline to the centers of gravity is 7H/16.

4.7.2 Kinetic Energy
The kinetic energy is due to the moving water particles; the kinetic
energy associated with a small parcel of fluid with mass dm is

2, 2 2, .2
w+w w+w
=pdxdz

d(KE) = dm (4.70)

To find the average kinetic energy per unit surface area, d(KE) must be
integrated over depth and averaged over a wave length.

x+L n 2 2
“KF=%£ Lp“ ’;W dz dx (4.71)

From the known solution for the velocities under a progressive wave, Eqgs.
(4.3a) and (4.5), the integral can be written as

2 x+L n
KE = ﬁ (4%’(’ —_:1 kh) f fh [cosh? k(h + z) cos? (kx — at)
o cos x -

(4.72)

+ sinh? k(A + z) sin? (kx - o1)] dz dx

Using trigonometric identities (just as was done for the trajectories under a

y

i‘ HL ’ TH_
MWZ?" 167 )7\
o H
)

7.

Figure 4.11 Potential energy determined as the result of raising water mass in
trough area to crest area.
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standing wave), this can be recast as

2
KE - (ng 1 )
20 cosh kh (4.73)

f f — [cosh 2k(h + z) + cos 2(kx — ot)] dz dx

Carrying out the integration and simplifying yields
KE = { pgH* (4.74)

This is equal to the magnitude of the potential energy, which is characteristic
of conservative (nondissipative) systems in general. The total average energy
per unit surface area of the wave is then the sum of the potential and kinetic
energy. Denoting E as the total average energy per unit surface area

E =KE + PE =} pgH* 4.75)
The total energy per wave per unit width is then simply
Ep=}pgH’L (4.76)

It is worthwhile emphasizing that neither the average (over a wave
length) potential nor kinetic energy per unit area depends on water depth or
wave length, but each is simply proportional to the square of the wave height.

4.7.3 Energy Flux

Small-amplitude water waves do not transmit mass as they propagate
across a fluid, as the trajectories of the water particles are closed.* However,
water waves do transmit energy. For example, consider the waves generated
by a stone impacting on an initially quiescent water surface. A portion of the
kinetic energy of the stone is transformed into wave energy. As these waves
travel to and perhaps break on the shoreline, it is clear that there has been a
transfer of energy away from the generation area. The rate at which the energy
is transferred is called the energy flux ¥, and for linear theory it is the rate at
which work is being done by the fluid on one side of a vertical section on the
fluid on the other side. For the vertical section A4’, shown in Figure 4.10, the
instantaneous rate at which work is being done by the dynamic pressure
[pp = (p + pgz)] per unit width in the direction of wave propagation is

n
f7=fhpp-udz (4.77)

“For finite-amplitude waves, there is a mass flux; see Chapter 10.
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The average energy flux is obtained as before by averaging over a wave period

o 1 +T n
= T J: J:h pp-udzdt (4.78)
+T n -
_1 f f {pgn cosh k(h + z)] [ng cosh k(h +2) o m)} dz di
T J: ~h cosh kh 20 cosh kh

from Eqs. (4.22) and (4.3b) for p and «, or

5 f f [ _cosh k(h + 7)} l:m’ coslT h(h + Z)J dz dt (4.79)
cosh kh sinh kh

using the dispersion relationship.
To retain terms to the second order in wave height, it is only necessary
to integrate up to the mean free surface,

_ f f cosh _cosh’ k(h +z) dz dt (4.80)
cosh kh sinh kh
= pga( > (2kh + sinh 2kh)
2

<9

4k sinh 2kh
- (2[4 12
8 k|2 sinh 2kh
F =ECn (4.81)

where Cn is the speed at which the energy is transmitted; this velocity is
called the group velocity C,, for reasons to be explained shortly.

C,=nC (4.82a)
or
n =£§=l<1 +_2ﬂ> (4.82b)
Cc 2 sinh 2 kA

The factor » has as deep and shallow water asymptotes the values of { and |,
respectively. Therefore, in deep water, the energy is transmitted at only half
the speed of the wave profile, and in shallow water, the profile and energy
travel at the same speed.

Origin of the term “’group velocity.”” We have just derived the group
velocity in terms of the rate at which energy is being transferred by a train of
propagating waves. A more descriptive explanation of the term group veloc-
ity results from examining the propagation of a group of waves.

If there are two trains of waves of the same height propagating in the
same direction with slightly different frequencies and wave numbers, they
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Figure 412 Characteristics of a “group” of waves.

are superimposed as

n=m+mn (4.83)
= g cos (kix - ot} + g cos (k2x — ayt) (4.84)
where’
al=o—-92£, k,=k——A7k
az=a+A70, k2=k+é2]—C (4.85)

Using trigonometric identities, the profiles can be combined in the following
manner:

n=H cos B[(kl + ky)x — (01 + az)t]} cos B[(kl —ky)x — (o, - a;)t]J

= H cos (kx — at) cos [—1— Ak(x _4g t>jl (4.86)
2 Ak

The resulting profile, consisting of wave forms moving with velocity

C = a/k, is modulated by an “envelope” that propagates with speed Ao/Ak,

which is referred to as the group velocity C,. The superimposed profile is

shown in Figure 4.12. If we recall that the wave energy is proportional to the

wave height, it is clear that no energy can propagate past a node as the wave

height (and therefore dynamic pressure) is zero there. Therefore, the energy

must travel with the speed of the group of waves. This velocity is seen to be,

from Eq. (4.86),

Ac

C,=— 4.87
oy (4.87)

This derivation is strictly true for smail Ak and Ao, in order that the relationships given in Eq.
(4.85) satisfy the dispersion relation.
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In the limit as Ak ~ 0, we obtain a group velocity for a wave group of infinite
length L, (hence, a wave train of constant height), C, = dg/dk. This deriva-
tive can be evaluated from the dispersion relationship

o* = gk tanh kh (4.88)

20 :—a = g tanh kh + gkh sech® kh

_do _(gtanh kh + gkh sech? kh)o

C, =
dk 2 gk tanh kh
_ Q(l N 2"’7_) (4.89)
2 sinh 2kh
Therefore, C, = nC, where again
. l(l 2Kk ) (4.90)
2 sinh 2kh

4.8 TRANSFORMATION OF WAVES ENTERING SHALLOW
WATER

Several changes occur as a train of waves propagates into shallow water. One
of the most obvious is the change in height as the wave shoals. If energy losses
(or additions) are negligible, from observation, it is evident that the waves
near the point of breaking at a beach are somewhat higher than those farther
offshore. Other changes, such as the previously discussed decrease in wave
length with shallower depths and the changes in wave direction (Figure 4.13),
are not readily apparent from the beach, but often are clearly observable
from the air.

4.8.1 The Conservation of Waves Equation

In all previous derivations it has been assumed that the waves are
propagating in the x direction; yet if we are discussing a coastline, it is often
convenient to locate the coordinate system such that the x direction is in the
onshore direction and the y direction is in the longshore direction, It is rare
that waves propagate solely in the x direction once the coordinate system is
prescribed.

In general, a wave crest corresponds to a line of constant wave phase.
For example, if a wave train is represented as # = H/2 cos £, where Q
corresponds to the scalar phase function [recall that for waves propagating in
the x direction, Q = (kx — ot)]. Therefore, crests occur for Q = 2nn, where n
is defined here as an integer. From vector analysis, the normal unit vector n
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Figure 4.13 Refraction of waves around a small Caribbean island. (Photo cour-
tesy of the L.S.U. Coastal Studies Institute.)

to a scalar function is related to the normal vector N, which is found by taking
the gradient of the function, Eq. (2.55),

N=vVQ (4.91)
where
N=n|VQ| (4.92)
and where, for purposes here, the gradient operator is only the horizontal
operator

V=Vi=—i+—] (4.93)

as Q is not a function of elevation z. The vector N points in the direction of
the greatest change of , which is the wave propagation direction.®
We will define the wave number k as

k=n|VQ| = VQ (4.94)

U5 = (H/2) sin wVy; thus Vn is in the same direction as Vi. V7 is the wave direction.
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Figure 4.14 Resolution of wave
7, number k into orthogonal components.

Note that for waves in the x direction that
k =ki +0j (4.95a)
and
ki =k (4.95b)

where k is the previously defined wave number. It becomes clear now that the
wave number vector is nothing more than the wave number oriented in the
wave direction. For waves propagating in an arbitrary direction in x-y space,
we have

k= ki +kj (4.96)

and

k| =k=JE2+ K (4.97)

If an angle of incidence 8 is defined as the angle made between the beach
normal (the x direction) and the wave direction, then

k. = |k| cos @
k, = |K| sin 8 (4.98)

The phase function’ is, therefore, Q(x, y, t) = kx cos 6 + ky sin 8 — ot =
k - x — at. If the angle of incidence is zero, it is obvious that Q reverts back to
the simple form [Eq. (4.95a)].

The horizontal line along which waves travel is called a wave ray. It is
defined (in a manner similar to a streamline) as a line along which the wave
number vector is always tangent. As energy travels in the direction of the

"This form of the phase function can be obtained in an alternative manner. For waves of length L
propagating at an angle to the x axis, the projection of the wave on the x axis has a wave length of
L,. From geometry, L, = L/cos 8 and therefore k,x = (2n/L,)x = k cos x. The y contribution
follows similarly.
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wave, the wave energy associated with the wave travels along the wave ray
also.

The angle made by the wave ray to the x axis can be obtained in the
same manner as the local wave direction [see Figure 4.14]:

0 =tan™ ky

X

The wave frequency can be determined from the phase function as
9Q

o= 4.99
Py (4.99)
It is readily seen that the following expression is identically zero:
v+ v<— 99) -0 (4.100)
at ot
which using Eqgs. (4.94) and (4.99) can be written as
il +Va=0 (4.101)
ot

This equation states that any temporal variation in the wave number vector
must be balanced by spatial changes in the wave angular frequency. If the
wave field is constant in time, then Vo =0, or'the wave period does not
change with space. It is constant even as the water depth changes. If the waves
encounter a steady current, it was shown in Chapter 3 that o=k-U +
gk tanh kh, where U = mean current vector. Even for this case g + f(x, y),
that is, only changes in k occur to compensate for the variable current.

To examine the conservation of waves relationship further, it is best to
rederive it in a more intuitive manner. For a small length dx in the direction
of wave travel, shown in Figure 4.15, we will relate the number of waves
entering and leaving the block of fluid to the accumulation of waves within it.
The rate at which waves enter the column is 1/T or ¢/27. The rate at which
waves are leaving the column a distance dx away is found by using the first-
order Taylor series. The difference in inflow and efflux of waves must be equal

—_—

TN ———

Figure 4.15 Consideration of conservation of waves.
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to the accumulation of waves within the region with time, that is, the time
rate of change of the number N of waves within the column,

ﬂ=ﬂd_x=i<kﬁ>=£’£% (4.102)
a o L o 2n 2n ot
Equating, we have
o (a 1 9o > dx ok
— = —+——dx |=+——
2 \2n 2mdx 2 Ot
or
ok 99 _, (4.103)
ot ox

which agrees with Eq. (4.101) when applied in the direction of the waves.

4.8.2 Refraction

Referring back to Eq. (4.94), the wave number vector is the gradient of a
scalar. If we take the curl of k, we find that

Vxk=0 (4.104)

by the identity that the curl of a gradient is zero. This irrotationality condition

on k indicates that the line integral [k - dlis independent of path (Chapter 2).

Rewriting the integral, we have [VQ - dl = {d€. Therefore, the irrotationality

implies that €(x, y, 1) is uniquely determined at each point (for fixed ¢).
Substituting the components of k yields

d(k sin 6)  d(k cos 6) _0
ax ay

(4.105)

For a shoreline where the alongshore variations in the y direction of all
variables are zero, that is, there are straight and parallel offshore contours,
this equation reduces to

diksin ) _, (4.106)
dx
or
k sin 8 = constant (4.107)

Therefore, the longshore projection of the wave number is a constant.
Dividing by o in the steady-state case,

5_12_8 = constant (4.108)
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The constant is most readily evaluated in deep water, yielding Snell’s law:

sin 6 _sin 6,

4.109;
c -G (4.109)

This equation, originally found in geometric optics, relates the change in
direction of a wave to the change in wave celerity. Yet from before we know
that waves slow down in shallower water; therefore, Snell’s law indicates that
for coastlines with straight and parallel contours, the wave direction 6
decreases as the wave shoals, tending to make the waves approach shore
normally.

In general, however, offshore contours are irregular and vary along a
coast, so that the full equation must be used.

6ksin0_6kcos6_

0 4.110
ax ay ( )
or
kc0500—0+ksin06—0=c050%—sin9% (4.111)
ox ay dy ax

This first-order nonlinear partial differential equation for ¢ must be solved
by computer techniques for a general coastline (see Noda et al., 1974) to give
the wave directions for various locations and water depths.

Historically, ray-tracing techniques were developed to solve this equa-
tion following the path of the waves. We can transform Eq. (4.111) into one
valid for a coordinate system (s, n) such that s is in the wave direction and n
normal to it (see Figure 4.16), defined as

= scosf—nsin @ (4.112a)
y=ssinf+ncosf

Using the chain rule the derivative operators in the s and n directions can be

Figure 4.16 Coordinate system (s, n)
defined by direction of wave number
vector k. x
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established,
£=4§i+@i (4.112b)
ds dsdx dsay
=cos()i+sin Oi
ax ay
and correspondingly,
9 —sin § 9 +cos 6 9 (4.112¢)
an ax ay

It is clear that the equation governing the wave angle can be rewritten as

g% (4.113)
ds kon C dn

with k=0/C. This equation relates the curvature of the wave ray to the
logarithmic derivative of the wave number normal to the wave direction.

Ray tracing is often done by hand calculation,® as well as by computer
programs. The procedure involves using Snell’s law locally at each contour
line of the offshore bathymetry that must be known. First a “smoothing”
procedure is used to remove sharp changes of direction of the contour lines.
The proper amount of smoothing is unfortunately a matter of judgment.
Then the deep water wave period and angle of incidence must be known.
Drawing the deep water wave crest on the bathymetry chart offshore of the
(/Lo = 0.5) contour provides the starting point for each of the rays, which
are spaced at equal intervals. These intervals are chosen to give sufficient
detail in the nearshore zone. For each of the contours representing a known
depth, the wave celerity is determined. A ray is then drawn from the deep
water crest location to the first intersection of a contour for which the wave
feels bottom. At this point, a locally straight contour line is assumed and
constructed by making a line segment tangent to the point of intersection.
The normal to this line provides a means to calculate the angle of incidence
with respect to the contour. Using Snell’s law [Eq. (4.109)], the angle to which
the wave is refracted is computed. The ray is then extended to the next
contour and the process repeated. This can be tedious and several aids have
been constructed to aid in this process (see the Shore Protection Manual).

4.8.3 Conservation of Enaergy

For conservation of energy, in a steady-state case, where there are not
any energy losses or inputs, equations are developed readily relating the wave

!See, for example, the Shore Protection Manual (1977).
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heights at two points of interest, especially for the case of straight and parallel
bottom contours as in Figure 4.17. Recognizing that there is no energy flux
across the wave rays, the energy flux F across by is the same as across b, and
b,. Due to the convergence or divergence of the wave rays, resulting from
either refraction or actual physical boundaries, and due to changes in depth,
the energy per unit area changes between b; and b,. Assuming no wave
reflection, the conservation of energy, Eq. (4.81), requires

(EnC),b, = (EnC),b, (4.114)
or, using our definition for F as
E =} pgH* (4.115)

we can solve for the wave height H»:

C.1 /b
H,=H V_gv: 4.116
? ' C. ¥ b, ( )

If it is recognized that waves do not change period with depth (i.e., the wave
period is a constant), then we have between deep and intermediate or shallow

Depth contours

TILSN,

.

Figure 4.17 Characteristics of wave rays during refraction over idealized bathymetry.
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VAT L2
2Ce ¥ b (4.117)

= HoK K,

where K is the shoaling coefficient and K, the refraction coefficient. The
shoaling coefficient is plotted in Figure 3.9.

In water with straight and parallel offshore contours, it is possible to
determine the refraction coefficient, (bo/b;)"?, directly. In Figure 4.17 two
rays are shown propagating to shore. Intuitively, since each wave refracts at
the same rate along the beach, it should be expected that ray 2 is merely ray 1
displaced a constant distance /, in the longshore direction. This is, in fact, the
interpretation of the constancy of longshore wave number given by Snell’s
law, ko sin 8y = k sin 6. From the diagram it can be seen that b, = /; cos 6y and

depth water
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Figure 4.18 Changes in wave direction and height due to refraction on slopes
with straight, parallel depth contours. (From U.S. Army Coastal Engineering
Research Center, 1977.)
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b, = ly cos 6,. Therefore, the refraction coefficient X is

K- (@)"2 _ (cos 00>‘/2 _ (l — sin? 00)‘/“ @118)
" \b, cos &, 1 —sin? 6, )

which is always less than unity. The perpendicular spacing between the rays
always becomes greater as the wave shoals. Figure 4.18 presents a convenient
means to determine K, and wave directions from deep water characteristics.
Since K, depends on h/gT? and 6, and K, depends only on h/gT?, it is possible
to present the product KK as a function of 4/gT* and 6, as shown in Figure
4.19.

Example 4.1

A wave of 2 m height in deep water approaches shore with straight and parallel
contours at a 30° angle and has a wave period of 15 s. In water of 8 m, what is the
direction of the wave, and what is its wave height?

Solution. Using Figure 4.18, 4/gT? = 0.0036 and therefore 6 ~ 10.5° and K, = 0.94.
The value of K, using the C,/Cy curve of Figure 3.9, is computed to be 1.2. H =
2(0.94)(1.2) = 2.26 m. This result can also be obtained directly from Figure 4.19 [i.e.,
K.K;=113and H = 2(1.13) = 2.26 m].

In ray-tracing procedures, the separation distance b can be found
analytically (Munk and Arthur, 1952). From Figure 4.20 it can be seen, for
waves traveling with celerity C in the s direction, that the velocity com-
ponents are :

é=C, d—x=Ccos0, éX:CsinG (4.119)
at dt dt

—Given C and 0, these equations serveto provide-the locations along the ray
path,
At A4,d6=(86/dn)b and, also db = d6 ds, which is the first-order change
in arc length due to the angle increment 6. Substituting for @6 in these two
—equations yields

Lab 90 (4.120a)

bds—on

or, defining 8 = b/b,, where b, is an initial reference spacing of the wave ray,
we obtain
19_a0
Bds on

This equation, which relates the change in spacing along the ray to the change
in 8 in the normal direction, is similar in form to Eq. (4.113), which also
involves 6.

(4.120b)
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y

}

Ray

= X
Figure 4.20 Schematic diagram showing adjacent rays.

An ordinary differential equation can be obtained for 8 by computing
the mixed derivatives

d 860 9 90

onds Jsdn
Using the defnitions for the 8/dn, 8/ds operators [Eqs. (4.112b) and (4.112¢)],

we obtain
om s (@] (2] (2].(2)
an ds 0s én ax ady as on

c <aC> ' (aﬂ>

after substituting from Eqs. (4.113) and (4.120b). Note that the right-hand side
is nonzero; this is due to the fact that the derivative operators are functions of
0.

If we cross-differentiate Eqgs. (4.113) and (4.120b) directly for the mixed
derivative expressions, the following results:

980 340 _laz_c+ 1 <ac> 62,8 <a/3>

onds odson  Con* C? B as? /32 os
again, a nonzero right-hand side. If we now equate the two right-hand sides,
we have

azﬂ 1 8C
—+——f= (4.121a)
6s2 C on Zﬂ
This equation can be used to obtain f; however, it involves knowledge of the
wave fronts in order to determine derivatives in the n direction. If we
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evaluate the second term, we have

2 2 2 2
la—sz=l(sinﬂ’)é—c—w—Zsin@cos0 AS +00520§—g—§96—0>
Con® C ax? dx dy 3y®> 9s an

but 36/3n = (1/8) (86/as) from Eq. (4.120b).
Therefore, finally fis given by
g dp
AP p% L ap=0 4.121b
72 P s ap ( )
where
cos 0dC sin §9C
pS)=-——"—-——"—
C dx C ay
and
sin? 0 8°C . sinfBcos O 3*C cos’04°C
q@S)=——775-2 —

— +
C ax? C a3y C 3

Equations (4.121b) and (4.119) provide four ordinary differential equations
which can be solved simultaneously to provide locations along the ray and
the spacing between the rays over a given bathymetry for which C(x, y) is
available (through the dispersion relationship). Numerous ray-tracing pro-
grams have been written (see, e.g., Wilson, 1966) and a recent example from
Noda (1974) is presented in Figure 4.21.

Wave heights along a ray are related to S, as shown in the preceding
section. Similarly to Eq. (4.117), we have

H=H, QVI
Vac, Vs

4.8.4 Waves Breaking in Shallow Water

The shoaling coefficient indicates that the wave height will approach
infinity in very shallow water, which clearly is unrealistic. At some depth, a
wave of given characteristics will become unstable and break, dissipating
energy in the form of turbulence and work against bottom friction. When
designing a structure which at times may be inside the surf zone it becomes
necessary to be able to predict the location of the breaker line.

The means by which waves break depends on the nature of the bottom
and the characteristics of the wave. See Figure 4.22. For very mildly sloping
beaches, typically the waves are spilling breakers and numerous waves occur
within the surf zone (defined as that region where the waves are breaking,
extending from the dry beach to the seaward limit of the breaking). Plunging
breakers occur on steeper beaches and are characterized by the crest of the



Sec. 4.8 Transformation of Waves Entering Shallow Water 13

160

T T T 1 T
Deep water wave angle 8, = 153°, T'=4s

Deep water wave height Hy = 1.0 meters

) = -3 X 1/3) 10 (7Y
+ s
d(x,:v) 0.025x [l 20 exp( 3(20) sin (80)]W
Ve // /‘ / 4

L}
miyium

140

120

-~

Y (meters)

0 20 40 60 80 100 120 1
X (meters)

0 160 180 200

Figure 4.21 Ray lines for oblique wave incidence on a beach in the periodic rip
channels. (From Noda, 1974.)

wave curling over forward and impinging onto part of the wave trough. These
waves can be spectacular when air, trapped inside the “tube” formed by the
wave crest, escapes by bursting through the back of the wave or by blowing
out at a nonbreaking section of wave crest. Surging breakers occur on very
steep beaches and are characterized by narrow or nonexistent surf zones and
high reflection. Galvin (1968) has identified collapsing as a fourth classifica-
tion, which is a combination of plunging and surging.

The earliest breaker criterion was that of McCowan (1894), who deter-
mined that waves break when their height becomes equal to a fraction of the
water depth

H, = xh, (4.122a)

where k = 0.78 and the subscript & denotes the value at breaking. Weggel
(1972) reinterpreted many laboratory results, showing a dependency of
breaker height on beach slope m. His results were

H,
Kk = b(m) — a(m) ngf (4.122b)
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where
a(m) = 43.8(1.0 — ¢ 1°™)
b(m) = 156(10 + e—l9.5m)_1

which approaches k = 0.78 as the beach slope m approaches zero.’ See Figure
12.7.

As a first approximation, the depth of wave breaking can be determined
by the shoaling and refraction formulas for straight and parallel contours if
the offshore wave characteristics are known.

1/2 1/2
H=H, ( Co ) (M> (4.123)
2nC cos 8

For shallow water, this is approximately equal to

1/2 1/2
H=Ho< G ) (COS 9") (4.124)
2J/gh 1

if it is assumed that the breaking angle is small. Using McCowan’s breaking
criterion, we have

1/2
Khy = Hy [&(cos 90):I (4.125)
2\/ghb

and solving for A, yields

he

2 2/5
1 ([ HCo cos 00> (4.126)

= gl/SKA/S\ D)

or for a plane beach where 4 = mx and m = tan B, the beach slope, the distance
to the breaker line from shore is

hy 1 [ H3Cycos 6 \*
Xp = = T 5 (4.127)
Finally, the breaking wave height is estimated to be
1/5 2 2/5
Hy = rmxs = (E) (H_Czcgaf’_> (“.128)
8

Komar and Gaughan (1972), using the conservation of wave energy flux
in the manner of Munk (1949) for solitary waves, developed an equation
similar to Eq. (4.128) for normally incident waves (6 = 0°). Dalrymple et al.
(1977) included the deep water wave angle as developed above. By comparing
to a number of laboratory data sets, it appears that Eq. (4.128) underpredicts
the breaking wave height by approximately 12% (with « = 0.8). See Figure

The a(m) parameter originally defined by Weggel was dimensional and required use of the
English system of units. The parameters a(m) and b{(m) presented here are dimensionless.
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Figure 4.23 Surf zone width x, and breaking wave height K, versus deep water
wave height H, in dimensionless form and as a function of §,, the deep water
incident angie x = 0.8.

4.23 for adimensionless representation of Eq. (4.128). Wave breaking, with its
complexities of turbulence and wave nonlinearities, is still an area of active
research. The reader who must deal with design in the surfzone is referred to
the literature for the most accurate prediction of surf zone width, breaking
wave height, and other surf zone parameters. As an example, see Svendsen
and Buhr Hansen (1976).

4.9 WAVE DIFFRACTION

Wave diffraction is the process by which energy spreads laterally perpendicu-
lar to the dominant direction of wave propagation. A simple illustration is
presented in Figure 4.24, in which a wave propagates normal to a breakwater
of finite length and diffraction occurs on the sheltered side of the breakwater
such that a wave disturbance is transmitted into the “geometric shadow
zone.” It is clear that a quantitative understanding of the effects of wave
diffraction is relevant to the planning and evaluation of various harbor
layouts, including the extent and location of various wave-absorbing features
on the perimeter. Diffraction is also important in the case of wave propaga-
tion across long distances, in which classical wave refraction effects consid-
ered alone would indicate zones of wave convergences and extremely high
concentrations of wave energy. As the energy tends to be concentrated



Sec. 4.9 Wave Diffraction 117

y
Geometric illuminated +
zone <1 » Geometric shadow zone

Diffracted wave
crest

Impermeable
1 breakwater

> x

Incident wave

Figure 4.24 Diffraction of wave energy into geometric shadow zone behind a
structure.

between a pair of converging wave orthogonals, some of this energy will
“leak” across the rays toward regions of less wave energy density. Most
present methodologies for computing wave energy distribution along a
shoreline due to wave propagation across a shelf do not account for diffrac-
tion and may result in greatly exaggerated distributions of wave energy. In the
following sections, the main contributions contained in the classical paper by
Penney and Price (1952) which relate to diffraction around breakwater-like
structures will be reviewed.

4.9.1 Diffraction Due to Wave-Structure
Interaction

The three-dimensional linearized boundary value problem formula-
tion for this situation is similar to that presented before [Egs. (3.19), (3.20),
(3.29), and (3.30)] for two dimensions with the exception of the no-flow
condition on the structure boundary and will not be presented here. Consid-
ering water of uniform depth, the vertical dependency Z(z) satisfying the no-
flow bottom boundary condition is

Z(z) = cosh k(h + z) (4.129)
and the velocity potential ¢ is represented by
¢(x7 y, Z, t) = Z(Z)F(x’ y) eiﬂl (4.130)

where F(x, y)is acomplex functionandi = \/j . Substituting Eq. (4.130) into
the Laplace equation yields the Helmholtz equation in F(x, y):

2 2
IF L F(x, y) =0 (4.131)
ax?:  9y?
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The kinematic and dynamic free surface boundary conditions yield the
usual dispersion equation

o® = gk tanh kh

and an equation for the water surface displacement 7 given by
n="2 F(x, y) cosh kh e™ (4.132)
g

The solutions to this equation will be examined for several important cases.

Normal wave incidence on a semi-infinite breakwater. An ideal (per-
fectly reflecting) breakwater aligned on the x axis and extending from x = 0 to
X = +oo will require the boundary condition

oF _
dy

For the boundary condition for x < 0, we require that the waves be
purely progressive in the positive y direction, that is,

F(x,y)=Ae™, X~ —o0, ally (4.134)

which, when combined with Eq. (4.132), yields the desired result.
The solution of the governing equations was developed by Sommerfeld
(1896) and is expressed as

L+i} 4 (/2 ik 4 i/
F(x,y)= — ¢ ). du + e™ € du (4.135)

where B, £, and r are defined by

paleon peteon T @

and the signs of § and f to be taken depend on the quadrant in which the
solution is being applied (see Figure 4.25). With considerable algebra, it can
be verified that F(x, y) as given by Eq. (4.135) satisfies both the Helmholtz
equation and the boundary condition given by Eq. (4.133). The solution for
F(x, y) may be evaluated in terms of Fresnel integrals

0, O<x <+, y=0 (4.133)

J; cosjmu’du  and J; sin } nu? du (4.137)

which are tabluated in Abramowitz and Stegen (1965).

As F(x, y) is complex, it contains both wave amplitude and phase
information. As expected, at large x and y < 0 a standing wave is formed, at
large x and y the waves approach zero, and for x - —o0, and all y, the wave is
unaffected by the presence of the breakwater. Figure 4.26 represents wave
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Figure 4.25 Sign criterion for (8, §).

fronts and isolines of relative wave height for y > 0; the horizontal scales are
rendered dimensionless in terms of wave lengths.

Although the solution for F(x, y) is algebraically complicated, there are
several simple features that are of engineering relevance. First for large y, the
relative wave height approaches one-half on a line separating the geometric
shadow and illuminated regions (x =0) (see Figure 4.27). Second, for
y/L > 2, isolines of wave height behind a breakwater may be determined in

ol ¢ T T 1 T T T T T T IrT T
R N J
vl | S 3 i
\e| L) /
= ,\ \ = | Wave fronts
\‘*2\ / 1
\1z
1 -18
6
4 2
L
= 4
H<0.1
—~ 2
‘\ I Rigid breakwater
L Y Lt UL
-8 -6 -4 2 0 2 4 6 P
x
L

Figure 4.26 Wave fronts and contour lines of maximum wave heights in the iee of
a rigid breakwater, and waves being incident normally. (———) exact solution,
(----- ) approximate solution based on Eq. (4.138) and Figure 4.27. (After Penney
and Price, 1952.)
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Ratio R of diffracted to
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B,

Figure 4.27 Relative diffracted wave height R versus distance parameter f§,.
(From Penney and Price, 1952.)

accordance with the following parabolic equation:

L i6 2L

in which B is the abscissa value obtained from Figure 4.27 for any value of
relative wave height, R = H/H,. The dashed lines in Figure 4.26 compare
several isolines obtained from Eq. (4.138) and Figure 4.27 with those from the
complete solution.

X _ /B, Bry (4.138)

Obliquely incident waves on a semi-infinite breakwater. For this
case, there will also be three regions or zones corresponding to (1) the
geometric shadow zone, (2) the geometric illuminated zone outside the
region of direct reflection from the breakwater, and (3) the up-wave region
within which direct reflection from the breakwater occurs. An example of a
diffraction diagram showing isolines of relative wave height is presented in
Figure 4.28 for 6, = 30°. Plots for other directions are presented in the Shore
Protection Manual (1977). The diffracted wave fronts in the geometric
shadow zone are approximated well by circles with their centers at the
breakwater tip. As before, the relative wave height along a line separating the
geometric sheltered and illuminated zones is approximately one-half.

Wave diffraction behind an offshore breakwater of finite length. For
an offshore breakwater of finite length, an approximate diffraction diagram
can be developed by considering the maximum wave height to be the sum of
the two waves diffracting around each of the two ends of the breakwater. The
resulting diffraction coefficients would therefore represent an upper limit,
since only in very special locations would the waves reinforce completely.
Figure 4.29 presents approximate isolines of diffraction coefficients for an
offshore breakwater which is 10 wave lengths long.
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Figure 4.29 Isolines of approximate
diffraction coefficients for normal wave
incidence behind a breakwater that is 10
+ + * * * * wavelengths long. (From Penney and
Waves of wave-length L Price, 1952.)

Wave diffraction due to waves of normal incidence propagating
through a breakwater gap. For a gap width that is in excess of one wave
length, it can be shown that the diffracted wave solution is very nearly given
by the superposition of terms in the diffraction solution selected to approxi-
mately satisfy the boundary conditions on the two breakwater segments.
Figure 4.30 presents an example for a gap that is 2.5 wave lengths long.

Waves propagating through a breakwater gap narrower than one wave
length.  For this case, the waves in the lee of the breakwater propagate as if
from a point source and in accordance with energy conservation relation-
ships; the wave heights decrease as r? with distance from the center of the
gap. The expression for relative wave height as a function of r for locations
not too near a gap of width b is

H(r) _ n/b/mr
Ho 2. /kb[(¢n kb/8 + y)* + n*/4]
in which y is the Euler constant (= 0.577...).

(4.139)
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Figure 4.30 Isolines of approximate
diffraction coefficients for normal wave
incidence and a breakwater gap width
of 2.5 wavelengths. (From Penney and Width of gap 2.5 L

Price, 1952.) 1 | ] 1 I I L

4.10 COMBINED REFRACTION-DIFFRACTION

Refraction, which involves wave direction and height changes due to depth
variations, and diffraction, caused by discontinuities in the wave field
resulting from the wave’s interaction with structures, often occur simultane-
ously. For example, at the tip of a breakwater, diffraction is of utmost
importance, yet if a large scour hole exists there or if a beach is nearby,
refraction is important as well. It therefore is necessary to be able to treat both
phenomena simultaneously.

Theoretically, the problem is difficult, demanding the solution of the
Laplace equation in an irregularly varying domain. Therefore, approxima-
tions must be made to simplify the problem. The crudest approach, most
often used in practice, is to assume that diffraction predominates within
several wave lengths of the structure and farther away, only refraction. In the
last decade, however, a newer approach has evolved through the use of a
model equation. Berkhoff (1972), seeking an equation governing the pro-
pagating wave mode [which has a cosh k(% + z) dependency over the depth],
multiplied the Laplace equation by cosh k(% + z) and integrated over the
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depth. This reduces the equation to the two horizontal dimensions and yields
Vi (CCy ViF) + f(%)F =0 (4.140)

where V, is the horizontal gradient operator and C and C, are the wave and
group velocity, respectively. The F is a complex function which represents the
wave amplitude and phase. The total velocity potential then is

cosh k(h + z)
cosh kh

In deriving this equation it was assumed that the bottom slopes are mild. This
model equation, while approximate in intermediate depth, is exact in both
deep and shallow water. In deep water it reduces to Eq. (4.131), while in
shallow water it is

&(x, y,z)=F- (4.141)

gV« (hV4F) + 0*F = 0 (4.142)

which is a two-dimensional equivalent of Eq. (5.37), valid for long waves, as
discussed in Chapter 5.

Analytical solutions to the model equation are few; Jonsson and Brink-
Kjaer (1973) and Smith and Sprinks (1975) present the case of waves
encountering a circular island, and for Smith and Sprinks, the case for edge
waves and waves propagating over a step are also treated. Kirby et al. (1981)
used the model equation to study edge waves on irregular beach profiles.
Numerical finite element techniques have been used by Berkhoff to treat
arbitrary boundary problems such as harbors and islands.

A second approach, developed by Radder (1979) and Lozano and Liu
(1980), utilizes a parabolic approximation to the elliptic Laplace equation,
which makes the solution more easily obtainable as only initial condition
must be specified as opposed to all the lateral boundary conditions. These
methods are computationally quicker than Berkhoff’s.
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PROBLEMS

4.1 (a) A wave train is propagating normally toward the coastline over bottom
topography with straight and parailel contours. The deep water wave length
and height are 300 m and 2 m, respectively. What are the wave length,
height, and group velocity at a depth of 30 m?

(b) What is the average energy per unit surface area at the site of interest?
(c) Work part (a) for the case of the same deep water characteristics, but with
deep water crests oriented at 60° to the bottom contours.

4.2 Derive the relationship for the average potential energy per unit interface area
associated with the interface displacement: (Note: Neglect capillary effects.)

n= g cos (kx — ot)
N\N y N\
h' n I3
Y —
P | ™ * C——
n" pu > p'
4
T, 7O

4.3 The harbor entrance shown below is designed for the following deep water

wave conditions:
H, 0= 5m
T=18s
| 6000 m -|
NN}
J
Ocean by bp Harbor

Station B

Itis desired to design the width at station B such that the wave height at station
B resulting from the design wave is 2 m. What must be the slope of the side
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4.4

4.5

walls between 4 and B for this criterion to be satisfied? Use the following
information:

bA=100m
hA=15m
h3=10m

and assume that the wave height is uniform across the harbor width at station B
and that the spacing between orthogonals at station A4 is one-half that in deep
water.

Observations of the water particle motions in a small-amplitude wave system
have resulted in the following data for a total water depth of 1 m.

major semiaxis = 0.1 m

minor semiaxis = 0.05 m

These observations apply for a particle whose mean position is at middepth.
What are the wave height, period, and wave length?

As a first approximation, the decrease in wave amplitude due to viscous effects
can be considered to occur exponentially. For example, for a progressive wave
n,

n=%e“"‘ cos (kx — at)

(a) Develop an expression corresponding to that above for the wave system
resulting from a wave of height H generated at the wave maker, propagating
(and suffering a loss in wave height due to viscosity) to the barrier which is
at x = ¢, reflecting back (reflection coefficient = 1.0) and propagating back
to the wavemaker. Do not consider secondary reflections from the
wavemaker.

(b) Outline a laboratory procedure for determining the wave system ampli-
tude envelope |7].

(c¢) Show that

In] = g e**/2 [cos 2k(x - £) + cosh 2u(x — &)]

Wavemaker )
Barrier
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4.6 A wave of 10 s period is propagating toward the rubble mound breakwater. The
recording determined by the traversing pressure sensor is shown below. Calcu-
late the rate (per meter of width) of energy dissipation by the breakwater. At
what separation distance do the pressure maxima occur?

10m
N AN

Pressure 4700 N/m?

2100 N/m?

Pressure record from traversing sensor

4.7 Animportant problem in beach erosion control is the scour in front of vertical
walls due to reflected waves. Assuming perfect reflection from a wall and
shallow water conditions, determine the resulting water depth under the node
nearest the wall if the wave height and period are known at the wall. Assume
that the equilibrium scour depth 4 is one for which the maximum horizontal
velocity at the bottom is less than or equal to 3 m/s.

4.8 For a group of waves in deep water, determine the time for each individual
wave 1o pass through the group and the distance traveled by the group during
that time if the spacing between the nodes of the group is L, and the wave
period of the constituent wave is T. There are n waves in the group.

4.9 Two pressure sensors are located as shown in the sketch. For an 8-s progressive
wave, the dynamic pressure amplitudes at sensors 1 and 2 are 2.07 x 10* N/m?
and 2.56 x 10* N/m?, respectively. What are the water depth, wave height, and

wave length?
/ 3
/Sensor 2
Sensor 1 Y h

7.62 m

A
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The z axis is oriented vertically upward, that is, in a direction opposed to the
gravity vector. The following values may be used:

g =9.81 m/s?
p =992 kg/m’®

4.10 An experiment is being conducted on the wave reflection-transmission by the
step-barrier combination shown in the drawing that follows. The characteris-
tics of the two wave envelopes are shown.

(a) What is the height A of the step?

(b) Is enough information given to determine whether or not energy is con-
served at the step-barrier?

(c) Ifthe answer to part (b)is “no,” what additional information is required? If
the answer to part (b) is “yes,” determine whether energy losses occur at the
step-barrier.

417 m 3.65m
Wavemaker Barrier

W T—t —— 4 —_—

f = JE S S — 7
[ 03m 01m 20m 0.258 m 0.122m

i ’ 4 ) Beach
| ] 7

nn // a

7
Step

4.11 An axially symmetric wavemaker is oscillating vertically in the free surface,
generating circular waves propagating radially outward. At some distance (say
Ro) from the wavemaker, the crests are nearly straight over a short distance and
the results derived for plane waves may be regarded as valid for the wave
kinematics and dynamics at any point. The wave height at R, is H(R,). Derive
an expression for H(r), where r > R,. (The depth is uniform.)

4.12 A wave with the following deep water characteristics is propagating toward the
coast:

H0=1m
T=15s

At a particular nearshore site (depth = 5 m) a refraction diagram indicates that

the spacing between orthogonals is one-half the deep water spacing.

(a) Find the wave height and wave length at the nearshore site.

(b) Assuming no wave refraction, but the same deep water information as in
part (a), and that the wave will break when the ratio H/h reaches 0.8, in
what depth does the wave break?
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4.14

4.15

4.16

4.17

4.18

4.19

4.20
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A wave with the following deep water characteristics is propagating toward the
shore in an area where the bottom contours are all straight and parallel to the
coastline:

Ho=3m
T=10s

The bottom is composed of a sand of 0.1 mm diameter. If a water particle
velocity of 30 cm/s is required to initiate sediment motion, what is the greatest
depth in which sediment motion can occur?

For the wave system formed by the two progressive wave components

ni=1—_215cos(kx—at+ei)
n,=%cos(k_x+at—e,)

derive the expression for the average rate of energy propagation in the +x
direction.

Develop an experimental method for determining the phase shift € incurred by
a wave partially reflecting from a barrier.

Develop an equation for the transmitted wave height behind a vertical wall
extending a depth 4 into the water of depth 4 based on the concept that the wall
allows all the wave power below depth 4 to propagate past (Wiegel, 1960).
Qualitatively, do you believe that your equation for the transmitted wave
height would underestimate or overestimate the actual value? Discuss your
reasons.

What is the physical reason that the pressure is hydrostatic under the nodes of a
standing wave (to first order in wave height)?

Consider an intuitive treatment for the sum of an incident wave of height H;
and reflected wave of height H, and show that the same envelope results are
determined as obtained in the text. Represent the incident wave as two
components: one of height H, and the second as H; — H,. Now the combination
of the first incident component with the reflected yields a pure standing wave
and the second incident component is a pure progressive wave. Simply add the
envelopes for the pure standing and progressive wave systems.

Develop the pressure response factor by integrating the linearized equation of
motion from some arbitrary elevation z up to the free surface z = 7.

Using as a breaking criterion that the horizontal water particle at the wave crest
exceeds the wave celerity, determine breaking criteria for deep and shallow
water. Why does the latter one differ from that of McCowan?
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Dedication
LORD KELVIN

Sir William Thompson (Lord Kelvin) (1824-1907), born in Belfast, con-
tributed significantly to the field of hydrodynamics, from its theoretical
basis to the solution of numerous wave problems. Here he is cited for
his work in long waves with Coriolis and gravitational forcing, but he
addressed a variety of problems, as is evidenced by his 661 papers and
56 patents. (See Mathematical and Physical Papers, Cambridge, 1882.)

When he was 11 years old, he entered the University of Glasgow,
leaving in 1841 to enter Peterhouse, Cambridge University, to further his
education. During this time he made a trip to Paris University to meet
Biot, Liouville, Sturm, and Foucault. in 1846 he became Professor of
Natural Philosophy at Glasgow, a post he held for 53 years.

A contemporary of Joule (whom he had met at Oxford) as well as
Carnot, Rankine, and Helmholtz, Kelvin pursued a variety of research
areas, including heat and heat conduction. Between 1851 and 1854, he
fully elucidated the first two laws of thermodynamics, and suggested
the concept of refrigeration by the expansion of compressed coid air.

Kelvin contributed actively to the early development of submarine
cables. He interacted with cable companies and developed means of
testing the purity of copper in the cabies after he showed that the purity
affected its conductivity. He was knighted in 1866 for his cable work.
Before the Institution of Civil Engineers in 1883, Kelvin remarked,
“There cannot be a greater mistake than that of looking superciliously
upon practical applications of sciences.” This philosophy led him to
invent numerous electrical devices such as a galvanometer and an
ampere gauge, and to set up an electrical company, Kelvin and White,
Limited.

He became the first Baron Kelvin of Largs in 1892. He died in 1907
and was buried in Westminster Abbey.

131
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5.1 INTRODUCTION

Waves propagating in shallow water, kA < n/10, are often called long waves or
shallow water waves. Tidal waves, tsunamis (erroneously called tidal waves),
and other waves with extremely long periods and wave lengths are shallow
water waves, even in the deep ocean.

The study of long waves is of importance to the engineer in the design of
harbors and in studying estuaries and lagoons. Because long wave energy is
effectively reflected by structures or even by beaches of mild slope, harbors,
which have waves propagating into them, can be excited into resonance by
long waves of the proper period, obviously not a desirable state. Tidal
propagation in estuaries is affected greatly by the geometry of the estuary;
resonance, as in a harbor, can also occur, yielding large tides (50+ ft at the Bay
of Fundy).

In this chapter selected long wave topics are presented, after the
equations governing them are derived.

5.2 ASYMPTOTIC LONG WAVES

Previously, the velocity potential and the corresponding velocities and free
surface profile for small amplitude waves were derived. The velocities and
the surface profile for a progressive wave are described by these equations:

_ H gk cosh k(h + z)

cos (kx — ot)
2 ¢ coshkh
=Eg_k sinh k(4 + z) sin (kx — o1)
2 o coshkh
n= % cos (kx — at) 5.0

Using the shallow water asymptotic forms of the hyperbolic functions, we can
arrive at equations for the water particle velocities of long waves, ki << 7/10,

U= gHk cos (kx — ot nC
20 h

where the shallow water wave celerity C = +/gh was introduced and the
subscript s denotes shallow water. Interestingly, u, is not a function of
elevation; the horizontal velocity is uniform over depth. For the vertical
water particle velocity,

(5.2)

ng[k(h + 2)] sin (kx — at)

(5.3)
_HC 2\ —of) = - on
3 h(kh)(1+h>sm(kx ot) <l+h>ax
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The vertical velocity varies linearly with depth from zero at the bottom to a
maximum at the surface and is much smaller in magnitude than u,. The ratio
of their maximum values is

(us)max — -1—
(Ws)max kh (5.4)

where kh is small. The pressure under these long waves is found by Eq. (4.22):
cosh k(4 + z)

P =Pz +pgn——— "=
or
Ds = —pgz +pgn
=pg(n-z) (55)

The pressure under these long waves is thus hydrostatic, as might be expected
since the vertical accelerations can be shown to be small.

5.3 LONG WAVE THEORY

In Chapter 3 the equations and boundary conditions necessary to solve for
two-dimensional water waves were presented. If we assume that the pressure
under long waves is hydrostatic at the outset, we can integrate the governing
equations over the water depth to get the long wave equations directly rather
than asymptotically. Integrating over depth should not be a surprising tech-
nique here, particularly when we know that the horizontal velocity is not a
function of depth. As a further generalization of the results, the flow will be
allowed to be three-dimensional.

5.3.1 Continuity Equation

The three-dimensional conservation of mass equation for an incom-
pressible fluid is

ou Jdv w
—+—+—=

0 5.6
dx dy 9z (5:6)

This is true everywhere in the fluid. Integrating over depth, we have

n
f (6_u+@+@> dz (5.7)
-h\dx @8y 9z
n n
=f a—ua’z+f ﬂdz+w(x,y, n-wx,y, -h)=0
~h 9X -k gy

The Leibniz rule of integration is used to integrate terms such as the
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first two on the right-hand side of this expression. In general, it is stated as

J Blx)

i Joco O(x, y) dy (5.8)

B g
- 2 0w ) dy + ot oy 2

~ Q(x, ofx)) 24 ""‘(x)

Note that if the limits of the integral are constants relative to the variable of
integration, the differential operator can be moved into or out of the integral
without generating additional terms.

Therefore, the integrated continuity equation is rewritten as

n
—a_f udz—u(xaya n)%—u(xsyy—'h)'aﬁ'*'w(-xay, ﬂ)—W(X,y, _h)
ax J-h ox ox

a (" an d9h
+— | vdz-v(x,y,n)— - v(x,y,-h)—=0 5.9
3y J- (_yn)ay (x,y )ay (5.9)

If we define

n n
U=—1—— udz and V= L fvdz
h+nJ-k h+nJ-r

through the use of the mathematical definition of an average (thereby
incorporating any possible vertical variation in horizontal velocity), or if we
justassume that # and v are constants over the depth, U and V, the continuity
equation can be written as

vt +m)+ 210 + 1= vee, v, ) = v, y, -y O (5.10)
ax ay ady ay

3 oh
—ul, v, )y L ux, y, -h) 22+ wix, v, 1) — wix, y, —h) =0
ox ax

Further simplification will result through the use of boundary conditions.
The kinematic free surface boundary condition is, in three dimensions,

9 9 9
a u(x, y, n Ay v(x, ¥, 1) o w(x, y, 1) (5.11)
at ax ay

The bottom boundary condition for a fixed (with time) surface is

oh
Wik, v, —h) = —uCx, v, -h) 22— o(x, y, -y 2 (5.12)
ox oy
Substituting these conditions into the vertically integrated continuity equa-
tion yields the final form of the continuity equation

AU +m]  o[V(h+m]_ _dn
ox oy ot

(5.13)
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This equation can also be derived by considering a column of water of area
dx dy and height (h + 7). The continuity equation states that the sum of all the
net fluid flows into the column must be balanced by an increase of fluid in the
column, which, since it is an incompressible fluid, is manifested by a change
in height (volume) of the column (see Figure 5.1). This exercise is recom-
mended to the reader.

5.3.2 Equations of Motion

The equation of motion in the x direction for a fluid is [Eq. (2.35)]
du ou du du 1dp 1(61)“ 0Ty 9T
w— -+ + +—

—+U—+v—+
at ax ay az pox p

5.14
dx dy 02) (>19)

Using the equation for pressure under a long wave [Eq. (5.5)], p = pg(n - 2),
which states that the pressure is hydrostatic, the first term on the right-hand
side becomes

which is constant over depth. After adding the continuity equation, and

vertically integrating using Leibniz’s rule, as well as using the kinematic

boundary conditions at the surface and the bottom, the horizontal momen-

tum equation becomes

SV, 8 (g v(h+ ) + 2 (B UV(h +m) (5.16)
at ax dy

at_xx + %) + t:x(r’) - ‘sz(—h)

am 1 (
=—gh+n—+—~h+
8( ")ax ;( n ax oy p

—--»qx

ay

Figure 5.1 Control volume for conservation of mass. The ¢,, g, denote U(h + 1)
and V(A + 1), respectively.
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where
1 n
ﬂxx = = f u2 dz
(h+mU* J
1 n
,Byx= _"_—f uvdz
(h+nUV J-+
1 n
U=s—— | udz
h+ndJ-h

Equation (5.16) is based on the assumption that 7, and 7,, do not depend on
z. The B parameters are momentum correction factors, Sy, is slightly greater
than unity, and they are used in hydraulics in order to permit the substitution
of the squared mean velocity for the mean of the velocity squared.

The y equation becomes
V(h+n) o

O 1B, UV(h + )] + 5"; 8, VAh + )]

5.17
at ax ( )

e eth i nan (@+§@> L T - To(=h)
ay p dx Ay p

Quite often in practice the momentum correction factor is considered to be

unity, and, employing the continuity equation, the equations may be simpli-

fied to

U 14

U,y ol _ o, 1("_% ¥ %> L[t = td-h)]
ot ox ay ox p\dx dy ph+1n)

(5.18)
ﬂ/+ Uﬂ+ V?—K=— %+l<@+ﬂ>+ ! [T(n) — T2(=h)]

ot ox ay

ox dy ph+n

ay p
(5.19)

The governing equations, continuity and the equations of motion, are
nonlinear. To linearize them to facilitate analytical solutions, we again argue
that U, V, and n are small; therefore, their products are also small. The linear
equations become, in the absence of shear stresses:

Linearized continuity equation—

AUR) , a(Vh) __on

5.20
ax ay ot ¢ )
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Linearized frictionless long wave equations of motion—

hiths AP Sl | 5.21
at & ax ( )
QK =-g §_’7_ (5.22)
at ay

If the bottom is horizontal, the equations can be cross-differentiated to
eliminate U and V, yielding

2 2 2
o (M . "_’1> _on (5.23)
oxt ayt) ar

where C = \/gTh This is known as the “wave equation,” which occurs quite
often in other fields; it governs, for example, membrane vibrations and
planar sound waves. To compare with the previous asymptotic results, a
solution of the wave equation will be sought for only the x direction. The
solution to this equation for a progressive long wave is

n= g cos (kx — at) (5.24)
Substituting into the x equation of motion [Eq. (5.21)] yields
o _ g a k sin (kx - ot) (5.25)
at 2
or
U=g£kcos(kx—at)=£ (5.26)
20 h

the same as found by asymptotic means before.
Substituting into the continuity equation yields C* = gh, the long wave
form of the dispersion relationship as derived in Chapter 3.

5.3.3 The Energy and Energy Flux in a Long
Wave

For a progressive long wave, the total average energy may be obtained
as before as the contributions from the kinetic (KE) and potential energy (PE)
components. Because the vertical velocity component is much smaller than
the horizontal velocity component, it is not necessary to account for the
vertical velocity (for the same order of accuracy). The appropriate expres-
sions are

1 fx+L fO U2 d d
KE =— —dzdx (5.27
L JuP3 )
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and

PE- L f " f "pgth + 2ydzdx -PEE (528
L Jx ~h 2
Substituting Egs. (5.24) and (5.26) for U and #, respectively, and integrating,
it is found that
KE = PE = & pgH?
and, as before, the total energy per unit surface area is
E=KE + PE =} pgH* (5.29)
The average energy flux can be shown to be
F =EnC = E+/gh

which again shows that the wave energy travels with the phase speed of the
shallow water wave. If we examine the change in wave height due to changes
in water depth and channel width via conservation of energy flux, we find

that
1/4 1/2
we=a (5] (3)
h b,

which is the shallow water approximation to Eq. (4.116). For the special case
of b, = b,, this relationship is called Green’s law.

5.4 ONE-DIMENSIONAL TIDES IN IDEALIZED CHANNELS
5.4.1 Co-oscillating Tide

As a simple example of tidal wave propagation into a channel, consider
along wave propagating from the deep ocean into a channel of constant depth
which has areflecting wall at one end. This configuration is depicted in Figure
5.2. The wall requires that there be an antinode of a standing wave system
there.

Adding two long waves (remember, the equations are linear and super-
position is still valid), we have

’1='1i+nr=gcos(kx—at)+gcos(kx+at)

= H cos ot cos kx (5.30)

a pure standing wave system as before. Note that the total water surface
elevation has a range twice that of the incident tidal height and o = 27/7T,
where 7 is the tidal period. For a semidiurnal tide, two highs and two lows
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t~—~\u4
%
e o=

% 4
x =1

Figure 5.2 Co-oscillating tide in a channel of length /.

during a lunar day, the tidal period is 12.4 h. The distance to the node is found
by equating the spatial phase function of 77 to /2, that is, finding the phase
position for which 7 equals zero.

n

kx,,ode =— (531&)
2
or
L
Xnode = — 5.31b
ode =7 ( )
The range of the tide at the entrance to the channel is
2|{n(Dl =2H | cos ki |- (5.32)
Relating #7(/) to 7(0), the amplitude of the tide at the wall, we have
) p— (5.33)
n(l) [cos &/ |

For channels for which / approaches (2n — 1)(L/4)and n = 1, 2,. .., the ratio
In(0)/n(!)| approaches infinity (i.e., this represents a resonant condition).

5.4.2 Channels with Variable Cross Sections

In deriving the equations of motion and continuity, had we not taken a
unit width in the derivation, but considered a channel of width b, the
linearized one-dimensional equations valid along the channel centerline
would have been

AURb) __, o

5.34a

ox ot ( )
oU an

b—=-gb— 5.34b

ot & ox ¢ )

These can be verified by integrating Eqgs. (5.6) and (5.14) with respect to y
prior to the integration over depth. Differentiating the first equation (5.34a)
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with respect to time,

2
ai(hb "a—(t]> b ‘;T’z’ (5.35)
X
Substituting the second equation (5.34b) yields
2
& i(bh 3—") _9m (5.36)
b dx ax/ ot

which reduces to the wave equation if b and / are constant. As in the previous
case for the constant depth basin, assume that n(x, ¢) can be written as
n(x, t) = n{x) cos at. The equation then becomes

& i[bk M} + =0 (5.37)
b dx dx

Several examples of the application of this equation to estuaries with linearly
varying widths, depths, or both are provided by Lamb (1945) in Article 186.
One case is discussed below. In all these examples, the resulting wave height is
different from that predicted by Green’s law, as Eq. (5.37) allows for the
reflection of waves by the topographic changes, while Green’s law assumes
that the bathymetric changes are so gradual as to not cause reflection.

Example 5.1

Consider an estuary of uniform depth whose width increases linearly (from zero) with
distance toward the mouth at x = /. Determine the tidal surface elevations within the
estuary, due to the co-oscillating tide.

Solution. Let b = ax, where a is equal to b,/ and b, is the width of the bay at the
mouth. Substituting into Eq. (5.37) the following equation results directly:

2
AN, L) , payiey~ 0 (5.38)
dx X dx
where k* = 0°/C? = 6°/gh. This equation is a Bessel equation of order zero which is
solved in terms of Bessel functions. The general solution is
n(x, t) = [CJo(kx) + C,Yo(kx)] cos ot (5.39a)

where C; and C; are constants to be determined. At x =0, the end of the channel,
Yo(0), is infinite, which would be unrealistic for 7(0, ¢); therefore, C, = 0. To evaluate
C,, the tide at x = /, the mouth, is taken to be (H/2) cos ot, where, again, H is the local
tide range.

1!, t) = C\Jo(kl) cos at = g cos ot

or

__H
2Jo(kl)

1
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Jo(kx) *
1.0

Figure 5.3 Standing waves in a pie-shaped estuary of uniform depth.

Finally, the solution is

cos ot (5.39b)

As shown in Figure 5.3 the zeroth-order Bessel function calls for a large increase in
tidal height into the estuary or bay, with a corresponding wave length decrease in the
near field (about 25% over the first half wave length). If the estuary length /
corresponds to a zero of the Bessel function, then again the possibility for resonance
occurs.

5.5 REFLECTION AND TRANSMISSION PAST AN ABRUPT
TRANSITION

A more dramatic example of long wave reflection (and transmission) occurs
when there is an abrupt change in depth or channel width. Also in this case,
Green’s law does not apply due to the presence of a reflected wave. Figure 5.4
shows the geometry of the transition region. The fluid domain is divided into
regions 1 and 2 as shown. The incoming wave #; will be assumed to propagate
in the positive x direction with height H,. At the step, it is expected that a
portion of the wave will be reflected and some of it transmitted. Therefore, in

n; 0 z Ty
—_— . —— .,
x i
Region 2 | /3 b, -+ X 'bz —1
h
1 ) 7 Ny — 00

‘ Region 1 /

Y Z Z

Figure 5.4 Elevation and plan views of an abrupt channel transition,
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each region, the total wave forms are assumed as follows:

nm= m+m=%cos (kix —at) +%—’cos tkix +at +¢)

o (5.40)
h=1,= ?‘ cos (kyx — ot + €)

where the subscripts i, , and ¢ signify incident, reflected, and transmitted,
respectively. The difference in sign modifying ot in the phase function for the
reflected wave means that this wave is propagating in the negative x direc-
tion. In each region the angular frequencies are the same; however, the wave
numbers are different due to the change in water depths. The two phase
angles, €, and €, are included to allow for the possible phase differences
caused by the reflection process.

At the step there are two boundary considerations that must be met by
the wave forms 7, and 7. First (at x = +J, where 4 is infinitesimally small),
the water levels on each side of the step should be the same, as, from the long
wave equations of motion, any finite water level change over an infinitely
small distance 26 would give rise to infinite accelerations of the fluid
particles. Second, from continuity considerations, the mass flow rate from
region 1 must equal that into region 2. For a homogeneous fluid, this merely
reduces to matching volumetric flow rates between regions. Applying the first
condition gives us

n+n=n atx=0 (5.41)

or, through a trigonometric expansion after substitution,

<H, H, H, > ) (H, ) H, . )
COS Olf — + —COS €, —— COS €, — SIn otl — SIn €, + — S1N € =0
22 2 2 2

(5.42)

As this condition must be valid for all time ¢, two independent condi-
tions result by equating each bracketed term separately to zero:

H;+ H,cose,=H, coseg (5.43a)
H,sine =—-H, sin €, (5.43b)

The continuity of flow condition can be written in terms of the horizon-
tal water particle velocity of the wave multiplied by the cross-sectional area
for each region [from the width-integrated continuity equation, Eq. (5.34a)].

(Ubh), = (Ubh),  atx =0 (5.44)
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or, recalling that for a long wave,
_nc
h
in the direction of the wave, we can write
bCi(mi — 1) = b,Con, (5.45)

Again we have two conditions, after trigonometric expansion and
equating the terms modifying the cosine and sine, respectively:

blclH,' - blC,H, COS €, = szzH, COS €, (546)
b,C\H, sin €, = b,C,H, sin €, (5.47)
Denoting the reflection and transmission coefficients by «, (= H,/H))

and k, (= H,/H)), respectively, the four equations (5.43a, 5.46, 5.43b, and
5.47) in terms of the four unknowns (x,, x,, €,, and €,) are

1 + K, cos € = K; COS €, (5.48)

1 — K, cos€ =k, boCs COS € (5.49)
11

K, sin €, = —K; SIN.€, (5.50)

K, sin €, = K, by sin € (5.51)

1-t

Subtraction of the last two equations yields

x,(l + 22_?_2) sing =0 (5.52)

lCl

which requires that €, be xnz for non-trivial values of x,. Multiplying Eq.
(5.50) by b,C>/b,C, and adding to Eq. (5.51) also indicates that €, = +nn for
nontrivial solutions. The four governing equations can therefore be con-
densed to the following two:

1 + K, = £K, {5.53)

(5.54)

in which the plus and minus signs follow from the requirements on €, and €,.
Itis only known that the signs on the right-hand side of each equation are the
same and those on the left-hand side are in opposition. The correct signs will
be determined later from physical reasoning. Adding Egs. (5.53) and (5.54),
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we find that

2

KK=%———7—
1+ szg/b;C;

(5.55)

and here it is clear that the + sign is to be taken because for b,C, = b,C,, that
is, the case of a uniform channel, the transmission coefficient is obviously
unity. Multiplying Eq. (5.53) by b,C,/b,C, and subtracting from Eq. (5.54)
gives us

Krz{(bzcz/blcl)— IJ (5.56)
(szz/blcl) +1

and here the minus sign is to be taken since for the limiting case of a vanishing
channel, 5,C,/b,C, = 0, the reflection coefficient should be +1, that is,

_ 1- szz/blcl

y = (5.57)
1+5b 2C 2/ b 1 C]

Several interesting cases can be examined for b, = b,. If the long wave
assumptions are still valid, yet A, >> h,, then k, -2 and x, - 1. This case
corresponds to a pure standing wave in region 1 and transmitted wave of the
same height as the standing wave. But if the situation is reversed, that is, if
long waves in very shallow water propagate to a region of greater depth,
h, >> ki, then k; » Oand k, ~ 1. (A negative reflection coefficient means only
that the phase of the wave €,, which we had taken as zero degrees, is shifted to
180°.) It is thus very difficult for waves to propagate from shallow to deeper
water. This in fact is true for short waves also. [Hilaly (1969) shows interesting
experiments for waves unable to propagate over steps.] Figure 5.5 presents
the variations of k, and «; with the parameter (b,/b.)\/F2/ %1

Dean (1964), using this approach and Eq. (5.37), has examined numer-
ous cases of cross-sectional channel changes and obtained the transmission
and reflection coefficients.

5.5.1 Seiching

In previous sections, the oscillations of the water in a basin were forced
by the tide at a frequency corresponding to the tidal frequency. However, any
natural basin, closed or open to a larger body of water, will oscillate at its
natural frequency if it is excited in some fashion, such as by earthquake
motion, impulsive winds, or other effects.

To predict these oscillations, the equation developed previously can be
used. As an example, the seiching in a long rectangular lake with essentially a
constant depth will be examined first. A solution to Eq. (5.23) for standing
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Kk, and K,

-1 i | ! | | | o | | | |
1 2 3 4
b h
4=2/22
by T om

Figure 5.5 Reflection and transmission coefficients for long waves propagating
past an abrupt transition.

waves in this basin is, as before,
n= % cos kx cos ot. (5.58)

except that o and k are both unknown. At the ends of the basin, the horizontal
velocities must be zero. This requirement can be satisfied using Eq. (5.21) or
using the knowledge that the antinodes must be situated at the walls, x = 0, /.
This requirement yields sin kx = 0 for x = 0, /. Therefore, k! = nn, where n is
the number of oscillations of the wave within the basin (equivalently the
number of nodes). Substituting for k gives us

A
n

(5.59)

For three values of n, the wave lengths are shown for the basin in Figure 5.6.
Each possible type of oscillation is called a mode, and the mode that occurs in

e

% % Z

i~ | N N\

N

//v 77, A /

n=1 n=2 n=3

Figure 5.6 Standing waves in a simple rectangular basin. The first three modes are
shown.
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seiching is determined by the cause (forces) that induces seiching. In reality,
however, the lower modes are most prevalent since the energy in the higher
modes is dissipated more rapidly.

To determine the period of seiching, the dispersion relationship for
shallow water waves is used, with Eq. (5.59):

€= = Jeh

or

21

N

This formula is known as the Merian formula. Proudman (1953) gives several
examples for actual lakes. For Lake Baikal in Siberia, the length is 664 km
and the average depth is 680 m. The Merian formula predicts 7= 4.52 h,
compared to a measured period of 4.64 h.

For more complex one-dimensional basins, a modified Merian formula
can be used. Wilson (1966) has summarized the results for a number of
geometries and these are presented in Table 5.1. More recently, Wilson (1972)
has developed more analytical seiching models and also reviews the litera-
ture.

T

(5.60)

5.6 LONG WAVES WITH BOTTOM FRICTION

The bottom shear stress 7, retarding the motion of the fluid in unidirectional
open channel flow can be expressed in terms of a quadratic friction law:

2
T, = A% (5.61)
8

where fis the Darcy-Weisbach friction factor and U is the fluid velocity. This
equation has been developed through dimensional analysis and experimental
data have been used to develop values of f. Further discussion of bottom

friction appears in Chapter 9.
For an oscillatory flow, it is clear that as the fluid reverses direction, so
also must the bottom friction. Therefore, an absolute value sign is intro-

duced.

T, = pruUIU| (5.62)
8
For wave motions, the bottom friction is a nonlinear function and due to the

absolute value sign becomes difficult to work with directly. A common
procedure is to linearize the friction term.
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Consider U as a periodic function in time, U = U,, cos at, where U, is
the maximum magnitude of U. If we expand the shear stress term in a Fourier
cosine’ series, we have

U|U| =ao+ 2 ancos hot (5.63)
n=1
where
Uz T
ap=—2= f cos ot |cos at) dit (5.64)
T Jo
and
T
a,= 2—U~2’ﬂ , cos ot |cos at| cos not dt (5.65)

Evaluating several of these integrals yields

a0=0
805,
ay=——
3z
a2=0
8U;,
ay=
15m

All of the even harmonics are zero while the odd harmonics are nonzero. It is
interesting that the quadratic friction law has introduced higher harmonics
(which is expected as friction is a nonlinear process). Keeping only the first
term in the Fourier expansion (recognizing, however, that the next term in
the series expansion is only one-fifth of the leading term),

AU, pfUnU (5.66)

Ty =" cos gt =
3n 3n
This linearization was first developed by Lorentz (1926) utilizing a dissipa-
tion argument and is sometimes referred to as the Lorentz concept. For
uniform depth the vertically integrated equation of motion in the x direction
can now be written with 7, = 7,,(~h), from Eq. (5.18), as

U_ o _wlh)_ o 4y (5.67)
ot ax ph ax

where A = fU,./3nh, typically a small number, much less than unity. The
continuity equation, Eq. (5.13), remains unchanged, of course. Cross-
differentiating the two equations assuming A is locally constant and substi-

'A cosine series is chosen as U and 7, are even functions of time.
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tuting, the wave equation can be derived, including friction:

62'7+Aa'7 hﬂ

Py Pyl g Py (5.68)
5.6.1 Standing Waves with Frictional Damping
If a solution is assumed of the form

n= % oyt) cos kix (5.69)

where k remains fixed, such as would occur with a standing wave in a basin
with fixed length, and flo,t) is some unknown function of time, then the
equation is

&f  df
<~ +A4AZ+ghk¥f=0 5.70
A te if (5.70)
The total solution is then found to be
2
n= el e cos [o, 1- 14 t} cos kx (5.71)
2 4\ o;

where g; = k;C; (the subscript [ refers to undamped conditions), C; = \/éz
and H; is the initial wave height (at ¢ = 0), or

H,

n= 5 e cos a,t cos kx

where

or U= ZIILCIIh Vo2 + a2 e sin (0,1 + €) sin k;x (5.72)
I
where
e=tan' %

O,

The parameters g; and o, are plotted in Figure 5.7 versus the ratio 4/o;.
As g, decreases with friction, the period of oscillation increases; friction slows



Sec.5.6 Long Waves with Bottom Friction 151

A= &"
3nh
1
e Al o? —_—
Decreasing friction Increasing friction

Figure 5.7 Wave number and phase angle for a damped standing wave.

the wave motion. It is clear that the damping ratio 4/g; in the expression for
o, must be less than 2; otherwise, excessive damping occurs and there is no
wave-like motion (such as might occur with a basin full of molasses).

The relative reduction in amplitude over one wave period is a constant
value and is expressed as

ne+T)_ o AT _ pAj0) _ pooiT (5.73)
()
which decreases rapidly with increasing g; or A. For example, for A/o; as

small as 0.05, this ratio is 0.85, or a 15% reduction in height within one wave
period.

Example 5.2

Shiau and Rumer (1974) carried out a series of experiments to examine the decay of
shallow water standing waves (seiches) in a basin. The experiments were conducted in
very shallow water (0.15 < % < 8.5 cm). Assuming that the motion is laminar, a
friction factor can be chosen to compare the above model with their experimental
results. Stokes’s (1851) second problem, that of an oscillating (with frequency o) flat
plate beneath a still fluid, yields a shear stress on the plate with a magnitude

Ty = pJov Un, (5.74)

where v is the kinematic viscosity of the fluid and U,, is the magnitude of the
oscillating velocity. This problem is directly analogous to the case under considera-
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Figure 5.8 Decay modulus versus Proudman number for an assumed laminar
friction factor. [From Shiau and Rumer (1974). Equation (21) in figure refers to
their solution.]

tion; the only change is that of the reference frame, which is taken as one that is fixed
to the oscillating plate.

Since Eq. (5.74) for the.shear stress is linear and the preceding treatment
represents a linearized form of the shear stress, the laminar flow problem can be
treated directly. Comparison of Egs. (5.74), (5.67), and (5.18) shows that

4o (5.75)

The Shiau and Rumer study determined the decay modulus &, which can be obtained
from Eq. (5.73) as

a=™ (5.76)
or

or from Eq. (5.75) can be expressed as

a-’ vg " (5.77)

where P is the Proudman number, P = v*/gk?h°. Figure 5.8 shows the theoretical value
of a compared with the experimental data. As can be seen, the agreement is excellent
for this case with laminar conditions. For deeper relative water depth, when the flow
conditions become turbulent, the friction factor becomes more like that for turbulent
open channel flow.

5.6.2 Progressive Waves with Frictional
Damping

For a periodic progressive wave, the free surface is assumed of a similar
form as before, except for a spatial amplitude dependence,

n= % e™** cos (k,x - ot) (5.78)
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Figure 5.9 Wave number and phase angle for a damped progressive long wave.

The &, and k; are determined from the differential equation, Eq. (5.68):

1/2 2
T Y L e
\/E o 8\ o

where the second expression is valid for small A/c and k; = g/+/gh.

> 1/2
,~=ﬁ[ 1+ 4\ 1} ~ %’é for small A/ (5.80)
o

V2 o
These wave numbers are plotted in Figure 5.9 as a function of A/0. As can be
seen, k, increases with A/o; therefore, friction decreases the wave length of
the wave, thus slowing it.
The change in wave amplitude over one wave length of travel can be
readily found to be

nx +L) = ekl — grtmkik) . p~mAlo) (5.81)
n(x)
which decreases rapidly with increasing 4/0. For example, with 4/ = 0.05,
this ratio is 0.85, or a 15% reduction in wave height. The horizontal velocity is
then found by the same means as before.

Hoe hix

2K+

cos (k,.x — gt - €) (5.82)



154 Long Waves Chap.b

where

5.7 GEOSTROPHIC EFFECTS ON LONG WAVES

The earth’s rotation plays an important role in long wave motion when the
Coriolis acceleration becomes significant, or equivalently when the wave
frequency o is the same order as f;, the Coriolis parameter defined as
2w sin ¢,where ¢ is the earth’s latitude measured positive and negative in the
northern and southern hemispheres, respectively, and o is the rotation rate
of the earth, w = 7.27 x 107 rad/s™. Typically, the Coriolis acceleration can
produce significant effects in tidal waves.

The frictionless equations of motion for long waves on a rotating
surface are modified by the introduction of two terms as follows:

é_g+Ua_[_]+V_a.g_f;V=_g§—’—z (5833)
at ax ay ax
Vv v pu——g (5.83b)
ot ax ay ay

where shear stresses have been neglected. The continuity equation is the same
as before:

8_77+6U(h +77)+6V(h +17)=0
ot ax ay

To illustrate the effects of the Coriolis acceleration, consider the propagation
oflong progressive waves in an infinitely long straight canal in the x direction
with a flat bottom. The transverse velocity V is considered negligible. The
equation of motion in the x direction, therefore, is not affected by the
presence of the Coriolis force. In the y direction the equation reduces to

(5.84)

fU=-g— (5.85)

which states that the Coriolis force is balanced by a cross-channel hydrostatic
force in the form of a water surface slope, which varies in magnitude and sign
with the longitudinal velocities in the channel.

If we linearize the equation of motion in the x direction (5.83a), a
solution can be assumed as

n=n(y) cos (kx — ot)

U= % n(y) cos (kx — at)
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The y equation of motion is now

_fig_q:fi_” (5.86)
g h dy
or
~ H
=_e_c_V/C
g 2

where C = /gh. The total water surface profile and horizontal water profile
motions are now

n= % e7'C cos (kx — ot) (5.87)
U= g % e7'C cos (kx — ot) (5.88)

At the wave crest, the wave amplitude and velocity decrease across the
channel (y increasing) while at the wave trough (when the velocities are
reversed) the amplitude increases. (Recall that we are dealing with a right-
handed coordinate system.) The wave is called a Kelvin wave after Lord
Kelvin (Sir W. Thomson), who derived an expression for it in 1879. The speed
of propagation of the Kelvin wave is found by the continuity equation and it
is the same as any other long wave, C = \/gh.

The deviation in tidal ranges between the French and English coasts of
the English channel can be largely explained by a northward-propagating
Kelvin wave, which causes the French tides to be roughly twice as large
(Proudman, 1953).

5.7.1 Amphidromic Waves in Canals

Consider the superposition of two Kelvin waves, traveling in opposite
directions but with the same height:

ﬂ=%e‘f‘y’c cos (kx—al)—gef‘wc cos (kx + at) (5.89)

The resulting water surface elevation is always zero at the origin, (x, y) = 0;
however, the wave amplitudes reinforce across the channel. The wave pro-
pagating in the positive x direction has a surface slope increasing in the
negative y direction, while the wave propagating in the negative x direction
has a positive surface slope in the positive y direction. Lines of maximum
water surface elevation may be found by maximizing 7(x, ¢) as a function of
time,

an_,
at
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or, after some rearranging,

fy

tanh c” —cot ot tan kx (5.90)

Near the origin the equation for the tidal maxima is given by

Jy

—- = —kx cot ot
C
or
y=- Chx cot at (5.91)

c

which is a straight line varying with time. A plot of the lines of high tide as a
function of time is shown in Figure 5.10. These lines are called cotidal lines.
The origin is called an amphidromic point and the tides are seen to
apparently rotate around the origin. However, there is no transverse V
velocity and the motion is purely in the X direction. Amphidromic tides of
this nature are frequently seen in semienclosed bodies of water; Proudman
(1953) cites the Adriatic Sea and Taylor (1920) discusses the Irish Sea. The
mechanism for opposite traveling Kelvin waves requires a narrow channel in
order that the motion be rectilinear and either two connected seas or a
reflecting end to the channel. Taylor (1920) discusses the problem of the
reflection of Kelvin waves and also seiching in a rectangular basin with the
influence of Coriolis forces. For a further discussion of long waves with
Coriolis effects, see Platzman (1971).

ot = 60°,240° gt =30°,210°

\

/
\ / '
of = 90°, 270° AN S/ /.-/
\ -\. /..
l - l > kx
-1.0 - g 1.0
-~ // .
e / \.

[

ot = 120°,300° o =150°, 330°

Figure 5.10 Cotidal lines.
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5.8 LONG WAVES IN IRREGULAR-SHAPED BASINS OR
BAYS

Quite often, a study of long waves or tides in a basin, lagoon, or near the coast
requires the use of a computer, due to the complicated bathymetry, basin
shape, and forcing due to winds or tide. To study these problems adequately,
recourse must be made to computer techniques. Numerous studies have been
made of tidal propagation by computer—too numerous to mention, in fact;
however, many are referenced in two papers by Hinwood and Wallis
(1975a,b).

5.9 STORM SURGE

The long wave equations can be used to describe the change in water level
induced by wind blowing over bodies of water such as a continental shelf
(Freeman et al., 1957) or a lake. Although the wind shear stress is usually very
small, its effect, when integrated over a large body of water, can be cata-
strophic. Hurricanes, blowing over the shallow continental shelf of the Gulf
of Mexico, have caused rises in water levels (storm surges, but not tidal
waves!) in excess of 6 m at the coast.

The wind shear stress acting on the water surface t., is represented as

T, = pkW|W| (5.92)

where p is the mass density of water, W the wind speed vector at a reference
elevation of 10 m, and k a friction factor of order 10~°. Numerous studies have
been made for k (see Wu, 1969) and one of the more widely used sets of results
is that of Van Dorn (1953),

12x10°%  |W|<W.

K = (5.93)

2
1.2x 1078 +2.25 x 10‘6<1 - ) , W[ > W,

W.
IW]
where W, = 5.6 m/s.

If we adopt a coordinate system normal to a coastline, and the wind
blows at an angle ¢ to the coast normal (Figure 5.11), then the onshore wind
shear stress is 7., = |1,| cos 0. The linearized equation of motion in this
direction is [from Eq. (5.18), neglecting lateral shear stresses]

UW_ g0, — L {e () - Tl )] (5.94)

4
ot ax ph+n
After a long time, the flow U in the x direction must be zero, due to the
presence of the coast, and therefore the steady-state equations show that the
wind shear stress is balanced by the bottom shear stress as well as a hydros-
tatic pressure gradient. As we can no longer define the bottom friction in
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Figure 5.11 (a) Plan and (b) cross-sectional view of the coast.

terms of the mean (zero) flow U, it is convenient to define a factor » such that

nsz(") = sz(ﬂ) - sz(_h)
or

To(—h)
Tax(1)
This factor, which lumps the effect of the bottom friction in with the wind
shear stress, is greater than 1, as the bottom shear stress in our convention
(Figure 2.4) is negative. Typical values are n = 1.15 to 1.30 (Shore Protection
Manual, 1977).
The equation is now

n=1 (5.95)

on _ _ntum) (5.96)
ax pg(h+n)

Example 5.3

Calculate the wind setup due to a constant and uniform wind (1. is not a function of x)
blowing over a continental shelf of width /. Assume (a) that the depth is a constant, Ag;
and (b) that 4 is linearly varying, 2 = ho (1 — x/I).

Solution. To begin, the governing equation can be written as
a nty,
(h ) ST = 2
ax pg
(a) Since A, is not a function of x,
1d(ho+n)* _nt,,
2 dx P8
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Solving gives us

2nt.x

(ho + 1) = +C

To evaluate the constant of integration, we require the setup to be zero at x = 0. This

condition arises from the fact that where 4 is very large, there is no surface gradient
(why?) and thus no setup in deep water. After substitution for C, we have

(h0+n)2=M+hg
Pg

nx) =+ V h3+ 2ntnx ho (5.97a)
Pg
In dimensionless form, 7 is
”—("—)=\/1+2”’“1’—‘-1=V1+—2’3-1 (5.97b)
ho pghd | !

where A = nt,,.//pgh?, a ratio of shear to hydrostatic forces.
(b) For a sloping bottom, the governing equation, Eq. (5.96), can be rewritten as

or

(h+ n)—d(h ) _ (h+1) dh _nt, (5.98)
dx dx. pg

where dh/dx = —h,/!, a constant. Separation of variables leads to
_(h+ndh+n)

2
h} (h +n A)
I\ ho
with 4 again defined as nt.,//pgh.

Solving yields
X+ C=IK1 —M> ~A¢fn (w-Aﬂ
ho ho

Evaluating C as before, we have

h+n_A
x=1 <l—w>——AZn I (5.992)
h 1-4

0

=dx,

or, in dimensionless form,
h hh+ 1o
’7‘ - (1 _ntn ”) —Aem\| (5.99b)

0

These two solutions [Egs. (5.99b) and (5.97b)] are plotted in Figure 5.12
to show the effect of the bottom slope on the storm surge. Clearly, the sloping
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Figure 5.12 Dimensionless storm surge versus dimensionless distance of a conti-
nental shelf for two cases of dimensionless wind shear stress.

bottom causes an increase in the storm surge height; this can be explained by
referring to Eq. (5.96), which indicates that for a given wind stress, the water
surface slope depends on the local water depth in such a way that the
shallower the depth, the greater the slope. In Figure 5.13, the storm surge at
the coast (x// = 1) is shown for a sloping shelf as a function of the dimension-
less onshore shear stress. The solution for x// is usually obtained for given
values of (k + n)/ho. However, to obtain (4 + n)/h, directly for a given x//
value, then it is usually more convenient to solve the equation iteratively for
(h + n)/ho. The Newton-Raphson technique works well here.

The solution of Egs. (5.99) is generally not computed for x shoreward of
the shoreline (x// = 1); however, it is often useful to determine backshore
inundation (i.e., when £ is negative). This can be done with this equation up
to the point where
_ nT,,

w+m?

At this point the water surface slope is equal to the bottom slope [from Eq.
(5.98)] and a uniform steady surge is reached, analogous to steady open
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Figure 5.13 Storm tide for x// = 1.0 for a sloping shelf. For the case of no Coriolis
force, the ordinate is equal to n/h,, the storm surge at the coast, as # =Qat x/[ = 1.

channel flow, in the sense that the downstream component of fluid weight is
supported by the surface and bottom shear stresses. In a practical problem,
the backshore region terminates in a wall or else significant flooding can
occur.

5.9.1 Bathystrophic Storm Tide

For large-scale systems the influence of the Coriolis forces cannot be
neglected. If the wind blows at an angle @ to the coast, such that a longshore
current is generated, then if the current is moving in such a direction that the
coastline is to the right (in the northern hemisphere), the Coriolis force
requires a balancing hydrostatic gradient, as in the Kelvin wave. This gradi-
ent adds to the surface gradient induced by the wind. If the wind were blowing
in the opposite direction, of course, the Coriolis forces would reduce the
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surge; however, large storms, such as hurricanes (due to their circular wind
patterns), will induce longshore flows in both directions.

The analytical solution will be developed for a wind that begins
abruptly at f = 0, with a magnitude W and a direction 6. To simplify the
problem, we will assume that (a) the onshore flow and the return flows are
continually in balance, so that U = 0 for all times, and (b) the wind system is
uniform, so that there is no variability in the y direction. Assumption (a) is
not always true, as a certain amount of water must flow into the shelf region
to generate the surge. For these conditions the equations of motion in the x
and y directions are

© hem [d(h +n) _dh _fc_V} _ Mty (5.100)
dx dx g pg
_ _ 2
W _Tw-Tf-h)_ T, SV (5.101)

ot plh+n) _p(h+n)_8(h+17)
where a Darcy-Weisbach friction factor fis introduced for the bottom shear
stress in the y direction. If we now consider n << h, we can solve the last

equation:
V= 8_k_;m_9 W tanh (V___"f o2 %) (5.102)

where k is defined in Egs. (5.92) and (5.93). The longshore velocity increases
from V =0 at ¢ = 0 to the steady-state value of

o= |/8ksinb (5.103)

f
for ¢t = oo. Effectively, the time to steady state is determined by setting the V'
argument of the hyperbolic tangent to z (tanh 7 = 0.996) or

kasm oW, . (5.104)
8

fo_ T (5.105)

W‘ /kf s;n 0

The time to steady state varies with the depth, with the shallower depths
reaching the terminal velocity more rapidly than the offshore regions. As an
example, for & = 10 mand W = 20 m/s, about 8 h is necessary for steady state
to be reached. At this time, Eq. (5.103) shows that Vs is about 3% of the wind
speed.

Solving for ¢, we get
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If V is now introduced into the x-momentum equation,

h + 1) [M’f—”) _4h Iy tanh z'} = 2w (5.106)
dx dx g pg

t,=kasin6E/_t
8 &

Again solving by separation of variables yields

where

h+n A%
X h+n . hg
A EERASLILL Ay - 107
- <1 h(,) A*¢n L AF (5.107)
where
yre nt, l*
pghy
and
1*=1/<1 —f, \/Mﬂtanh z'> (5.108a)
S gho
or
1*=1/<1 ~f \/Sk S 0K1> (5.108b)
f gho
for large .

This solution in dimensionless form is exactly the same as the solution
for a surge over a sloping beach without the Coriolis terms except that / is
replaced by /*, and we see that the Coriolis force simply serves to “modify”
the bottom slope.

The effect of wind angle becomes important in this problem as t,, is
important for the direct wind stress component of the surge, while 7,, is
important for the Coriolis force contribution. Figure 5.14 shows the effect of
wind angle for the setup at the shoreline at x = /.

5.10 LONG WAVES FORCED BY A MOVING
ATMOSPHERIC PRESSURE DISTURBANCE

Consider the case of an atmospheric pressure disturbance p, moving with
speed U in the positive x direction:

po=AUt - %) (5.109)
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Figure 5.14 Maximum storm surge at x = / from the bathystrophic storm tide.

where the parentheses indicate a functional relationship. The governing
equations include the momentum and continuity equations. The linearized
momentum equation is

ha—u—=—ghﬂ—ﬁ% (5.110)

ot ox p ox

The continuity equation will be developed by selecting a coordinate system
moving with the wave that renders the system stationary with a horizontal
velocity component # — U. Realizing that the discharge Q past any given
point is invariant and that the wave-induced particle velocity is proportional
to the water surface displacement,

O=u-U)y(h+n=-Uh

or
u=U-"T_~yl (5.111)
h+n h
which has been linearized. Assuming 7 of the form
n=GUt - x) (5.112)
it is clear that
n_ -U on (5.113)

ot dx
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and combining Eqgs. (5.109), (5.110), (5.112), and (5.113), we get

o . n h dpo
R ghy = 220
ax( gh) p ox

which is an exac¢t differential and can be integrated from a location from
where both 7 and po are nonexistent to

h U -gh
From Eq. (5.114), it is seen that for a static condition, 7, = —po/pg, whereas for
cases in which the speed of translation approaches that of a long free wave

(C= \/EE) there is an amplification which becomes unbounded due to the
lack of any damping terms. Moreover, when U < C, the pressure and dis-
placement are exactly out of phase, whereas for U > C, the two are in phase.
For values of U >> C, the response approaches zero as the time interval over
which the force is applied is not sufficient for the liquid to respond. The solid
line in Figure 5.15 presents the amplification factor |n]/{7,| for no damping

n__pop (5.114)
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Figure 5.15 Dynamic response of translating pressure disturbance, with and
without friction.
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in which 7; is the static water displacement for a pressure anomaly,
In,| =201 (5.115)
174

It is noted that the effect of friction is to reduce the maximum amplifi-
cation due to a finite value as shown by the dashed line in Figure 5.14; see also
Problem 5.19.

Finally, it is noted that the “forcing function” present in Eq. (5.109)
could have been generalized to include the surface shear stress.

5.11 LONG WAVES FORCED BY A TRANSLATING
BOTTOM DISPLACEMENT

A displacement of the bottom 7, which translates at speed U, will cause an
associated surface displacement, much as in the case for a moving pressure
displacement discussed in the preceding section. In this case, the linearized
momentum equation is simply

ou an,

—=—g— (5.116)

ot ox
where 7, and 7, pertain to the air-water and bottom interface displacements,
respectively, given by the forms

Mo =fo (Ut — x) (5.117a)

m =S (Ut - x) (5.117b)

The continuity equation can be determined in the same manner as before:
_ Um-n) _ UO -1 (5.118)

Ch+(m-m) A
Combining Egs. (5.116), (5.117), and (5.118), the following exact differen-
tial results:

2
%=< v >% (5.119)
dx U*-gh/ ox
or
2
=g o (5.120)

which, as in the previous case, increases without bound as U approaches the
speed, C (= \/gTh) of a long free wave. For U = 0, of course, there is no upper
surface displacement and for large U, the upper surface displacement 7,
approaches the lower surface displacement #,. The latter can be interpreted as
due to the bottom motions occurring so rapidly that the upper surface does
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not have time to respond laterally (i.e., for the liquid to be mobilized in the
horizontal direction).
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PROBLEMS

5.1 Compare the fundamental periods of seiching for a long narrow basin with
length 1 km and maximum depth of 10 m, if its bottom is flat or sloped.
Explain the differences.
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5.14

Long Waves Chap. 5

Making reasonable assumptions, calculate the time necessary for the seiching
in Problem 5.1 to reduce to 10% of the original value.

Determine the water surface elevation of a long standing wave in an estuary
with linearly increasing depth and constant width. What assumptions have
been made? 4 = A at x =/, the mouth of the estuary.

Show that a linearized equation for seiching in two dimensions would be

2
2of2) 30
ar’ ax\ adx/ ay\ ay

With this equation, determine the seiching periods in a rectangular basin of
length / and width b with constant depth 4.

Verify that long wave reflection from an abrupt step conserves the flux of wave
energy.

An edge wave is a progressive wave that propagates parallel to a coast. For a
sloping beach given by 4 = mx, show that

n= Ae ™ L, (2A.x) cos (A,y — at)

is a solution where L, (24,x) is the Laguerre polynomial of order n and A, and &
are related by ¢° = gi, (2n + Dm.

A large dock extends from above the free surface down to a depth d. Assuming
long waves and that the dock is rigid, calculate the reflection and transmission
coefficients for the dock, which has a width of /.

Determine the Kelvin wave in a long narrow canal with bottom friction.

Develop the condition for the constant of integration C for the case of a storm
surge in a closed basin of constant depth A, A numerical solution wili be
necessary.

Calculate an equation for the “blow-down” on a sloping continental shelf of
width / due to a strong directly offshore wind. Determine the location of the
mean water line.

Show from the continuity equation, Eq. (5.6), that the vertical velocity #(z)
under a long wave varies linearly with depth and can be expressed as
oU 6V>

Dn o (U 9V
W(Z)_Dt+m Z)<6x+8y

if U and V are assumed to be independent of depth.

Determine the seiching period of a circular tank of radius a. Use the wave
equation in cylindrical form and find only the first mode, which has a cos 6
dependency (Lamb, 1945). Compare your results to reality by shaking a coffee
cup.

Compare the transmission coefficient determined in the abrupt step problem
to the one calculated by Green’s law. Account for the differences.

Develop an equation for the ratio R of kinetic energy in the horizontal
component of water particle velocity to the total kinetic energy. Solve for the
shallow and deep water asymptotes. Plot this ratio versus 4/Ls.
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5.15

5.16

5.17

5.18

For a bay of uniform depth and pie-shaped plan form as discussed in Example
5.1, develop an expression for the ratio R,

R(x) =)
()

as determined by Green’s law and the complete solution, Eq. (5.39b). Plot and
discuss the ratio R for the case of //L = 10 and I/L = 2.
Which continental shelf configuration allows the greatest storm surges at the
coast: (a) shelf width /p; maximum depth Ao; (b) shelf width /, (> /), same
maximum depth Aqg; or (c) shelf width /, (> /), maximum depth 4, (> h) but
with bottom slope (ho/ls)? Verify your answer for &, = 5hy, [, = 5/p, and A (for
case a) = 0.05.
Show that the storm surge for a continental shelf modeled as & = Ao [1 — (x/D)F

can be approximated by
n(x) = th P 2BX
Pg

(Note: There is another possible solution to the linearized problem; however, it
gives infinite surge heights at x = /)

Show that the governing linearized momentum equation for long waves forced
by an atmospheric pressure anomaly with linear friction present is

and that the solution depends on the wave number (k) of the forcing disturb-
ance and that the solution in terms of the ratio of the modulus of the dynamic
to static water surface displacements is

|F,,(U) Idyn - 1
[F0) lsa  J(U*gh — 1)* + (AU/khgh)?

[Note: There are at least two ways of approaching this problem. One is to
represent the traveling pressure and water surface displacements as

p = Pg cos (ot - kx)
n= Nzcos (ot - kx — a)

and to substitute these in the governing equation above and solve for Nz and .
The second (equivalent) method is to represent p and # as Fourier integrals

1 ® ;
plx, 1) =—— f F, (0)e""* do
V2n Y '

1 © i
nx, t)=—— f F,(0)e" ™ dg

in which F, (9) and F, (6) are complex amplitude spectra (i.e., they contain
phases). The latter approach is the simpler of the two, algebraically.]



Wavemaker Theory

Dedication
SIR THOMAS HENRY HAVELOCK

Sir Thomas Henry Havelock (1877-1968) pursued a variety of water
wave areas, including ship wave problems and the generation of waves
by wavemakers, the subject of this chapter.

Havelock was born in Newscastle upon Tyne. He obtained his
education at Armstrong College, University of Durham, and St. Johns
College, University of Cambridge. Returning to Durham, he became a
lecturer and then professor of mathematics. He received knighthood for
his scientific works in 1957 and accepted honorary doctorates from
University of Durham and University of Hamburg. He received the first
William Froude Gold Medal in 1956 for his work in naval architecture.

Havelock was a Fellow of the Royal Society and a corresponding
member of the Academy of Science, Paris.

6.1 INTRODUCTION

To date most laboratory testing of floating or bottom-mounted structures and
studies of beach profiles and other related phenomena have utilized wave
tanks, which are uvsually characterized as long, narrow enclosures with a
wavemaker of some kind at one end; however, circular beaches have been
proposed for littoral drift studies and a spiral wavemaker has been used
(Dalrymple and Dean, 1972). For all of these tests, the wavemaker is very
important. The wave motion that it induces and its power requirements can
be determined reasonably well from linear wave theory.

Wavemakers are, in fact, more ubiquitous than one would expect.
Earthquake excitation of the seafloor or human-made structures causes

170
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waves which can be estimated by wavemaker theory; in fact, the loading on
the structures can be determined (see Chapter 8). Any moving body in a fluid
with a free surface will produce waves: ducks, boats, and so on.

6.2 SIMPLIFIED THEORY FOR PLANE WAVEMAKERS IN
SHALLOW WATER

In shallow water, a simple theory for the generation of waves by wavemakers
was proposed by Galvin (1964), who reasoned that the water displaced by the
wavemaker should be equal to the crest volume of the propagating wave
form. For example, consider a piston wavemaker with a stroke S which is
constant over a depth 4. The volume of water displaced over a whole stroke is

L/2
Sh (see Figure 6.1). The volume of water in a wave crest is J; (H/2)sin kx dx
= H/k. Equating the two volumes,

Sh=ﬂ=£(£>2
k 2\2/=m

in which the 2/x factor represents the ratio of the shaded area to the area of
the enclosing rectangle (i.e., an area factor). This equation can also be

expressed
H
— =kh 6.1
( S )pislon ( )

where H/S is the height-to-stroke ratio. This relationship is valid in the
shallow water region, k4 < n/10. For a flap wavemaker, hinged at the bottom,
the volume of water displaced by the wavemaker would be less by a factor of

2.
H kh
<~»§>ﬂap B ? (62)

These two relationships are shown as the straight dashed lines in Figure 6.2.

e e

7 Z

Figure 6.1 Simplified shallow water piston-type wavemaker theory of Galvin.
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Figure 6.2 Plane wavemaker theory. Wave height to stroke ratios versus relative
depths. Piston and flap type wavemaker motions.

Another type of wavemaker is the plunger wavemaker. This could be, as
an example, a horizontal cylinder moving vertically about the mean water
level. If the cylinder has a radius R and a stroke R, then the cylinder position
ranges from fully emerged to half submerged at full stroke. If waves are
generated in each direction normal to the cylinder axis, then for shallow
water conditions the wave height-to-stroke ratio can be easily shown to be

H _n(kR)

= (6.3)

6.3 COMPLETE WAVEMAKER THEORY FOR PLANE
WAVES PRODUCED BY A PADDLE

The boundary value problem for the wavemaker in a wave tank follows
directly from the boundary value problem for two-dimensional waves pro-
pagating in an incompressible, irrotational fluid, as in Chapter 3. For the
geometry depicted in Figure 6.1, the governing equation for the velocity
potential is the Laplace equation,

¥ &P
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The linearized forms of the dynamic and kinematic free surface boundary
conditions are the same as before.

_1od

) =0 6.5
2 o (6.5)
L (6.6)
4z ot
The bottom boundary condition is the usual no-flow condition
—Qé=0, z=-h 6.7)
9z

The only conditions that change are the lateral boundary conditions. In
the positive x direction, as x becomes large, we require that the waves be
outwardly propagating, imposing the radiation boundary condition (Som-
merfeld, 1964). At x =0, a kinematic condition must be satisfied on the
wavemaker. If S(z) is the stroke of the wavemaker, its horizontal displace-
ment is described as

S(z2)

X =—=sin at 6.8
7 8 (6.8)

where o is the wavemaker frequency.
The function that describes the surface of the wavemaker is

F(x,z,t)=x— S—;Z—) sin gt =0 (6.9)

The general kinematic boundary condition is Eq. (3.6).
__OF(x, z, 1)/ot

en= on F(x,z,t)=0 6.10
IVF ( ) (6.10)
where u=ui+ wk and n = VF/|VF|. Substituting for F(x, z, t) yields
. as(z) . S(z)

sin of = —— G COS ot on F(x, z,t)=0 (6.11)
2 dz 2
For small displacements S(z) and small velocities, we can linearize this
equation by neglecting the second term on the left-hand side.
As at the free surface, it is convenient to express the condition at the
moving lateral boundary in terms of its mean position, x = 0. To do this we
expand the condition in a truncated Taylor series.

[u -5 0 COS at] = [u _5@) 0 COS at] (6.12)
2 x=[S(z)/2] sin ot 2 x=0

+S—(Z—)sinati[u—&acosot} + .-
2 ax 2 x=0
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Clearly, only the first term in the expansion is linear in 4 and S(z); the others
are dropped, as they are assumed to be very small. Therefore, the final lateral
boundary condition is

u©,z, )= S_(2z_) g cos ot (6.13)

Now that the boundary value problem is specified, all the possible solutions
to the Laplace equation are examined as possible solutions to determine
those that satisfy the boundary conditions. Referring back to Table 3.1, the
following general velocity potential, which satisfies the bottom boundary
condition, is presented.

&(x, z, t) = A, cosh k, (h + z) sin (k,x — ot) + (4x + B) (6.14)
+ Ce™™* cos kih + z) cos ot

The subscripts on k indicate that that portion of ¢ is associated with a
progressive or a standing wave. For the wavemaker problem, 4 must be zero,
as there is no uniform flow possible through the wavemaker and B can be set
to zero without affecting the velocity field. The remaining terms must satisfy
the two linearized free surface boundary conditions. It is often useful to
employ the combined linear free surface boundary condition, made up of
both conditions. This condition is

% _Tb_o o0 (6.15)
8z g

which can be obtained by eliminating the free surface 7 from Eqgs. (6.5) and
(6.6). Substituting our assumed solution into this condition yields

o = gk, tanh k,h (6.16)
and

o* = —gk, tan k;h (6.17)

The first equation is the dispersion relationship for progressive waves, as
obtained in Chapter 3, while the second relationship, which relates &; to the
frequency of the wavemaker, determines the wave numbers for standing
waves with amplitudes that decrease exponentially with distance from the
wavemaker. Rewriting the last equation as

’h
gksh

the solutions to this equation can be shown in graphical form (see Figure 6.3).
There are clearly an infinite number of solutions to this equation and all
are possible. Each solution will be denoted as k,(n), where # is an integer. The

= —tan k4 (6.18)
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Figure 6.3 Graphical representation of the dispersion relationship for the stand-
ing wave modes, showing three of the infinite numbers of roots, k,(n). Here, 0°h/g
=10.

final form for the boundary value problem is proposed as
¢ = 4, cosh k, (h + 2) sin (k,x - at) (6.19)

+ El Cre™* cos [k(n)(h + z)] cos at
o
Again, the first term represents a progressive wave, made by the wavemaker,
while the second series of waves are standing waves which decay away from
the wavemaker. To determine how rapidly the exponential standing waves
decrease in the x direction, let us examine the first term in the series, which
decays the least rapidly. The quantity k(1)4, from Figure 6.3, must be greater
than 7n/2, but for conservative reasons, say k(1)4 = n/2, therefore, the decay
of standing wave height is greater than e ¥2*®_For x = 2h, e™ ™™ = (.04,
for x = 3hA, it is equal to 0.009. Therefore, the first term in the series is
virtually negligible two to three water depths away from the wavemaker.
For a complete solution, A4, and the C,’s need to be determined. These
are evaluated by the lateral boundary condition at the wavemaker.
S(2) o

u(0,z, ) =——=o0cosagt =——(0, z, t
( ) 5 6x( )

= —Ayk, cosh k,(h + z) cos at

+ % C.ky(n) cos [k«(n)(h + z)] cos ot

n=1

or

% 0 = —A,k, cosh k,(h + z) + f) C.k«(n) cos [k{n)(h + z)] (6.20)
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Now we have a function of z equal to a series of trigonometric functions of z
on the right-hand side, similar to the situation for the Fourier series. In fact,
the set of functions, {cosh k,(h + z), cos [k(n)}h +2)], n=1, o} form a
complete harmonic series of orthogonal functions and thus any continuous
function can be expanded in terms of them.' Therefore, to find A,, the
equation above is multiplied by cosh k,(# + z) and integrated from -4 to 0.
Due to the orthogonality property of these functions there is no contribution
from the series terms and therefore

0
—L %Z—) ocosh ky(h+z)dz

4, (6.21)

0
k, f;. cosh® k,(h + z) dz
Multiplying Eq. (6.20) by cos {k,(m)(% + z)} and integrating over depth yields

fOS—(Z—) o cos [k{(m)(h + z)] dz
Cp=t2

. (6.22)
k(m) Ji , cos® [k(m)(h + z)] dz

Depending on the functional form of S(z), the coefficients are readily
obtained. For the simple cases of piston and flap wavemakers, the S(z) are
specified as

S, piston motion

(6.23)
S(l + i), flap motion
L h

S(z) =

The wave height for the progressive wave is determined by evaluating # far
from the wavemaker.

_1ab

. o cosh k,h cos (kx — at)
g ot

z=0 b4

= g cos (k,x — ot) x>>h (6.24)

'This follows from the Sturm-Liouville theory. Proof of the orthogonality can be obtained by
showing that the integrals below are zero, that is,

j: : cosh k,(h + z) cos [k(n)h + 2)] dz = 0; J:: cos [k(m)(h + z)] cos [k(n)(h + 2)]dz =0

for m # n using the dispersion relation and Eq. (6.17), Problem 6.8.
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Substituting for 4,, we can find the ratio of wave height to stroke as

H_ 4<sinh k,,h> k,h sinh k,h — cosh kyh + 1
S k.h sinh 2k,h + 2k,h
H 2 (cosh 2k,h - 1)

S sinh 2k,h + 2k,h’

, flap motion (6.25)

piston motion (6.26)

In Figure 6.2, the wave height-to-stroke ratio is plotted for both flap and
piston wavemaker motions for different water depths. This graph enables the
rapid prediction of wave height given the stroke of the wavemaker. The
reader is referred to Ursell et al. (1960) for further details.

The power required to generate these waves can be easily obtained by
determining the energy flux away from the wavemaker.

P=ECn (6.27)

where E is proportional to the propagating wave height, as obtained from the
preceding equation. The power necessary to generate waves in various water
depths is shown in Figure 6.4. By examining Figures 6.2 and 6.4, it can be
seen that to generate a wave of the same height, in shallow water, it is easier to
generate it with a piston wavemaker motion, as the piston motion more
closely resembles the water particle trajectories under the waves, while in
deeper water, the flap generator is more efficient.
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Figure 6.4 Dimensionless mean power as a function of water depth for piston
and flap wavemakers.
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The wavemaker theory has been developed assuming both small-
amplitude motions of the paddle and small wave heights. There are singifi-
cant nonlinear effects that occur when the wavemaker moves with large
displacements; in fact, the waves that result are of different size and shape at
different locations away from the wavemaker (see, e.g., Madsen, 1971, and
Flick and Guza, 1980).

6.3.1 Planar Wave Energy Absorbers

Energy may be removed from waves by moving paddles as well as
added, as in the preceding section. One means to extract wave energy from
waves under various conditions has been discussed by Milgram (1970).

The principle behind the wave absorber is that incident waves onto the
paddle are absorbed by the paddle moving in a manner so as to be invisible to
the waves. In other words, while in the wavemaking problem, the paddle is
pushed forward to make a wave crest, in this case the paddle will move
backward as a wave crest impinges on it (thus making waves on the other side
of the paddle, if there is water), making it appear that the waves have passed
through.

The most efficient absorption of the waves, of course, is dependent on
moving the paddle in just the “right” motions, which can be determined
theoretically. The mathematical formulation involves examining the waves
on the opposite side of the paddle from the previous analysis. The velocity
potential remains the same, except for the x dependency of the standing wave
terms.

Hg cosh k,(h + z)
20 cosh kyh

sin (k,x — at) (6.28)

(bincidem =

+ > Cue™ ™ cos [k(n)(h + z)]cos ot forx <0

n=1

The value of wave absorber stroke S must be found for a given incident wave.
To do this we use the boundary condition at x = 0.
u(z)=@0cosat_ 0o (6.29)
2 ax
Following the same procedure as before, the same relationship [Egs. (6.25)
and (6.26)] results for H/S. Therefore, for a given incident wave height, the
stroke necessary to absorb the waves can be determined. There still are, of
course, the standing waves that are set up to account for the fact that the
paddle velocities do not exactly match those of the incident wave. In
addition, the velocity of the wavemaker motion must have exactly the same
phase as that of the horizontal velocity of the incoming wave.
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6.3.2 Three-Dimensional Wavemakers

The ““snake’’ wavemaker. By using an articulated long wavemaker in
a wave basin, it is possible to make waves propagating in different directions
depending on the motion of the wavemaker. To study this case, consider a
wavemaker located on the y axis, making waves that propagate in the x-y
plane. For simplicity the wavemaker will be assumed to be infinitely long.
The motion of the wavemaker at x = 0 generates velocities in the x direction,
u(y, z; t), which in the simplest case may be written

u(y, z; t) = U(z) cos (Ay — at) onx=0 (6.30)

This represents a horizontal velocity at the wavemaker which consists of
periodic motion, propagating in the +y direction.
The boundary value problem which must be solved is

O<x<w
2 2 2
a_d;+§_(_€_+%=o in{-w<y<ow (6.31)
ax- dy° dz

-h<z<0

At the horizontal bottom of the basin, the bottom boundary condition
must be met. At the surface, the linearized kinematic and dynamic conditions
apply, as before.

Using separation of variables a solution is assumed which satisfies the
bottom boundary condition.

¢ = A, cosh ky(h + z) sin (VK2 - A’ x + Ay — at) (6.32)

+ > C,cos [k(n)(h + z)] exp [-VkX(n) + A* x] cos (Ay — at)
n=1
where d* = gk, tanh k,h; 6° = —gky(n) tan ky(n)h.
It can be shown, by examining all other possible solutions, that only

this form provides for a propagating wave in the x direction with the usual
cosh k,(h + z) depth dependency. Further, this imposes a restriction that

k, = A
Invoking the wavemaker boundary condition at x =0,
U(z) cos (Ay — at) = - i (6.33)
0x | x=0

= —A,\k2 — A cosh k, (h + z) cos (Ay — ot)

+ % Cn VkXn) + A2 cos (k, (n)(h + z)} cos (Ay — ot)
n=1
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Vil -2 Figure 6.5 Definition for 6.

Examining only the propagating mode (in the x direction), and utilizing the

orthogonal properties of {cosh k,(h + z); cos [k,(n)(h + 2)], n=1,

2,..., %, we have 0

4k, f U(z) cosh k(h+z) dz

Ay=- - (6.34)
Vk2 — A* (sinh 2k,h + 2k,h)

which is nearly the same as before.

If we introduce a directional angle § made by the wave orthogonal to the
X axis as in Figure 6.5, where 4 is the wave number in the y direction and
N A2 is the wave number in the x direction, we see that k, represents the
wave number in the propagation direction. Further, k2 — 4> =k, cos 6 and 4
= k, sin 0. This latter expression requires that the wavelength A of the
wavemaker displacement be related to the desired wave angle. Substituting,
the velocity potential of the propagating wave can be written

bu(x, y, z; t) = A, cosh k,(h + z) cos ((k, cos O)x + (k, sinf)y — at) (6.35)

where A, is given by Eq. 6.34 and is related to the planar value [Eq. (6.21)] by
(cos 6)™'. To make waves in the opposite —6 direction, the wave displacement
must propagate in the opposite direction

u(z, y; t) oc cos (Ay + at)

In order to generate a realistic sea state in a wave basin, numerous
wavemaker motions can be superimposed due to the linearity of the problem.

6.4 CYLINDRICAL WAVEMAKERS

Although not in common use, the wavemaker theory for water waves
generated by moving vertical cylinders follows directly from plane
wavemaker theory, the only exception being that the problem is worked in
polar coordinates (see Chapter 2).

The fluid motion can be described by a velocity potential which is
governed by the Laplace equation with the usual linearized free surface and
bottom boundary conditions.

2¢_a_@ 1a¢> 14¢ 62¢ _0

6.36
art ror r602 372 (6.36)
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where r and # are the polar coordinates of the horizontal plane.

—1% on z=0
g ot
a a
90 _on on z=0 6.37)
az ot
—?i)=0 on z=-h
0z

Additionally, a radiation boundary condition is imposed at large r to ensure
outgoing waves and a kinematic condition must be applied to the moving
wall of the cylinder.

There are several possibilities for cylindrical wavemakers, which will be
denoted by different types. Type I will be a vertical cylinder (located at r =0,
with radius ) moving in piston or flap motion in a fixed vertical plane, taken
as 0 = O or m. Applying a kinematic condition that the fluid at the cylinder wall
follows the cylinder’s motion, we have in linearized form

V== o= cos mécos ot = Re {S(;)G cos m@ e""} (6.38)

where Re{ } denotes real part,> m is an integer equal to unity and S(z) is the
vertical variation of the displacement of the cylinder. The Type Il wavemaker
is a pulsating cylinder, which expands and contracts radially with no 6§
dependency. The corresponding linear kinematic condition is

__@=S(z)a co
ar

with m = 0. Finally, the Type I1I wavemaker is a spiral wavemaker discussed
by Dalrymple and Dean (1972), who advocate its use in littoral drift studies.
In a circular basin the spiral wavemaker generates waves which impinge on a
circular beach everywhere at the same angle, thus resulting in an “infinite”
beach ideal for sediment transport studies. [In some cases, the spiral wave
shoals in a manner differently than plane waves (Mei, 1973).] The cylinder
motion can be visualized by placing a pencil point down on a table and
rotating the top in a small circular path. The linearized kinematic boundary
condition becomes

. S S(z)a
or

where m =1 for the case of the rotating pencil, but could be greater than unity
for a lobe-shaped cylinder.

s of = Re {S(;) cos mb e“"} atr=a (6.39)

cos (mf@ — ot) = Re {S(Tz)a ei('"a‘a”} onr=a (6.40)

2See page 190.
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The solution for the velocity potential is obtained by separation of
variables, in the same manner as before (see Problem 6.9). The solutions that
satisfy all the boundary conditions with the exception of the kinematic
condition on the cylinder are

0 &%, Type 1, I
r,0,z,t) = A,H® (k,r) cosh k, (h + z) 4605 7 € ’ 6.41
(1, 0, 2, 1) = A,H (kyr) cosh k ){ e e (6.41)

+ gCnKm(ks(n)r) cos [k(n)(h + z)]{e“”’ ) Type I11
where HU)(k,r) is the Hankel function of the first kind, defined as H\)(k,r) =
Ju(k,r) + iY.(k,r), a complex number formed by the Bessel functions, and
K..(k{n)r)is the modified Bessel function of the second kind. Associated with
these solutions are the dispersion relationships relating the angular frequency
to the wave number(s),

o* = gk, tanh kh

cosmb €%, Type 1, II}

and
* = —gky(n) tan k(n)h, n=12,..., 0 (6.42)

The unknown coefficients in the series for the velocity potential are
obtained by satisfying the remaining boundary condition at the cylindrical
wall using the orthogonality of the depth-dependent functions, with the result
that

V]
L S (;)" cosh k,(h + 7) dz

Ay = (6.43)

0
k,,[H(,,,‘)(kpa)]'fh cosh® k,(h + z) dz

and

0
fh S(;)a cos [k{(n) (h + z)] dz
Co=- - ; (6.44)
ky(n) [Kn(k{n)al J: , cos’ [ky(n) (h + 2)] dz

The [ -] denotes the derivative with respect to the argument of the function.
The coefficients 4, and C, are. the same for all three types of cylinder
wavemaker and are similar to the coefficients for the planar wavemaker,
differing due to the presence of the derivative of a Bessel function in the
denominator. These terms in the velocity potential account for the radial
decay of the waves away from the wavemaker.
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Far from the wavemaker, the water surface displacement # may be
determined from the linear dynamic free surface boundary condition and the
Hankel function term as the others become negligible several water depths

from the wavemaker. Using the asymptotic form for the Hankel function, we
have

nr, 0,t) =Re | —io4, V ki cosh kyh (6.45)
o

cos mo exp[ i[kpr -at - @Eﬂq} }, Type L, 11

exp{ i[k,,r +mb-ot - (2_m:_1)7z]}’ Type 111

Using the relationship between strokes S(z) and A4, and the last equation, the
wave height-to-stroke ratio can be determined. This is shown in Figure 6.6 for

T I ! 1

22 -

Yl

kph

Figure 6.6 Dimensionless progressive wave amplitude evaluated at the cylinder
for piston or circular motion of the wavemaker. m = 1. (From Dalrymple and
Dean, 1972.)
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|
Locus of ! ' l
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\’ r
201 o —
. S P Plan
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Figure 6.7 Dimensionless progressive wave amplitude evaluated at cylinder,
sway motion. m = 1. (From Dalrymple and Dean, 1972.)

the case of piston motion and Figure 6.7 for sway motion for Type I and III
wavemakers (m = 1).

Power requirements to generate these radial waves, energy flux, and the
direction (for spiral waves) can be determined fairly simply; the reader is
referred to the original paper by Dalrymple and Dean (1972) for details.

6.5 PLUNGER WAVEMAKERS

Plunger wavemakers with a wedge-shaped cross section are often used in
laboratories instead of piston or flap-type paddies. These wavemakers can be
designed to generate waves in only one direction. For example, a wedge
oscillating vertically as in Figure 6.6 would only generate waves in the
positive x direction. For an immersed wedge making small vertical motions
and for small f, the linear theory is the same as that for piston wavemakers;
for larger vertical strokes and for large B, as well as for other shapes the reader
is referred to Wang (1974), who solved the plunger problem using a conformal
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Figure 6.8 Schematic of wedge-shaped
plunger wavemakers.

Z

transformation. He presents figures of amplitude/stroke ratios versus dimen-
sionless geometrical parameters for wedge-shaped wavemakers as shown in
Figure 6.8.
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PROBLEMS

6.1 A piston wavemaker operates over only half the water depth and oscillates with
frequency o and a maximum velocity Uyg.
(a) Determine the wave height away from the wavemaker in terms of Uy if the
wavemaker operates over the top half of the water column.
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6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Wavemaker Theory Chap. 6

(b) An alternative design is to operate the wavemaker over the bottom half of
the water column. Plot the ratio of wave heights (away from the
wavemaker), H,op/ Hpouom as a function of kh, where Hy, indicates the wave
height in part (a). Which wavemaker is more efficient and why?

(c) Calculate the ratio H/S for shallow water using the simplified approach
and compare with the results developed in parts (a) and (b).

Show, using the simplified shallow water approach, that the ratio of wave

height near the cylinder to wave height stroke for a vertical cylinder, oscillating

vertically with a stroke d and generating circular waves, is

where R is the radius of the cylinder.

What are the stroke and power necessary to generate a 2-s period 20-cm-high

wave in 2 m of water for both flap and piston wavemakers.

A long rectangular barge with draft 4 in shallow water is heaving (moving

vertically) with a velocity V, cos at.

(a) Determine the amplitude of the waves generated by this motion if the barge
width is given.

(b) Determine the damping of the barge motion due to wave generation. (Hint:
It is easiest to use energy arguments here.)

Determine the equations for instantaneous and mean power required for

wavemakers using the wave-induced pressure on the wavemaker. Determine,

for a wavemaker with a displacement of S(z) = S cosh k(/ + z), the instantane-

ous and mean power required. Why might it be advantageous to incorporate a

flywheel into the generating mechanism?

Using conservation of energy flux, show how the waves due to a circular

wavemaker (see Problem 6.2), would decay in height with radial distance.

Examine the energy flux at the wavemaker due to the progressive and standing

wave mode components. Discuss your results.

Show that the set {cosh k, (h + 2), cos [k; (nXh+2)], n =1, 2,..., o)} are

orthogonal over the range —/ < z < 0, given the dispersion relationships for o,

k,, and k(n).

Develop the theory for waves made by a circular cylinder wavemaker with

vertical axis moving in piston motion.

Develop dimensionless expressions for the maximum total forces on piston

and flap-type wavemakers.

Develop the three-dimensional wavemaker theory for waves in a long wave

tank. The side walls are located at |y | =/, and the waves are made by a paddie

with a mean position of x = 0, yet which varies in stroke over the vertical and

across the tank width (Madsen, 1974).
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Dedication
LORD RAYLEIGH

John William Strutt (1842-1919), the third Barorr Rayleigh, for whom the
Rayleigh probability distribution is named, received (with Sir William
Ramsey) the Nobel Prize in 1905 for the discovery of argon.

He was born in Langford Grove, Essex, England, and entered
Trinity College, Cambridge, in 1861, becoming a Fellow in 1866.

Over his career, Rayleigh wrote 446 papers that ranged from his
noted Treatise on the Theory of Sound, published in 1877, to works in
electromagnetism and physical optics. These works have been col-
lected in Scientific Papers. His research interests included electricity
and psychic phenomena and theoretical/experimental work on the
explanation of the sky's color.

in 1879 he gained appointment as the second Cavendish Profes-
sor and in 1884 became the director of the Cavendish Laboratory at
Cambridge University. In 1894 he retired from these positions to do
research in his private laboratory in Terling Piace, Witham, Essex,
where he was Baron (after the death of his father in 1873).

In 1908 he became the Chancellor of Cambridge University. Ray-
leigh died in 1919 and was buried in Westminster Abbey.

7.1 INTRODUCTION

Previous chapters have discussed waves that are monochromatic (i.e., they
have only one frequency). (The term “monochromatic” derives from the
analogy of water waves to light waves and the relation of color to frequency.)
However, by simply looking at the actual sea surface, one sees that the surface
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is composed of a large variety of waves moving in different directions and
with different frequencies, phases, and amplitudes. For an adequate descrip-
tion of the sea surface, then, a large number of waves must be superimposed
to be realistic (as mentioned in Chapter 1). This chapter discusses the
methods by which this is done and the characteristics of the sea surface.

7.2 WAVE HEIGHT DISTRIBUTIONS

Designing in the ocean requires an adequate knowledge of possible wave
heights. For example, in the design of a structure, the engineer may be faced
with designing for the maximum expected wave height, the “highest possi-
ble” waves, or some other equivalent wave height. Historically, several wave
heights have become popular as characterizing the sea state. These are the
H\; (the significant wave height) and the H ., wave heights. To envision
what these definitions mean, consider a group of N wave heights measured at
a point. Ordering these waves from the largest to the smallest and assigning to
them a number from 1 to N, two statistical measures may be obtained. First,
H; is defined as the average of the first (highest) N/3 waves. Correspond-
ingly, H, would be defined as the average of the first pN waves, with p < 1.
(H, would be the average wave height.) Second, the probability that the wave
height is greater than or equal to an arbitrary wave height H is

A R
PH>H)=— 7.1
( ) N @.n
where 7 is the number of waves higher than H. We note for later use that

P(H <H)=1-n/N.
The root-mean-square wave height for our group of waves, H,n,, i

defined as
TR
How= \| =2 H: 7.2
V NZI (7.2)

which is always larger than H, in a real sea.
7.2.1 Single Wave Train

1t is clear that for the sea surface described by a single sinusoid wave,
1(t) = (Ho/2) cos at, the waves are all of the same height and that H, = H, for
any p and H s = Hy.

7.2.2 Wave Groups

To make the sea surface somewhat more realistic, another wave train is
added, with slightly different frequency, in order to make wave groups, as was
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done in Chapter 4.

Ho ( AO’) H() < AO')
N=——¢C0S| 0 —— t+—cos{o+— |t
2 2 2 2 (7.3)

Ao, H()

= H, cos gt cos —t = ——=cos ot
2 2

which represents a propagating wave system evaluated at x = 0.

The resulting wave system has a carrier wave at frequency o and a
slowly modulated wave height 2H, cos (Aa/2)t (see Figure 4.12). Therefore, to
examine the wave height distribution for the wave system, we need only to
look at the envelope from ¢ = 0 to n/Ag (or from the antinode to the first
node).

To determine H,, we average the wave height envelope from ¢ =0 to
pn/Ag, since the wave heights decrease monotonically from the maximum to
the minimum.

pr/Ac
v [ 2y cos Yt a (7.4)
pr/AcJo 2
H, = 470 in 27 (7.5)
? DT 2
The rms wave height can be derived:
n/Ao
gb%04mw%m (7.6)
n/Ac
or
Hrms =\/§H0

We can therefore express the H, wave height in terms of H ., which will be a
more definable wave height for real seas.

H, = 2N2 Howe P .7
prn
and since H ., must be equal to 2H,, we have,' from Eq. (7.6),
Hepox = \/E H s (78)

Example 7.1

A wave group consisting of two sinusoids of equal height and slightly different periods
isgenerated in a laboratory wave tank and recorded by a fixed wave gage. What are the
values of Hmax, Hijio, Hyj3, and H | in terms of H s?

!Alternatively, this can be obtained from Eq. (7.7) as in the limitas p - 0.
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Solution.
= /2 Hems = 1.414H

20+/2 Homs Homs
n

Hypo= % = L.408H 1

Hyy = 82 Hom ’—6’ — 1.350H ms
n

H = % = 0.90H 11ns
n

7.2.3 Narrow-Banded Spectra: The Rayleigh
Distribution

For a more realistic case, we assume that the sea surface is composed of
a large number of sinusoids, but with their frequencies near acommon value,
0. This is referred to as a narrow-banded sea (in that all the frequencies are in
a narrow frequency band about o). Therefore, for M component frequencies

M

n =2 % coS (Oml — €,,) 7.9)

m=1

or equivalently, in complex notation,’

n(t) = Re {2}; "”m“fn’} (7.10)

The notation Re(-) refers to taking only the real part, Re(e’) = cos ot.
Factoring out the carrier wave of frequency o yields

Moy
n(t) = Re [e"” > 7’"e‘“"’“"”“"’] (7.11)
m=1

Again, to define the wave height distribution, we need only to examine
the statistics of the slowly varying envelope, B(t):
M
B(t)y= > f; glliomor-enl (7.12)

m=1
2From complex variable theory, €% = cos ot + i sin ot, where i = \/~1. These formulas can be
readily derived if we express ¢™ as a Maclaurin series.

@, 0, ()
2! 3! 4!

xt x* x3
=<l_~+_...>+i<x__+ ...)
2 4 3!

The terms in the two sets of large parentheses are the power series expansion for cosine and sine.

F=1+ix+
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From statistical theory, it can be shown (e.g., Longuet-Higgins, 1952)
that if the individual components of B are statistically independent and a
large number M is used, then the probability of the wave height being greater
than or equal to an arbitrary wave height (H) is given by

P(H = H) = ¢/t (7.13)

which is called the Rayleigh distribution.
This theoretical probability can be compared to our rank-ordered group
of waves, N, Eq. (7.1):

n

PH=H)= I (7.14)

or equating,
R _ o HY (7.15)

This expression provides a means to determine the number of waves out of
the total number N which have a height greater than or equal to a certain
height H. Alternatively, we can solve this expression to determine the height
H which is exceeded by n waves in our group of N. By taking the natural
logarithms of both sides, we find that

H=Hu\/¢n N (7.16)
n

The height that is exceeded by pN of the waves is therefore

A=Hu\[tn! (7.47)
p

Example 7.2

At a pier in Atlantic City, New Jersey, 400 consecutive wave heights are measured. The
H,s is determined by Eq. (7.2). (a) Assuming that the sea state is narrow-banded,
determine how many waves are expected to exceed H = 2H . (b) What height is
exceeded by half the waves? (c) What height is exceeded by only one wave?

Solution.
(a) To answer the first part, Eq. (7.15) is used.

n=Ne®
=7.3 =~ 7 waves

Approximatelyﬁseven waves, less than 2% of the total number, exceed 2H ms.
(b) The height H exceeded by half the waves (n = N/2,orp = 3)is

H = \/¢0(2) H s = 0.833 H s
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For H» we have p=1/N or Hyy = \/¢én N H,, = 2.45H . It is perhaps not too
surprising that the more waves present in the group (i.e., large N), the higher the
maximum wave will be. This is due to the fact that the Rayleigh probability function
decays asymptotically to zero for large H, but never reaches zero. Thus all wave
heights are statistically but not necessarily physically possible.

7.2.4 The Rayleigh Probability Density Function

The wave height probability density function Jfu follows from the
Rayleigh probability distribution P(H < H):

YHe~ H/H )
Hy
This function is plotted in Figure 7.1. Maximizing with respect to H yields the

maximum probability for H/H,,s = 1/+/2, or the most frequent wave is
H =0.707TH 5.

From statistical theory we can obtain important relationships using the
distribution function for the wave height.

The mean wave height is defined as

J; HffH)dH o g oy d( H )

o = -1 0 2 I{““s

fu= d—dﬁ(P(H <H)= 2%(1 — ey = (7.18)

H-=

ms

= %’?H,ms = 0.886H s (7.19)
To find the average height of the highest pN waves, we first recall that
A
Lo}
X
E |
s
! 1 ) | I
0 1.0 2.0

H/HI’ITIS

Figure 7.1 The Rayleigh probability distribution function. The area under the
curve is unity.
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the height A exceeded by the pN waves is

Hy an

H rms V4

Next,

Lw Hfy(H) dH ff” Xe d

A= = Homy =22 (7.20)
|, iy an [ xerax
H, Hy/H s

where x is a dummy variable. Integrating by parts, we get

el

f?,, / Hrmse—a‘fp/ﬁm.)’ + f o
Ho/H oy
= (7.21)

—(H,,/H ms)?

R )

where erfc (x) is the complementary error function (see Abramowitz and
Stegun, 1965).

InTable 7.1 various values of H,/H s are presented. It is clear that as p
becomes smaller, there is a significant change from the results obtained by the
simple wave group model (see Example 7.1).

SIS

TABLE 7.1 Relationship of H, to H ., using the Rayleigh Distribution

Hyjio = 1.80H s
H s = LAI6H g
= 0.886 H ms

Forristall (1978) has shown that for real seas of large magnitude, the Rayleigh
distribution tends to overpredict the larger wave heights. This is presumably
due to the breaking phenomenon “trimming” these larger heights.

7.3 THE WAVE SPECTRUM

The waves recorded at a wave staff generally are composed of components of
many frequencies o, and amplitudes a, with different phases €,:

n(t) = % a, cos (a,f — €,) (7.22)

n=0



194 Wave Statistics and Spectra Chap.7

2

2
a, n n a(0)
2 240
[ [ o a
Amplitude Energy Energy density Continuous amplitude
spectrum spectrum spectrum spectrum
(a)
#(0) #(0)
[ o

(b)

Figure 7.2 (a) Types of spectra; (b) broad versus narrow-banded energy spectrum.

If the amplitudes a, are plotted versus frequency, an amplitude spec-
trum results. More commonly used, however, is the energy spectrum, which
is a plot of a2. Both of these spectra are line or discrete spectra in that each
frequency component is discrete. The energy density spectrum, on the other
hand, is a plot of a2/Ac versus g, which is more popular, as the area under the
curve is a measure of the total energy in the wave field. It is more likely in
nature that the spectrum be comprised of a continuous range of frequencies
or

n(t) =Re { J;m a(o)ele<N da} (7.23)

where a(o) do is the amplitude of each wave and a(o) might be called the
amplitude density function. Examples of these spectra are shown in Figure
7.2a. The shape of the spectrum varies with the types of seas and whether it is
broad- or narrow-banded (Figure 7.2b).

7.3.1 Spectral Analysis

The procedure of extracting spectra from wave records is an evolving
field and a complete presentation of spectral analysis is beyond the scope of
this book. However, some rudimentary aspects of it will be discussed. Of
primary importance is the fact that the use of computers in time-series
analysis has made it far more convenient to deal with digitized data® and
spectral analysis is usually done by the fast Fourier transform (FFT) tech-

3The time series of (¢) digitized at an interval of A is the sequence of numbers: 7(A?), n(2 At),
n(3 At), and so on.
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nique, popularized by Cooley and Tukey (1965). It should be noted parenthet-
ically that almost all our knowledge about spectral analysis comes to the
ocean engineers via the electronic and communications fields.

7.3.2 Fourier Analysis

The basis for spectral analysis is the Fourier series, named for Joseph
Fourier (1768-1830). The premise of Fourier analysis follows from the fact
that any (piecewise continuous) function f{¢t) can be represented over an
interval of time (¢ to ¢ + T) as a sum of sines and cosines, where  is arbitrary
and f{¢) is assumed to be (or is) periodic over the time period, 7". The Fourier
series is written as

At) = > (a, cos not + b, sin not) (7.24)
n=0
where 6 = 2n/T and by =0 as sin (0) = 0, and a, is simply the mean of the

record. The coefficients a, and b, can be obtained by minimizing the mean
squared error of the function E, which is defined as

2
— f [j(t) - Z(a,, cos not + b, sin nat)} (7.25)
Minimizing yields
9F _ 0; 9E _ 0 (7.26a)
oa, 0b,,

Expressing these equations fully, we have

1+ T ©
f [ﬂt) — >(ay, cos not + b, sin nat)} cos mot dt =0
t n=0

(7.26b)

n=0

1+T ©
f ‘:f(t) — > (ay cos not + b, sin nat)} sin mot dt =
t

Using the following orthogonality properties of the trigonometric func-
tions:

wT . T2 m=n+0
sin not sin mot dt =
t m+n

b

+T
f sin nat cos mat dt =0
H

T, m=n=0
T/2 m=n#+0
0, m+n

T
f cos not cos mot dt =
t
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and carrying out the integration following from Eqs. (7.26b), we obtain
+T
do=L f Aty dt (7.27a)
T Jt
2 =+T
a, = ?f At) cos nat dt forn=12,..., 0 (7.27b)
t

+T
by =—27:f At) sin not dt forn=12,..., ® (7.27¢)
t

Example 7.3

A square wave centered about ¢ = 0, with an amplitude of unity and a period of 4 s,
can be described in the interval || <2 as

_iL <l 7.28
S {-1, 1] > 1 (7.28)

(see Figure 7.3).
Since the function is an even function, that is f{r) = f{-¢), all the b,’s are

identically zero. (Try it if you do not believe it.) Solving, then, solely for the a,’s, using
Eq. (7.27b), we get

§ 2
ap = i f (1) cos n(z—n>t dt + if (~1) cos n(z—n)t dt
T Jo 4 T T

or
4 nn (7.29)
an = — Sin —
nn 2
(1)
+1
0

Figure 7.3 Fourier series fit to a square wave. As the results are symmetric about
the origin, only the positive axis has been shown. The parameter N denotes the
number of terms in the Fourier series.
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For n an even number, a, = 0, and for n odd, a, = (-1)""(4/nn) forn =1, 3, 5,...; thus

f(t)=ﬂcos%—icos@+icos&t£—icos—1§£+~-- (7.30)
n T 3=n T Sn T Tn T
Figure 7.3 shows the fit of the series to the function for one, two, and
three terms. For a good representation to a function, it is necessary that a
sufficient number of terms N be taken in the summation (practicality dictates
that N not be infinite). How large N should be can be determined by finding
the mean square value of the function f{7).

1 +T 1 +T N 2
= f fA) dt = ?f [ao + 2 (a. cos not + b, sin nat)} dt (7.31)
! t n=1

||M2

=aé+§ (@ + b))

n=1
This is referred to as Parseval’s theorem, and it implies that if one-half the
sum of the squares of the coefficients does not approximately equal the
average mean square value of f{¢), more terms should be taken (N larger). Itis
often more meaningful in this comparison to subtract out the mean of f{¢)
prior to using Parseval’s theorem, as a2 can dominate the summation.

For the square wave in the example,

2
%J:zfz(t)dt=l

For various values of # we have [from Eq. (7.29)]

0811, N=1I

0900, N=3

g al+b2 | 0933, N=5
% 2 10950, N=7
. 1.00, N=wx

7.3.3 Complex Series Representations

The exponential form of the Fourier series is obtained from the Euler
identities

inat __ L
e = COS not + 1 sin not (7'32)

~inot

e =cos not - i sin not

where i = /~I. By adding and subtracting these two relationships, we have
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the identities

inat

Ccos not =

sin not et — prinat i<eimﬂ _ e-inal)
2i 2

—~inot

+e

These expressions are then substituted into the Fourier series as repre-
sented in Eq. (7.24):

N eimn + e—mm) .(einal _ e—ina't)
=3 af ) - b = —
0= Ef o 5 )i £
lb inat an + lbﬂ ~ingt
B ZK 2 > * ( 2 )e }

If the dummy subscript in the term modifying ¢ is changed to —n, we
can write

(7.33)

)= E F(n)e™ (7.34)
where
~ ib, forn=0
Fmy=1{ 2 (7.35)
f%ﬂ forn <0

Since F(~n) = F*(n), where the asterisk means complex conjugate, the right-
hand side of Eq. (7.34) is real. The F(n) may be obtained equivalently from
the time series by

F(n) =% f “ Roen di (7.36)

using Eqgs. (7.35), (7.27b), and (7.27¢).

Equations (7.34) and (7.36) constitute a Fourier transform pair. For
discrete data, obtained at I points, the Fourier transform pair must be
replaced by sums or

N
F(n) = %z fm Ap)e 2mm/t (7.37)
m=1

where T = I At and At is the time between samples, and

12

fm A= 3 F(n)e™™ (7.38)

n=-1{2
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Imaginary axis
>

|F(n)|

N{:a

Figure 7.4 Argand diagram for F(n). Real axis

Any complex number such as F(n) can be expressed in terms of an
amplitude and a phase, using an Argand diagram (see Figure 7.4), which
shows the real number along the abscissa and the imaginary numbers on the
ordinate.

F(n) = |F(n)| ™ (7.39)
where
(FO)| =2 Va4
and
€ = tan“ﬁ

an

The phase €, gives the relationship of each particular harmonic term to
the origin. For example, if the function f{¢) is even, then all the b,’s are zero
and the phases are either 0° or 180°. If the function is odd, the €, values are
either /2 or 3n/2 for all n. If the f{¢) is translated with respect to the origin,
the phases change, but | F(n) | remains the same. Thus the | F(n)|’s provide a
good characterization of a function.

7.3.4 Covariance Function

The covariance function, or the correlation function of two time-
varying quantities fi(t) and f{(¢), can be defined as

Ci(1) = 1 f HT SOt + 1) dt (7.40)
i = T . ! J *

where T is a time lag. If i = j = 1, then Ci(7) is the autocorrelation function,
while if i # j, this quantity is the cross-correlation or cross-covariance func-
tion.
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There are two important uses of the autocovariance function. The first
is to identify periodicity within the time series f(z). For periodic data, C (1)
will be periodic with the same period as fi(z). The second utility for a
covariance function is that it is related directly to the energy spectrum, as will
be shown shortly.

It can be shown that C(t) = Cy(~7), that is, C,,(t) is symmetric about
the origin, and that the covariance is independent of the phase angles of the
components of fi(t).

If we now substitute the Fourier series representation for f{¢ + t) into
the equation for the covariance, we obtain

1 +T N2 '
C,,~(r)=} e 2 Fn)e™ " d
t

n=-N/2

1 N/2

=+T
== > f J()e™™ dt F(n)e™™ (7.41)

Tn=-Np2
N2 NJ2

=, 2 FmFime™ = F [|Em| |F(n)]e" e

n=—N, n=-N,

where Fj(n) is the complex conjugate of the complex Fourier coefficients of

SO

For the autocovariance,
N/2

2 |Fy(n)|* e
e (7.42)

> | Fy(n)|?cos not

n=-Nj2

I

Cu(T)

since Cy(7) is symmetric. For the case where the time lag 7 is zero,
N2

1 T
Cu(0y= 2 IFl(n)|2=?J; fiw)dr (7.43)

n=-N/2

which recovers Parseval’s theorem.

7.3.5 Power Spectrum

The Fourier transform of the covariance function is defined as the
power spectrum (for i = j) or the cross spectrum (for / # j). For water waves it
is more appropriate to call it the energy spectrum (i = j), as in the context the
components of the spectrum are the squares of the wave amplitude at each
frequency which are related to wave energy. Taking the Fourier transform of
C(t), we obtain

t+T
Py(n) = % J: Cu(v)e" " dt = |Fin)|? (7.44)
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for —-N/2 < n < N/2, which is the two-sided energy spectrum. In practice, the
one-sided energy spectrum is used, which is physically more intuitive as it
does not involve negative frequencies, —1a.

W)y =2|Fm)|,  n>0
w0) = |F\(0))7, n=0

(7.45)

forO0<n < N/2only.

In the past, the procedure described above to obtain the wave spectrum
was the only practical procedure available. This method, called the mean-
lagged products method, involved the computation of the covariance func-
tion and then its Fourier transform was calculated to obtain the power
spectrum. This laborious method was necessary, instead of the more direct
technique of just taking the Fourier transform of the wave record to obtain
the F(n) coefficients and then finding | F(n)|?, as it was very time consuming
to obtain the Fourier transform. However, in the last two decades, with the
implementation of the fast Fourier transform (FFT), which drastically
reduced the amount of time necessary for computation, the more direct
technique is now favored. In fact, most computer library systems have FFT
algorithms available.

The cross spectrum ®,(n) (for i + j) is obtained in a similar manner as
(I),-,—_

1 o —inot _ |
@y(n) = ?J: Cy(r)e™ dt = Fi(n)F{(n) (7.46)

or, it is the product of the Fourier coefficients of time series j and the complex
conjugate of the coefficients for series i. The cross spectrum is in general
complex, the real part is denoted the cospectrum, and the imaginary, the
quad(rature) spectrum, or ®(n) = Co,(n) + iQuad;(n).

There are numerous intricacies of spectral estimation, such as stability
and resolution of the spectrum, length of time series necessary, digitizing
frequency, and so on. The interested reader is referred to other references for
this; see, for example, Jenkins and Watts (1968).

7.3.6 The Continuous Spectrum

The amplitude, phase, and energy spectra that have been discussed
have been discrete; that is, there are contributions only at discrete frequen-
cies, for example, for the energy spectrum ®;(n), and the spacing on the
frequency axis is

Ao === (7.47)

The discrete nature of the spectra is a direct result of considering the time
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series to be periodic. Natural phenomena such as gustiness in the atmosphere
or water waves are usually considered to be aperiodic, and therefore there are
a number of analytic continuous wave spectra which are used in design.

The formal derivation of aperiodic spectral relationships will not be
presented here. It suffices to note that the procedure is one of considering the
interval of periodicity T to approach infinity and recognizing that in the limit
the contributions are densely packed on the frequency axis [cf. Eq. (7.47)] and
thus approach a continuous distribution.

In practice, to represent the periodic energy spectrum as a continuous
spectrum, the following simple transformation ensures that the total energy
is conserved:

|F(0,)|* Ao = | F(n)|® (7.48)

where g, = n Ao and it is seen that for the one-sided spectra |F’(n)|* and
| F'(a) |7,

+o0

> |F(n)|*= f | Fi(0)|? do = fX(t) (7.49)

n=0

7.4 THE DIRECTIONAL WAVE SPECTRUM

During a storm, such as a hurricane, a great number of waves are present on
the sea surface, coming from many different directions. To characterize this,
a directional wave spectrum is used. This generalizes the frequency spectrum,
(7.23), by adding the variable 6, the wave direction, in addition to the wave
frequency. Thus for each frequency there may be a number of wave trains
from different directions. This directional wave system is expressed as*

N/2 2n

n(x’ ¥y, [) — z F(n, g)ei(nat—(k,.cos O)x—(k,sin 6)y) do (750)
n=-N/2J0
where 0 is the angle made by the wave orthogonal and the x axis.
For waves measured at a point, say the origin, as a function of time, this
reduces to
N2 2n

= > F(n, 6)¢™ do (7.51)
n=-N/2J0

Measurement of the directional spectrum and its use in design has
recently become widespread in the ocean industry. In fact, in relatively deep
water, the directional nature of the sea surface during storms is at least as
important as the nonlinearities present due to large waves. (For shallow

“The artifice of negative frequencies is required here to ensure that 7(z) is real. Note that this
requires that k, = -k, but that in the depth-dependent terms, k - | k, |, to ensure the decay with
depth.
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water conditions, the nonlinearities are generally much more significant than
in deep water.)

As an example of the formulations necessary to develop the directional
spectra, we will consider measurements made by a surface-piercing wave
gage [Eq. (7.50)] and a two-component current meter, oriented such that it
measures the horizontal components (u, v).

The velocities 4 and v can be represented as

Nj2

ult)y= > MK,,(z)F(n, 0)e™ dg (7.52)
n=-N/2 no
N2 2n .

O f gknsin b o \F(n, By do (7.53)
n=-N/2 JO no

where, as developed in Chapter 4,
_cosh k.| (h+2)

cosh |k, | A
and the associated velocity potential is
Nf2 2n
‘D(X, Y, t) = 2 F( , ) g COSh 'k l (h + Z) +1(nat—(k,,cosﬁ)x—(k,,sin@)y) de
n—N/2 no  cosh |k.|h

(7.54)

The energy density spectrum ®,,(n) is obtained analytically by first
determining the covariance function C,(1).

1 +T N/2 2n )
Crl®) == f ) % | Fn, e dg dt
t

n=-N2 JO (7.55)
Nj2 2n 2n )
Co(t)= 3 , FX(n, &) do f F(n, 0) de™
n=-N/2

The integrands are periodic functions, and it can be shown (by expand-
ing F(n, 6) in a complex Fourier series) that C,,(t) can be written as

N/2 2n

Co(D= 2 | F(n, 6)|%" do (7.56)
n=—N/2 JO

The energy density spectrum of the surface displacement ®,,(n) is the
Fourier transform of C,,(1), or

1 +7 .
Dyn) =— f Cp(1)e" " dt
T J: (7.57)

2n
=J; |F(n, 6)|* d6 for —-N/2<n<N/2



204 Wave Statistics and Spectra Chap. 7

This quantity ®,(n) is the energy at each frequency o,, and it is seen to
be the integral over the directions 6. The directional energy density spectrum
is | F(n, 0) |, which gives the distribution of energy with direction as well as
frequency. Alternatively, if we examine the energy density spectra of the
horizontal velocities, we obtain

Yz 4
®,.(n) = K* J; cos’ 0| F(n, 0)|*d6 (7.58)

2n
D, (n)=K? J; sin’ 8| F(n, 0)|* d6 for—-N<n<N (7.59)

where K = gkK,(z)/no.
Finally, the cross-spectra

2n

D, (n)=K J; cos 01F(n, 6)|*do (7.60a)
2n

®,(n) =K J; sin 8| F(n, 6)| df (7.60b)

2n
D,.(n) =K f sin @cos 0 |F(n,0)[°df for-N/2<n<N/2 (7.60c)
[}
To obtain the directional wave spectrum, a method developed by
Longuet-Higgins et al. (1963) may be used. The directional spectrum is
expressed as a Fourier series,

|F(n, 0)|*= 3 An(n)cos m8+ 3 B,(n)sin mb (7.61)
m=0 m=1

Now, 4,, and B,, can be evaluated in the foregoing expressions for the
energy spectra. Thus

®,,(n) = nAo(n) (7.62a)
D,(n) = KZ[Ao(n)n + 42(—2”)5} (7.62b)
®,,(n) = K[4,(n)]n (7.62c)
®,,(n) = K[B\(n)]n (7.62d)
®,.(n) = 1<2B—2(2m for—-N<n<N (7.62e)

From the equations above, the first five harmonics of the directional spectra
can be determined in terms of the cross-spectra. The reader should verify that
the spectrum ®,,(n) would yield an additional but not independent equation
in Ay(n) and 4,(n).
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Different methods for obtaining the directional spectrum using wave
staffs or pressure transducers have been discussed or utilized. Panicker and
Borgman (1970) discuss various gage arrays and Borgman (1979) presents a
unified approach to arrays using different types of sensors. Seymour and
Higgins (1978) have developed the slope array, which uses pressure transduc-
ers to provide estimates of the directional spectrum.

Example 7.4; Directional Wave Spectrum from a Linear Array

Pawka (1974) uses a linear array of pressure transducers parallel to shore. Using,
instead, wave staffs, a method of determining the directional spectra will be illus-
trated, differing only in the fact that the pressure response factor is not included for
ease of presentation.

Consider three wave gages distributed at x = 0, /,, and /; along the x axis with
the y axis pointing offshore. For each gage the wave records with time are

N/2 27

Noft) = _%/2 X F(n, 6) dge " (7.63a)
N2 2 ) _

m@) = —§wz ) F(n, B)e*>=% 40 ¢ (7.63b)
N/2 2n ) .

=2 | Fo, g)eicos ol g gminat (7.63c)

where k, is related to no by the dispersion relationship
(no)? = gk, tanh k,h (7.64)

and k_, = —k,.
If the cross spectrum between 7o and 7, is examined, we find that

2n
Dy (n) = ﬁ | F(n, 6)|%™<% 40 (7.65)

for —-N/2 < n < N/2. Again expressing the directional spectrum | F(n, 8)}%in terms of
a Fourier series, as in Eq. (7.61) and substituting into Eq. (7.65), integrals of the
following form result:
n
j; cos mB e™ % dg = gi"J,.(kdl) (7.66)
and
27 )
J; sin m@ e*<>% 4g = 0 (7.67)

where J,(k,/,) is the mth-order Bessel function of the first kind. Therefore,

Ou(n) =7 é A1) (7.68)
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The other possible cross-spectra are

Dp(n)=n % " Am(M)nlknl2) 0<sn<ow (7.69)
m=0
Oun) =7 %:;0 P A8l — 1)) (7.70)

The energy spectrum for each gage is
Dyo(n) = O(n) = P(n) = Ao(n)2n (7.71)

With three gages we have three cross-spectra and one autospectrum (since the

three autospectra are the same) or seven real linear equations for seven real unknown
Am’s.

e 1 0 0 0 W /Ao('l)\ /% A
Jolkls) ~Tokal) Julknl1) ~Jo(kal1) Adn) | Qz)ﬂ
Tolkals) ~Jolkal2) Julknlz) —Jolieul2) Adn) @%)‘*
(Jotbla = 1) =Jalkllz = 1)) Tkl = 1) =Tkl = D) | | Aom) %E/
(7.72)
and
Tty ~Jkalr) Jstkal1) Aim) gQ—u::%
Titkas) ~J3(knl2) Is(kal2) Asm) = Q—UZQE
Tl = 1)) ~Jskallz = 1)) Iska(lz = 1) | | As(n) Qu:—d)l‘z
(1.73)

where (Co);; and (Quad); refer to the real and imaginary parts of the cross-spectrum,
D,

The resulting values of A, to 4 thus define the directional energy spectrum. The
fact that the B,’s are not obtained means that the resulting directional spectrum is
symmetric about 8 = 0. That is, there is an ambiguity in the results in the sense that the
sensor array cannot tell if waves are coming from the +y direction or the —y direction
and hence the physical reason for the array being parallel to shore, as the assumption
can be made that waves do not come from shore (of course, wave reflection or a
significant wind generation area behind the array could affect these results).

It is important to notice that if the gages are spaced evenly, that is, [, = 2/,, then

two of the equations in the matrices are redundant, and only five Fourier coefficients
can be obtained instead of seven.
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7.5 TIME-SERIES SIMULATION

Simulation refers to the calculation of phenomena of interest to investigate
their characteristics or to evaluate the effectiveness of various designs to
measure or withstand the phenomena. An example is the simulation of
directional waves to investigate the forces caused on a particular structural
design. Numerical simulation is feasible through the extremely efficient FFT
procedures noted earlier. In principle, simulations for one-dimensional and
directional spectra are essentially the same; the procedure will be discussed
here for a directional spectrum.
Consider a continuous directional spectrum |F(o, 6)|%, representing
the continuous directional spread of energy over direction 6 and frequency o.
For numerical simulation, the water surface displacement 7 is expressed as
Ni2Z M

nx, v, 0)=23 3 JIF(0, 6,|*Ab,, Ag, (7.74)

n=0 m=1

cos (10t — kynX — kinny — €mn)

in which the above represents a total of M x N/2 wavelets, with M directions
at each of N/2 frequencies. The phase angles €,,, are considered to be random,
in accordance with the concept of the generation of a wavelet over a fetch
which is long compared to the wavelength. Since the set of €,,, is random, any
number of simulations can be carried out based on a single spectrum; each
simulation is termed a “realization” of the spectrum and is interpreted as one
of an infinite number of possible wave systems that could result from a storm
that caused the spectrum of interest. Thus statistics can be developed describ-
ing the probability of the maximum wave height or force or probability of
exceeding design limits, and so on.

In carrying out the simulation, the FFT is generally used due to its
speed. Thus it should be recognized that Eq. (7.74) represents a periodic time
series and any attempt to apply a simulation for a greater period than the
interval of periodicity (= 2n/Ao) would not yield any additional information
and probably would be misleading. To apply the FFT to simulation, it is more
useful to express Eq. (7.74) as

N/2

nx, y, )= > (a.— ib)e™" (7.75)

n=-N/2

in which a, and b, depend on x and y and include the contributions from ail
directions at the nth frequency,

M
Qn=3 VIF(On On|* MOy AT cOS (KumX + Kum Y + €mn)
m=1

(7.76)

M
bo=3 VIF(0n, 0m|* AB, A sin (kX + kum) + €mn)
m=1
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As an illustration of a simulation, suppose that a wave gage array has
been designed to determine the directional spectrum. For selected input
directional spectra, simulations could be carried out and from these the
directional spectra calculated. The use of various record sampling lengths,
various levels of random noise added to the input, and so on, would assist in
evaluating both the methodology developed for extracting the directional
spectrum and the effectiveness of the array for different directional spectra. A
specific example would be one in which the longshore component of energy
flux at a particular point is of primary interest. Simulations would assist in
the evaluation of the ranking of different array designs for extracting the
parameter of interest for a range of directional spectra considered likely to
occur.

7.6 EXAMPLE OF USE OF SPECTRAL METHODS TO
DETERMINE MOMENTUM FLUX

In Chapter 10 it will be shown that the onshore flux of the longshore
component of momentum S, is given by

Sxy = E G sin 26 (7.77)
2 C

in which 6 is measured counterclockwise with respect to the x axis and the x
axis is directed shoreward, and E is the usual total energy per unit surface
area. Equation (7.77) represents the contribution for a particular frequency
and wave direction. If measurements of waves are made such that the
directional spectrum is obtained, the contribution is given, in terms of the
directional spectrum, as

2
Su(n, O,) = L0 O ( | 42l ) sin 26, A8, (1.78)
4 sinh 2k,h
where y = pg, the specific weight of water. The contribution to the momentum
flux component on a frequency-by-frequency basis yields

Sul0n) = 2 (1 + ﬂ) % |F(n, 6,)]*sin 20,, AG,,  (7.79)
4 sinh 2k,h / m=1

and the total longshore component of the onshore component of momentum
flux is
N/2

Sx = Z Sxy(an) (780)

n=-N/2
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7.6.1 Measurement of S,, in Shallow Water

If shallow water wave conditions prevail, an interesting and simple
application of spectral theory affords a direct determination of the momen-
tum flux component S,,.

The integral counterparts to Eq. (7.74) expressed for the u and v
components of water particle velocity are

n=Nj2 2n

u(z, )= > F(n, 6)c cos 6 Me’""’ do (7.81)
w2 Jo sinh kh
n=N/2 2n

Wz, 1) = F(n, ) sin § OB+ D e g (782
n=—N/2 JO sinh kh

Consider the time average of the product of 4 and v:
A a . cosh? k(h + z)
= F(n, 6)|>*=sin20 ———— =246 7.83
"y n=-zl:w2 0 | Fn, O)1 2 sinh? kh (7.83)

which upon using the dispersion equation (3.44) and shallow water approxi-
mations becomes

=N 2
=S f 1F®, O 2946 (7.84)
n=—Nj2 JO 2h

which can be shown to be proportional to S,,, that is,
Sy = phuv (7.85)

Thus the time-averaged product of the output from a biaxial current
meter could be used to determine an estimate of the total value of S,,. A
running average of this product would provide a useful measure of the
longshore forces exerted on the surf zone by the incident waves. The result
displayed in Eq. (7.85) should not be surprising since the definition of .S, is

————
Syy = J:h puv dz (7.86)

and for shallow water conditions, u# and v are uniform over depth.
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PROBLEMS

7.1 In a wave train consisting of 600 waves with a rms wave height H s of 4 m,
what is the probability that the height of a particular wave will exceed 6 m?
What is the probability that the height of at least one of the 600 waves will
exceed 6 m?

7.2 Recognizing that the total area under a spectrum is 77, that for a single sinusoid

= H%8, and that for a Rayleigh distribution H;; = 1.416H s, develop a
realtionship between H;; and the square root of the area under the spectrum
Pems-

7.3 For the time functions below: (a) determine the Fourier coefficients a, and b,;
(b) the phase angles €,; (c) the complex Fourier coefficients; (d) the two-sided
energy spectra; (e) the cross-spectrum.

Sfi(®)= 1+ 2 cos ot + 2 sin ot ~ 3 cos 3ot

fi(f)=2+3sin <at -%’) + 4 cos dat

7.4 The cross-correlation function C,5(1) associated with a pair of time functions
fi(t) and f(¢) is given by

C(1) = 3 cos? ot sin ot
If fi(t) is given as
Sit)=1+jcosat +4sin 20t —3 sin 30t + 4 cos 4at
find f(2).



Chap. 7 Problems 211

75

7.6

7.7

7.8

79

Demonstrate that an arbitrary shift of the time origin by an amount ¢’ changes
the individual values of a, and b, but does not change /a2 + b2.

Using two wave gages located a distance / apart, show that the wave direction
for a sea that has a unique direction for each frequency is

6(o) = tan™ Quad(a)
Co(o)

For a directional wave system as expressed by Eq. (7.51), derive the following
cross-spectra:

(1), Pronon(n),  Poamor(nt), Peomaxyonan(n)s  Panayxomay(n)

Develop the counterparts to Eq. (7.62) for the coefficients of the directional
spectrum.

Develop the first five harmonics of a directional spectrum based on records of
the water surface and the surface slopes, that is,

, O o
Toox ay

Compare the values of Hy,10, H\3, and H, obtained by the Rayleigh distribution
and by the two-component model. Discuss and develop a reasonable qualita-
tive explanation for the differences. Also compare H .., obtained from the two
approaches.



Wave Forces

Dedication
WILLIAM FROUDE

William Froude (1810-1879) is well known for the dimensioniess param-
eter that bears his name. This parameter, utilized in model testing
involving a liquid free surface, such as would occur in testing of ships,
harbor response or wave forces on structures, is a ratio of the inertial
forces extant to the gravitational forces.

Froude was born in Dartington, England, and received his bache-
lor’s degree in mathematics from Oriel College, Oxford, in 1832 and his
master’s degree in 1837. After graduation he worked for Isambard K.
Brunel, the well-known civil engineer and naval architect. Brunel asked
him in 1856 to study the waves generated by ships. In 1859 he moved to
Torquay, an Admiralty establishment, to continue his work in naval
architecture. During this time he studied trochoidal waves and devel-
oped techniques to reduce ship roll. in 1870 he began a series of
experiments to study the resistance of ships using a covered towing
tank 76 m long, 10 m wide, and 3 m deep. He used dynamometers to
measure the forces of various models of ship hulls and scaled these up
to prototype scale.

8.1 INTRODUCTION

An important application of water wave mechanics is the determination of
the forces induced by waves on fixed and compliant structures and the
motions of floating objects. All objects, whether floating on the sea or
attached to the bottom, are subjected to wave forces, and therefore these
forces are of central interest to the designer of these structures.

The investigation of wave forces has been under way for a considerable

212
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time and numerous studies have been carried out for the case of wave forces
on a vertical pile, yet no wave force calculation procedure has been developed
to date for this most simple case for which there is uniform agreement.
Although for long-crested waves, with a single fundamental period, theories
are available which accurately represent the water particle motions in the
absence of a pile for a wide range of wave characteristics, at present there is no
reliable procedure for calculating the wave interaction with a structure for all
conditions of interest. Watching a wave impinge on a vertical pile, the
complexity of the problem becomes immediately obvious. As the wave crest
approaches the pile, a bow wave forms and run-up occurs on the front of the
pile, while a wake develops at the rear. We know from fluid mechanics that
the wake signifies separated flow, which is impossible to treat analytically.
Moreover at Reynolds numbers of interest, the flow is generally turbulent. As
the wave crest passes and the trough reaches the pile, the flow field reverses
and the previously formed wake may wash back past the pile as a new wake is
formed. All of these phenomena clearly violate our previous assumptions of
irrotational flow with small-amplitude waves and small velocities.

Later discussions will describe the wave forces as comprised of an
inertia and drag force component. In the case of structures that are large
relative to the wave length, the wake effects are not important; the inertia
force dominates, and accurate calculation methods exist. For objects that are
small, the wake plays a dominant role on both the drag and inertia force
components, and the roughness characteristics of the object are also of
significance. In the latter case, no reliable analytical approaches are available
and experimental results provide the major design basis.

8.2 POTENTIAL FLOW APPROACH

The treatment of ideal flow about a circular cylinder will provide a frame-
work for wave force discussions to follow. If, for convenience, we consider a
section of vertical piling far from the free surface, then to obtain a first
approximation for the wave force we integrate the pressure distribution
around the piling using potential flow. For a circular piling, it is convenient to
use polar coordinates (7, 6, z) in the horizontal plane. In this system, the
Laplace equation in three dimensions is

v S, 108 5P +az¢

8.1
at ror rc’)l92 9z* @D

and the velocity components are
ho O lob s

8 ]
ar r 8o 9z
A solution to this equation, which is uniform in the vertical direction,
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&(r, 0) = U(t)r(l + E;—j—) cos 6 (8.3)

At r=a, the radius of the pile, there is a no-flow condition in the r direction as
expected.
o

ufa, 0)=-—

ar =0 8.4)

r=qa

U(t), the far-field velocity, is considered to vary sinusoidally with the wave
period 7. In plan view the flow around the cylinder is as shown in Figure 8.1.
(Note the absence of a wake in potential flow.)

To calculate the pressure distribution around the cylinder, the unsteady
form of the Bernoulli equation is applied at the cylinder wall and far
upstream at a point where r =/, 8 =0, and / >> a:

2 2 2 2
[p(r, 0) s gz 12 uo_@} {p(r, 0>+gz+u_rty_e_<’i>]
pP 2 Ot |rea pP 2 ot

r=[

6=0

(8.5)

The elevation terms cancel, leaving the pressure difference between the free
stream pressure in the fluid and that at that cylinder as

_ _ m_e> _(M} (Q@)H,_@)P}
p(a, 6) p(l,O)—pK 7 ) > )\ ) o )

(8.6)
Substituting from the velocity potential yields

2
U—(Q(l — 4 sin® 6)+2ad—Ucos0—l‘—1—q 8.7
2 dt dt

where terms of O(a?//?) have been dropped as extremely small. The pressure
term is thus due to two different contributions, the steady flow term,
proportional to U*(¢), and an acceleration or inertial term, due to dU(¢)/dt.
Let us examine them term by term.

p(a, 0)-p(,0)= P[

Figure 8-1 Potential flow around a circular cylinder.
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8.2.1 Steady Flow Term

The steady pressure contribution as a function of angular position
around the pile is

pla, 6) - p(l, 0) = L(Q(l 4 sin? 6) (8.8)

This pressure distribution is shown in Figure 8.2. The pressure is symmetrical
about the pile and in the absence of a wake, the pressure at the rear of the pile
is the same as that at the front. Intuitively, the net pressure force in the
downstream direction should be zero. Integrating the pressure around the
pile, noting that we use the component of the force in the downstream
direction as illustrated in Figure 8.3, yields the steady (drag) force per unit
elevation dFp, where

2n
dFp = f p(a, @a cos 0 db (8.9)

f |:L2(_Q(l 4 sin” 6) + p(l, 0)}; cos 0 df

or
dFp=0 (8.10)

Therefore, as expected from the pressure symmetry, there is no force on the
pile in ideal steady flow. However, this is contrary to the actual results
determined from real flows; an experience familiar to all is the force occur-
ring on one’s arm when extended out the window of a moving car. This
discrepancy has been called D’Alembert’s paradox and it puzzled the early
hydrodynamicists. The reason for the paradox, as alluded to before, is the
unrealistic assumption of potential flow, which precludes the formation of
boundary layers and a wake.

NN\ /

180° Angle 8 360°

N

Q

Pa,8)-P(1,0)

Figure 8.2 Pressure distribution around cylinder for case of ideal flow. Note the
low pressure at the sides, 8 = 90°, and the symmetry with respect to 6 = 0° and
6=90".
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p
I’} Al
‘= /
a Figure 8.3 Calculation of elemental
AF, = (pa AB) cos 0 force in x direction. AF, is positive in

the downstream (—x) direction.

The real pressure distribution around a cylinder in steady flow is a
function of the Reynolds number R, defined as R = UD/v, where U is the
velocity normal to the cylinder axis, D is the pile diameter, and v = u/p, the
kinematic viscosity of the fluid, which is the ratio of the dynamic viscosity u
to the fluid density p. In Figure 8.4, Goldstein (1938) shows the measured
pressure distribution around cylinders for two Reynolds numbers compared
to the theoretical ideal flow result. For the upstream portion of the cylinder,
with @ < §,, the separation angle, the pressure may be described approxi-
mately by potential flow; however, for 8 > 6,, which is a function of the
Reynolds number, the pressure appears nearly constant. We can therefore
approximate the force on a cylinder by using the potential flow solution for
0 < 6 < 6, and using a constant pressure in the wake, as follows:

05 2 n
dFp = 2]; Eg}@ (1 — 4 sin? 6)a cos 0 d6 + ZJ; Dwake@ €0S 0 d6 (8.11)

Os n
= pUz(t)a[ f (1-4sin*@)cos d6+ | —Lrcos g d@}
0 o pU(1)/2
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Figure 8.4 Measured pressure distributions around cylinders. (From Goldstein,
1938.)
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Figure 8.5 Variation of drag coefficient, Cp with Reynolds number R for a
smooth circular cylinder. (From H. Schlichting, Boundary Layer Theory. Copy-
right © 1968 by McGraw-Hill Book Company. Used with the permission of
McGraw-Hill Book Company.)

The term within the brackets is a function of Reynolds number R, as both 6,
and p... vary with Reynolds number. Therefore, the force per unit length,
dF, can be related to a function, Cp, which varies with R, allowing us to write
the force on the pile per foot of elevation as

U(t) _

AU?
dFy = ColRIpD 2 = Cop @

2

where D = piling diameter = 2a and for the case of a circular cylinder is equal
1o A = projected area/unit elevation of the cylinder (i.e., 4 = 2a). The last
form of Eq. (8.12) applies to two- and three-dimensional objects, with the
stated definition of 4. The function Cj, is called the “drag coefficient” and its
variation with Reynolds number is empirically known for steady flows as
shown in Figure 8.5 for a smooth cylinder of circular cross section. In
practice, Cp is generally on the order of unity and depends on piling rough-
ness in addition to Reynolds number.

(8.12)

8.2.2 Unsteady Flow
Examining the remaining term in the potential flow expression for the

pressure [Eq. (8.7)], we have, integrating the component of force in the
downstream direction,

2r 2n
dF, = ,091@%2 cos’ Hdﬁ—f pfi—(L(QIa cos8d6  (8.13)
0 dt 0 dt
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The second term on the right-hand side integrates to zero, thereby
contributing no net force. The first term, however, yields

dF[ = paz cfi—UZn
! (8.14)

du
=2pna® —
g dt
The term 7a? is the volume V of the pile per unit length, so that the final
expression can be written as

dF, = CMpV%I(T] (8.15)

where Cy is defined as the inertia coefficient, which in this case (of potential
flow about a circular cylinder) is equal to 2.0. Thus there is a force called the
inertial force caused by the fluid accelerating past the cylinder, even in the
absence of friction. The general form [Eq. (8.15)] for the inertia force compo-
nent is valid for two- and three-dimensional objects of arbitrary shapes,
except that the inertia coefficient can vary with the flow direction.

The inertia coefficient, in practice, can be discussed meaningfully as the
sum of two terms,

CM =1+ km (816)

where the second term, k., is called the added mass which depends on the
shape of the object. The interpretation of the inertia coefficient is that the
pressure gradient required to accelerate the fluid exerts a so-called “buoy-
ancy” force on the object, corresponding to the unity term in Eq. (8.16). An
additional local pressure gradient occurs to accelerate the neighboring fluid
around the cylinder. The force necessary for the acceleration of the fluid
around the cylinder yields the added mass term, k..

Let us first consider the force on an object due to the unaffected
pressure gradient in an accelerating fluid. If the pressure gradient is uniform
across the dimension of the object, the knowledge available for vertical
buoyancy forces in a hydrostatic fluid can be applied. In the latter case, the
hydrostatic buoyancy force Fz on an object of volume ¥ in a fluid of specific
weight 7 is

Fg=yV (8.17)
and for a hydrostatic fluid, the pressure gradient dp/dz and specific weight y
are related by

ap
=-= 8.18
Y 5 (8.18)

Therefore,
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Fp=-Py (8.19)

oz

Returning to the effect of a horizontal pressure gradient associated with
an accelerating fluid, the “buoyancy-like” force component is

Fo=-2y (8.20)
ox
and from the Euler equations, — dp/dx may be replaced by p (du/dt), yielding
. du
Fg=pV — 8.21
p=p ar ( )

and by comparing Eqs. (8.20), (8.15), and (8.16), the origin of the unity termin
Cu is clear (i.e., it is due directly to the pressure gradient). The added mass,
which is shape dependent, is caused by the disturbance of the flow field. It
appears that in all cases, Cy, should be greater than unity.

For two-dimensional flow about a cylinder of elliptical cross section,
the added mass coefficient &, can be shown (Lamb, 1945) to be

b
km=— (8.22)
a
l‘.—,a *__h(
1
4 U—-— —

SIS
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Figure 8.6 Inertia coefficient for a cylinder of ellipsoid cross section.
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where g and b are the semiaxes aligned with and transverse to the line of
acceleration, respectively. Equation (8.22) is plotted in Figure 8.6, which
demonstrates the occurrence of a small &, for a streamlined body.

Example 8.1

It is instructive to consider the case where a circular cylinder is accelerating through a
quiescent ideal fluid. Is the force exerted on the cylinder by the fluid the same as when
the fluid accelerates past the cylinder? We expect that since there is no pressure
gradient in the fluid, the force would only be due to the added mass coefficient.
Therefore, the force should not be the same. To determine this, we write the two-
dimensional velocity potential for a moving cylinder as

2
é(r, 6, 1) = U(t) cos 0 (8.23)
r
where now, U(t) represents the velocity of the cylinder. It is clear that this equation
satisfies the following kinematic boundary condition on the cylinder
Uyl g = U(t) cOS 6 (8.24)

The pressure at the wall of the cylinder due to the fluid acceleration is given as

)=l
pla, 6) =p(, 0)+p|:< az> r=a <6t . (8.25)

where / is as defined before for the case of a stationary cylinder. Integrating the
downstream component of the pressure force around the cylinder, we have

2n
dF; = J; [p(a, 6)la cos 6 db

2n 2n 2n
=J; p(fi—[tjazcoszed0+ pfid—aTcost0+J; p(l, 0)a cos 0 do

(8.26)
— d—U a’n
_kpUy

dt

In addition to this force by the fluid on the accelerating cylinder, a force is necessary, of
course, to accelerate the mass of the cylinder itself. Therefore, the total force required
to accelerate a cylinder through water could be greater or less than if the water
accelerated past the cylinder depending on whether the mass of the cylinder is greater
or less than that of the displaced water.

In interpreting the physics and terminology associated with the added
mass concept it is helpful to consider the energetics of the case of a circular
cylinder accelerating through a fluid. As noted previously, the force per unit

length exerted by an accelerating circular cylinder on the surrounding fluid is,
from Eq. (8.26),
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F; = pknna’ -a(;it] (8.27)

where k,, = | for a circular cylinder.

Let us now calculate the kinetic energy of the accelerated fluid as a
function of time. The radial and angular components of velocity are, from
Eq. (8.23),

2
u=-2 v cos 0 (8.28)
ar r
1 3¢ a’ .
Ug=—-—-—=U(t)=sin 0 8.29
o=- S0 = U0 % (8.29)

The total fluid kinetic energy KE at any time is

2z 2]
KE = J; f é—)(uf + ud)rdrdf

2n © 4
=f f’-’UZ"—drdev:’—’Uznaz
0 Ja2 P 2

The time rate of change of kinetic energy should equal the product of the
force and the velocity, (F; - U), that is, the rate at which work is being done by
the cylinder, which is verified as follows:

AKE) _ . 20U
ot at

and by comparison with Eq. (8.26), we see that this is exactly equal to - U.
Thus the added mass coefficient represents the ratio of the additional mass of
fluid that is accelerated with the cylinder to the mass of the fluid displaced by
the cylinder.

(8.30)

U (8.31)

8.3 FORCES DUE TO REAL FLUIDS
8.3.1 The Morison Equation

Previously, we have treated the inertia and steady-state drag force
components independently. However, in a wave field both forces occur and
vary continuously with time. Morison et al. (1950) proposed the following
formula for the total wave force, which is just the sum of the two forces, drag
and inertia.

dF = dFD + dFl
(8.32)
=3 CopAulul + CMPV%
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Equation (8.32) is frequently referred to as the “Morison equation.”

It is noted that in Eq. (8.32), an absolute value sign on one of the
velocity terms ensures that the drag force is in the direction of the velocity,
which changes direction as the wave passes.

8.3.2 Total Force Calculation

To determine the total force on a vertical pile, the force per unit
elevation must be integrated over the immersed length of the pile.

Fe f " dF
“k (8.33)

n 2
_ . nD* Du
—j:thppDululdz+J:hpCM——4 dz

In general, Cp and possibly C), vary over the length of the pile as the
Reynolds number surely does. Therefore, we cannot integrate these equations
directly. If, however, we take constant values of Cp, and Cy and use linear
wave theory' and consider only the local acceleration term, the integration
can be carried out up to the mean free surface to give an approximation to the
total force.

2
Fe pCDDf ( ) cosh cosh® k(h + z) cos (kx, — ot) |cos (kx, — ot)| dz
 sinh’kh
(8.34)

pCMnD f cosh cosh k(h + z) z) in (kx, — ot) dz

sinh kA

_ pCoDH’g <2kh + sinh 2kh

4 sinh 2kh 2 ) cos (kx, — ot) |cos (kx| — at)| (8.395)

D*H , .
+ CM%—?UZ sin (k.x1 —Jt)

or
F = Cp DnE cos (kx, — at) |cos (kx, — ot)] (8.36)

+ CMnDEI% tanh kh sin (kx, — at)

where x, is the location of the pile (conveniently, this can usually be taken as
x, = 0),E (= § pgH?) is the wave energy per unit surface area, and # is the ratio
of group velocity Cg to wave celerity C, as given by Eq. (4.82b). The ratio

'In actual design, a nonlinear theory (see Chapter 11) should be used for horizontal velocity and
acceleration.
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D/H can be interpreted in terms of the relative importance of the inertia to
drag force components. The total moment about the seafloor can be obtained
similarly by integrating

n n
M= J:hdM = Ji;,(h +z)dF 337

| D? Du
(h + 23CppDulul dz + (h + z)pCM _— d

which yields?

M = Cp DnE cos (kx, - at) | cos (kx, - o1)| { {1 - —<°°Sh 2kh ~ 1+ th)zﬂ }

2n 2kh sinh 2kh
+ CMnDE2 tanh kA sin (kx, — ot) h[l - Mi’ (8.38)
H kh sinh kh

in which each of the terms above is recognized as the total force component
times the respective lever arm (the lever arms are in the braces, {-}). The
reader should demonstrate that, as expected from physical reasoning, the
asymptotes for these lever arms are /#/2 and 4 for shallow and deep water
conditions, respectively.

8.3.3 Methodology for Determining Drag and
Inertia Coefficients

In practice, the reliable determination of drag and inertia coefficients
presents a very challenging problem, particularly from field data. The
required measurements include the time-varying force F,, at a particular
elevation on a pile, and the corresponding instantaneous water particle
velocities and accelerations. Given this information, C, and C, may be
determined by a variety of approaches. Only until the recent development of
reliable current meters have the water particle kinematics been available to
researchers. Previous investigators have had to rely on calculated kinematics
based on measurements of the water surface profile. Even if the kinematics
are accurately predicted, which is open to some question, particularly if
small-amplitude wave theory is used for large waves, then Morison’s equa-
tion is only one equation with two unknowns, Cp and Cy. Two methods have
been used to surmount this problem. The first is to correlate forces with water
particle kinematics only at times when the velocities or accelerations are

*The integration again is only carried out to z = 0 as opposed to z = #, for the sake of simplicity of
the final result.
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zero. For a small-amplitude wave of a single period, this corresponds to times
of zero or extreme water surface displacements, respectively. At such times
either the drag or inertia term is zero and therefore, there is only one
unknown in the equation. For example, at the wave crest, the acceleration
(inertia force) is zero and Cp would be found as follows:

— Fm

§ pAW’
and a similar equation would apply for the inertia coefficient at times when
the velocity (drag force component) is zero.

Disadvantages of this approach are that considerable data are not
utilized: for instance, the data between the crest and the still water crossing.
With real storm-driven waves, the times are not obvious at which zeros of
velocities or accelerations occur. This can be seen from Figure 8.7, which
represents the largest wave measured during Hurricane Carla in almost 100 ft
of water in the Gulf of Mexico (Dean, 1965).

A second method, used by Dean and Aagaard (1970), is to minimize the
mean squared error € between measured and predicted forces. This proce-
dure, in order to account for Reynolds number dependency, involves classify-
ing the digitized data into groups with approximately the same Reynolds

number. For each group, then, €*is minimized with respect to the unknowns,
Cp and Cy,.

(8.39)

D

€ =

™M~

(Fmi = Fpi)? (8.40)

!

~ |

where the lowercase subscripts m and p refer to measured and predicted
forces and I is the total number of data points for the data group. The
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Figure 8.7 Largest measured wave from Hurricane Carla, September 1961. (From
Dean, 1965.)
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minimization procedure results in two equations in the two unknowns, that
is,

et 2 OF,,
—==2 (FMt_Fpi)—pl=
aCp I id dCp (8.41)
dge? 2! dF,,
— == (Fm—-F)—2=0
dCu 15 ”aCM
Multiplying through and simplifying, the equations are
PA ! ! Du I
5 Cp 2ulull+Cu 2 [PV<——> (ulul),} =2 Foi (ulul)
i=1 i=l Dt /i i=l (842)
I I 2 I
pA(Du) } (Du) (Du)
C — — J(ulul) |+ C Vi— ) =2 Fu | —
Dg{z or ) w2 P o) " & Dt )i
which can be abbreviated as
ACp+ BCy=D (8.43)
BCp+ FCy=G

where 4, B, D, F, and G are known constants for a given set of data.
Eliminating unknowns yields

GB - DF
Cp=22""0
P B _4F
and (8.44)
DB - GA
Cyy= 22— 4
M B _4F

Once the coefficients have been obtained, the mean squared error can be
found by expanding Eq. (8.40),

€= é F., - 2DCp - 2GCy + AC} + 2BCpCy + FCY, (8.45)
or

€ - é F. = AC% - 2DCp + 2BCpCy — 2GCy + FC, (8.46)
It is interesting to note that the last equation is an equation for an ellipse
when plotted with Cp and Cy, as axes. This is most readily seen for the case of

symmetric wave data, in which the constant B would be equal to zero® due to
the symmetry of the velocity and antisymmetry of the acceleration about the

.. . . . .. Du
°It is interesting to note that most actual data sets approximate this condition of 5; ulul| =0.
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crest and trough. Rewriting the equation above and completing the square,

2 2
ac-202, (2) ]+ r[ca-2cur (4] (8.47)
1 D2 G2
=€2— le+_+—
Gt F

Setting the right-hand side equal to a new constant, J, the equation can be
written in a standard ellipse form:

(Co=D/AY | (Cu=G/F)' _
J/A J/F

The center of the ellipse is located at Cp = D/A and Cy = G/F, which are the
values that give the minimum mean squared error for symmetric data [cf.
Eq. (8.44) for B = 0]. The ratio of the two axes is «/F/A4. The eccentricity of the
ellipseise = \/1 - A/Fif A < Fore=+/1 - F/Aif F < A. For a perfect circle,
e = 0; for an extremely flattened ellipse, e = 1.0. The eccentricity of the ellipse
is a measure of the conditioning of the data. If the ellipses are as shown in
Figure 8.8, the data are well conditioned for the drag coefficient, but poorly
conditioned for determination of Cy, as Cy, could take on a range of values
without changing the error appreciably. Obviously, the best conditioned data
for both coefficients occurs when the ellipses become circles, 4 = F. In
practice, when the data are grouped by Reynolds numbers, typically the low
IR data are poorly conditioned for the drag coefficient, but they yield good
results for Cyy, while the opposite is true for high Reynolds number data. This
is due largely, for example, for the first case, because the drag forces would

1 (8.48)
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Figure 8.8 Tllustration of error surface for data that are well conditioned for
determining Cp.
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Figure 8.9 Drag coefficient variation with Reynolds number as determined by
Dean and Aagaard (1970). Copyright 1970 SPE-AIME.

only be a small portion of the total force. Figures 8.9 and 8.10 show drag and
inertia coefficient results as a function of Reynolds number as obtained by
Dean and Aagaard (1970). There is a dependency on Reynolds number
apparent for the drag coefficient; however, the inertia coefficient appears to
be a constant value, 1.33. Note the reduction of k. to 0.33 from 1.0 for
potential flow, Many other data exist for C, and C), based on different values
of (D/H) and using other parameters. Because of the complexity of the
problem no one functional relationship for Cp, or Cys presently is known. The
values above are recommended for the present for small-diameter vertical
piling (say less than 5 ft) when the force is drag dominant, as in most field
data for pile-supported platforms.

8.3.4 Wave Forces on Pipelines Resting on the
Seafloor

Pipelines are frequently used to convey gas, oil, and other products
across the seafloor. A knowledge of the wave forces acting on pipelines resting
on the seafloor is essential to a design that will ensure the stability of the
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Figure 8.10 Inertia coefficient variation with Reynolds number as determined
by Dean and Aagaard (1970). Copyright 1970 SPE-AIME

pipeline. For our purposes here, we will focus on the case of a long-crested
wave propagating with its crest parallel to the pipeline (see Figure 8.11).

In earlier sections, we have seen the streamline pattern about a cylinder
in an infinite fluid medium. The presence of the plane boundary for the
problem being considered here causes interesting streamline patterns and
associated forces. Figure 8.12 shows the ideal flow case and it is seen that the
streamlines above the cylinder are concentrated, thereby resulting in a
maximum lift force coinciding with the time of maximum velocities. If,
however, there is a small gap between the cylinder and the seafloor, the
concentration of streamlines beneath the cylinder causes a negative lift force
(i.e., directed downward). This phenomenon has been recognized for many
years and was of considerable concern to dirigible pilots landing in a
crosswind. As the dirigible would approach the ground a strong downward
force would occur, only to change to a positive lift force as the craft “touched
down.” The problem was solved by winching the dirigible down under
conditions of considerable positive buoyancy. If pipelines are not adequately
ballasted or anchored, they may experience sufficient lift to be raised off the
seafloor, then experience a negative lift due to high velocities between the
pipe and bottom, resulting in a possibly damaging oscillation.



Sec. 8.3 Forces Due to Real Fluids 229
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Figure 8.11 Pipeline resting on seafloor subject to oscillating water particle
kinematics.

For the case of ideal flow of a fluid about a cylinder resting on the
bottom, it can be shown that there are inertia forces in the horizontal and
vertical directions. In addition, a lift force occurs; but there is no drag force
due to the symmetry of the streamline pattern. The inertia forces (per unit
length) in the x and z directions and the lift force F; for the pipeline seated on
the seafloor are given by

pnD? Du
Fo=Cy 2 28 8.49
"4 Dt (849)
pnD? Dw
F,=Cy 2 2Y 8.50
VY (8.50)
Fp= CLp—zD—u2 (8.51)
41—
Streamlines
\_
{ | ]
7
4 23 v i 0 f 2 3 4

Figure 8.12 Idealized flow field over a cylindrical pipe resting on the seafloor.
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in which according to potential flow (Wilson and Reid, 1963)
Cu, = Cy,=3.29 (8.52)
CL=4.493 (8.53)

It is noted that the vertical acceleration is very small near the seafloor and
under the crest acts in a direction to stabilize the pipeline. Under the trough,
both the vertical inertia force and lift forces are directed upward; however,
for design waves, the velocities under the trough are generally substantially
less than under the crest. Thus the uplift forces under the crest will usually be
greater than under the trough.

For the case of real flow fields about a pipeline, both the Reynolds
number and relative water particle displacement are of importance. For most
design conditions, the flow will be fully separated and if the particle displace-
ment is greater than twice the pipe diameter, drag and inertia coefficients on
the order of 1.0 appear reasonable. If the relative displacement (water particle
displacement/cylinder diameter) is less than 1.0, experimental data by Wright
and Yamamoto (1979) have shown that the potential flow results are applica-
ble. Valuable experimental results are also presented by Sarpkaya (1976).

8.3.5 Relative importance of Drag and Inertia
Force Components

In some situations the drag or inertia force will dominate over the other,
thus simplifying the Morison equation. To determine the condition for which
this happens, consider the value of the ratio dF;_ /dF),_,. For wave forces on a
pile, we know that the maximum velocities occur in the upper portions of the
water column. As a reasonable estimate, let us examine the ratio at z =0.

du ou
(pCMV —) (CMR'D —>
(dF Dmax _ Ot / max - 0t / max (8.54)

(dFDYmax (CD ) (Cp2®)max

— pAu|u|
2
The maximum value of the inertia force for small-amplitude waves
occurs at the still water crossing, where du/dt 1s a maximum. The maximum

drag force occurs at the wave crest. If we substitute these values (for z = 0)
from Chapter 4:

(%) = 1102 coth kh (8.55)

2
() = (g) o coth? kh (8.56)
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we obtain
(dF)max _ CumD
(dFp)mx  CoH
In deep water, the ratio equals
(dF)max  CumD
(dFp)max  CoH

tanh kh (8.57)

(8.58)

In shallow water,

(dFl)max - CMﬂD(kh)
(dF D)max CDH

For the maximum force per unit elevation of the piling then, it is clear that
since Cyr and Cp are O(l), the ratio D/H is relevant in determining the
importance of the inertia force. For large structures, with diameters much
greater than the incident wave height, the inertia force will predominate in
deep water; in shallower water, where kh becomes small, the importance of
the inertia force decreases. To determine which force predominates, we will
determine the curve for which the two forces are equal. Equating Eq. (8.57) to
1, we have

(8.59)

Q_CMﬂ
D

This curve is shown in Figure 8.13 for Cp/Cy = 0.5. For ratios of H/D
above the curve, the drag force predominates. Note that in shallow water, the
drag force tends to predominate over the inertia force.

tanh kh - (8.60)

Asymptote
27 - T T T T T T T s T T T T T T —
5.0 b—
0(‘&%
H |
D
>
= \‘\e(&
C
B 2 <o0s
&Y,
0 L | | ! ! ! | ! | l L1 L |
0 0.10 0.20 0.30
Ly

Figure 8.13 H/D versus h/L, for condition of equal maximum drag and inertia
force components.
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It is also instructive to consider the total force expressed in terms of a
simple harmonic velocity given by

U = Uy, COS ot (8.61)

instead of a form related to the wave height.
The total force on a unit length of cylinder is
2

prD

dFr=dFp+dF;= ngD Um COS Ot | Uy cOS Ot | — Cyy Uno sin gt (8.62)

The ratio of maximum inertia to drag force component is
(dF)max | CumDo 2 Cu 1

(dFD)max 2 CDum CD umT/D
and from Eq. (8.61), it can be shown that u,,/o represents the maximum
displacement .S of a water particle from its neutral position. Therefore,

(dFI)max — E Q_M 1
(-dFD)max 2 CD (S/D)

The forms above are interesting because of the background and signifi-
cance of the parameters u,,7/D and S/D. The parameter u,,T/D was first
proposed by Keulegan and Carpenter (1958) and is sometimes referred to as
the “Keulegan—Carpenter” parameter or the “period” parameter, while S/D
is referred to as the “displacement” parameter. It is noted that, for small and
large values of these parameters, the inertia and drag force components
dominate, respectively. It is very important, but not surprising, that reliable
values of Cp are most readily determined for large values of these parameters
and reliable values of C), are best determined from data for which these
parameters are small. Moreover, it is found that if these parameters are

(8.63)

(8.64)

l.OF—

Relative force
=}

1.0 _
l ™~
0 90° 180° 270° 360°

Phase angle 8 (deg)

Figure 8.14 Measured force variation for S/D = 2.5. (Based on Keulegan and
Carpenter, 1958.)
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small, the form of the wave force time history is well represented by the
theory; however, if these parameters are large, the form may deviate signifi-
cantly from that predicted by theory (see Figure 8.14 for the form of a
measured force record for S/D =~ 2.5). The reason for the behavior noted is
that if S/D is small, the particle excursion is so small that friction and wake
effects do not develop strongly and the flow field resembles that given by
potential theory. As shown in Figure 8.15, as presented by Sarpkaya and
Garrison (1963) for a constantly accelerating flow, the inertia coefficient Cy, is
approximated quite well by the potential flow value of 2 for S/D values less
than 0.5. For higher values the inertia and drag coefficients decrease and
increase, respectively. For S/D values larger than 2.0, the drag and inertia
coefficients oscillate with time (S/D), presumably due to eddy shedding.

Figures 8.16 and 8.17 present drag and inertia coefficients obtained by
Keulegan and Carpenter (1958) versus the period parameter for forces
measured at the node of a standing wave system. (The interpretation of the
inertia coefficient being less than unity is that this occurs for a drag-dominant
case and that the phasing of the forces are more related to the phases of the
near cylinder wake kinematics than to those at far field. Since the drag and
inertia coefficients are correlated to the phasing of the far-field kinematics,
the inertia force as correlated to the far field is “contaminated” by drag force
effects.)

8.3.6 Maximum Total Force on an Object

For an object subjected to simple harmonic oscillations, the time-
varying total force can be expressed by Eq. (8.36), which can be abbreviated
as

Fr = Fpcos ot |cos ot | - F;sin ot (8.65)

in which Fj, and F; represent the maxima of the drag and inertia force
components, respectively, and can be determined readily by comparing
Egs. (8.36) and (8.65).

It is often of interest to determine the maximum fota! force. Noting that
the maximum total force will occur for cos ot > 0, Eq. (8.65) can be written in
the following form, from which the maximum can be determined by the
normal procedures of differential calculus.

Fr=Fycos® gt — F, sin at (8.66)
dF; _
dt

Although not immediately obvious, there are two roots to Eq. (8.67). The
first is found by dividing through by o cos (61), yielding

0

—2Fpo cos (0t),, sin (61),, — F10 cos (01)m (8.67)
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Figure 8.16 Variation of drag coefficient with period parameter as determined by
Keulegan and Carpenter (1958).
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Figure 8.17 Inertia coefficient variation with period parameter as determined by
Keulegan and Carpenter (1958).
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sin (1), = — —— (8.68)

which, when substituted into Eq. (8.66), and recalling that cos® (ot),,
= 1 - sin?® (at),,, gives us

F;
Fr,=Fp+—+ 8.69
To D 4FD ( )

The need for a second root is apparent upon examination of Eq. (8.68)
and recognizing that if F;/2Fp > 1, the first root is no longer possible. The
second root to Eq. (8.67) is cos (at). = 0, which was discarded by dividing
this equation by cos (6¢),.. If cos {a1),, = 0, sin (ot),, = -1 and the maximum
total force is

Fr,=F; (8.70)

The interpretation of this second root can be seen by examining
Figure 8.18. Because of the inflection of cos’ ot at 6t = ~n/2, if F; > 2Fp, the
inertia force term decreases with increasing ¢ more rapidly than the term
involving cos® at increases. Hence the maximum total force is pure inertia.

It is of interest to verify that the cause of the second root is the nature of
the quadratic drag term. For example, if the drag force component were
linear,

Fr= Fpcos at — F, sin ot 8.71)

then, using the same procedures as before, there is only one root and the
maximum total force is always given by

(Fr)m = JF} + Fj (8.72)

L — Fr = Fp, cos® ot ~ F, sin ot

\X

Fp cos 6t [ cos ot |

L ————— ot
90° ™\ 180°

Figure 8.18 Illustration of force component combination for the case of
{Fil =2{Fp).



Sec. 8.4 Inertia Force Predominant Case 237
8.4 INERTIA FORCE PREDOMINANT CASE

As noted previously, if the structure is large relative to the length of the water
particle excursion, flow separation will not occur, the drag force component
is negligible, and the flow field can be treated by the classical methods of
potential flow. There are sufficient numbers of structures in this class to be of
practical interest and the applications include both wave forces and impul-
sive loading (i.e., due to earthquake motions). Two approaches have been
developed and will be reviewed below. The first is an analytical approach and
can be applied only for limited geometries. The second is a numerical method
which is applicable for arbitrary geometries.

8.4.1 Rigorous and Approximate Analytical
Methods for Wave Loading on Large
Objects

MacCamy—Fuchs diffraction theory. As waves impinge on a vertical
pile, they are reflected, or scattered, as in the case of a vertical wall, but in
many directions. The scattering of acoustic and electromagnetic waves by a
circular cylinder has long been known and understood. MacCamy and Fuchs
(1954) applied the known theory to water waves. For linear wave theory, their
results are exact, and can be used to predict Cy, for a pile for which D/H >> 1.
The velocity potential for the incident wave can be written as

b = —gH cosh k(h + z)

20 cosn k% (kx - at) (8.73)
“Re - gH cosh k(h + z) pitkx-a0) (8.74)
20 cosh kh

where Re means the real part of the now complex expression. From complex
variables, i = /-1, and e* ™~ = cos (kx — at) = i sin (kx — at). If the prob-
lem is expressed in terms of polar coordinates where r and @ are in the
horizontal plane and z vertical, the incident wave may be written as

b =_g]_{coshk(h+z)
! 20  cosh kh

which satisfies the Laplace equation in polar form, and also the linearized
form of the kinematic and dynamic free surface boundary conditions.

As this wave impinges on the pile, a reflected wave (which also satisfies
the Laplace equation) radiates away and is assumed to have the following
symmetric (about 6) form,

[Jo(kr) + %_l 2i™ cos mb Jm(kr)Je‘i“’ (8.75)
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e COSh k(R + 2)
cosh kh

Equation (8.76) satisfies the Laplace equation and, for large kr, this solution
has a periodic form which propagates away from the pile, ensuring that the
assumed form satisfies the radiation boundary condition. Superimposing the
incident and reflected waves gives the total flow field. The only remaining
boundary condition is the no-flow condition at the cylinder, — a(®; + ®g)/dr
=0 at r = a. Satisfying this condition determines the values of the terms in the

br = %0 Am cos mOfJ,(kr) + iY,(kr)]e (8.76)

infinite series 4,, (m =0, 1,..., o). The final velocity potential is
®.p = Re gH cosh k(A + z) emiot
20 cosh kh
Ji(ka) ‘ }
Jolkr) — (Jo(kr) + iYo(k 8.77
{[ olkr) J(’,(ka)—iYa(ka)\ olkr) + iYo(kr)) ( )

J(ka)
Jn(ka) — iYn(ka)
where the primes denote derivatives of the Bessel functions with respect to
their arguments.

Using the unsteady form of the Bernoulli equation to obtain the
pressure, the force per unit length on the pile may be obtained.

+ 2% i’"[Jm(kr) - (Ja(kr) + iY,,,(kr))]} cos mﬂ}
m=1

dF, = 2pgH cosh k(h + z) G<Q> cos (ot ~ ) (8.78)
k cosh kh L
where
tana = 714, G<9> - ! (8.79)
Yi(ka) L/ JI(ka) + Yi(ka)
Comparing this to the general formula for inertial force,
dF; = CypV C;—l; (8.80)

where V = nD?/4 and du/at is calculated at the center of the pile, we find that
Cy = 4G(D/L)/m*(D/L) . A plot of Cy; and a versus D/L is shown in Figure
8.19. Note that Cys and a reduce to 2.0 and 0, respectively, for small values of
D/L, as predicted from potential flow theory for a cylinder in an oscillating
flow.

Large rectangular objects. In the MacCamy-Fuchs diffraction the-
ory, the scattering of waves by the pile was included in the inertial force
expression, thus allowing the determination of C), for that case. If, however,
the interaction between a structure and waves is not known, approximate
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Figure 8.19 Variation of inertia coefficient Cy and phase angle o of maximum
force with parameter D/L.

techniques at least allow the determination of the inertia force due to the
pressure gradient. Experiments would be needed to determine the added
mass, K.

Example 8.2

A large rectangular object with dimensions /,, », and /; in the x, y, and z directions is
located somewhere within the water column. Calculate the horizontal inertial force on
the structure due to a wave propagating in the x direction.

Solution. As before, we would like to integrate the dynamic pressure around the
object. Figures 8.20 and 8.21 depict the object and .S refers to the distance between the
mean water level and the bottom of the object. The dynamic pressure induced by the
waves in the absence of the structure is

(z) = PgH cosh k(h + z)
2 cosh kh

In the configurations shown there is no variation of pressure in the y direction, as the
waves are assumed to be long-crested and propagating in the x direction. In this
example, the object will be considered to be totally submerged (Fig. 8.21).

Consider first the approximate wave-induced pressure on the face that is in the
x direction, located at x = x, face (1). The total pressure force on this face, P, is

-S+l3 _ -S+i3
P - f Lp(x, z, 1) dz = 2P8H cos (kxi ~ a1) f cosh k(h + z) dz (8.82)
-s 2 cosh kh -8

p(x, z, t) = pgnk, cos (kx — at) (8.81)
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Figure 8.20 Dynamic wave pressures on rectangular object.

or
LpgH cos (kx; - o) 1 _ . . ]
P = —(sinh k(h— S+ ;) —sinh k(h - § 8.83
1 5 cosh K Lk( ( 3) ( ) (8.83)
Using a trigonometric identity, we get
—_ M 1
Pi= LlpgH cos k(x, — ot) cosh k(h s l_3> sinh (4 kl) (8.89)
2 cosh kh 2 3 kls
-
2
- _Z et
E 5 /?__/
z=-§
W7/ 47777472 AL, 707 7 7.

Figure 8.21 Wave forces on fixed rectangular object within free surface.
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On the face at x = x, + /,, the opposing force is

-S+3
P, = fs Lp(x, +1,, z,t)dz (8.85)
4 1
_ _blwgH cos [k(x, + [)) - ot] cosh k<h -5+ é>—smh (2 k)
2 cosh kh 2 $ ks
The net force in the x direction is then P, — P,, as defined as F:
F.=P -P, (8.86)
lil51spgHk cosh k(h — S + 13/2) sinh (kl;/2) sin (kI,/2) . < < I
= k L
2 cosh kh M2 k2 ARty

This can be rewritten in a more familiar form,

sinh (k/3/2) sin (kl,/2) du

F.=pV 8.87
PP k2 o .87)
where du/dt is evaluated at the center of the rectangular object.
In the limit as the size of the object becomes small, the term
sinh (k/3/2) sin (kl,/2) (8.88)

kl3/2 kl,/2 {1,030

as expected from the buoyancy analogy.* Remember, however, that the interaction of
the structure with the waves was not accounted for, and thus the added mass is not
included in this derivation. Therefore, the actual Cy, should be larger than the terms
above. The vertical force can be calculated in a similar manner (Dean and Dalrymple,
1972), yielding

Fo=pV sinh (k/3/2) sin (kl,/2) dw (8.89)

kl3/2 ki /2 at

where again dw/dt is evaluated at the center of the object. If the tank is situated on the
bottom, such that the wave-induced pressure is not transmitted to the bottom of the
tank, F, is different.

v coth (k/5) sin (kl,/2) ow
kl; kl, /2 ot

where dw/dt is now evaluated at the center of the top of the object. The interested
reader is referred to model tank experiments of Versowski and Herbich (1974) and to
Chakrabarti (1973) for a verification of these formulae. Chakrabarti (1973) has
developed the inertia force equations for other objects, valid for linear theory,
such as a half-cylinder on the bottom and a hemisphere.

F,=—p

(8.90)

Wave forces on and motions of a floatingbody. There are many naval
architecture and marine engineering problems which are of importance to
the ocean engineer. In this section a very approximate treatment will be

4The functions (sin w)/w and (sinh w)/w are shown in Figure 8.24.
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presented for forces on and motions of floating bodies; the reader is referred
to more extensive developments for additional detail and depth.

Generally, unless a large floating body is propelled, the size and/or
streamlining are such that the dominant forces are related to the water
particle accelerations rather than the drag forces which are velocity related. If
we first consider an unrestrained floating object that is small compared to the
wave length, since this object displaces its own weight of water, it is clear that
the forces on the object are exactly those that would have occurred on the
displaced fluid and hence the motions of the object will be the same as would
have occurred for the displaced fluid. This result also applies to the case of a
small neutrally buoyant object at some mean elevation within the water
column. For objects that are restrained or large such that the kinematics
change significantly over the object dimension, the situation becomes more
complex as the object affects the waves. In the following section, a simplified
case is considered for a rectangular object either fixed or freely floating in the
free surface. The treatment is similar to, but more general than the analysis
for the submerged rectangular object.

Consider the case of a rectangular object fixed in the free surface as
shown in Figure 8.22. The waves advance at an arbitrary angle 8, measured

Rectangular barge
(plan view)

Figure 8.22 'Waves propagating with angle a past a rectangular barge of draft d.

Wave crests

Direction of wave
propagation
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counterclockwise from the x axis. Representing the water surface displace-
ment as

n= g cos (k.x + k,y — ot) (8.91)

where k, = k cos 0 and k, = k sin 8 and ¢ = gk tanh kh, the “undisturbed”
pressure field due to this wave is given by
H cosh k(h + z2)
=pg ————cos (k.x + k,y - ot 8.92
P=PE S — ( yy — ot) (8.92)
The forces due to this pressure field will be examined as a dominant
contributor; however, it should be recognized that there is considerable wave
reflection from the object and that this effect could contribute significantly to
the wave forces.
The computation of forces will be illustrated in some detail for the surge
(x) mode of motion. The force is given by

Iy/2 b2 o/
=f f ( vz )dzdy f fp<—*,y,2>dzdy
L2 “pr2 J-d” \ 2
(8.93)

in which d is the draft of the object. Inserting Eq. (8.92) for the pressure and
carrying out the integration yields
F,= —4pg(H/2) (sinh kh — sinh k(h - d)) sin ke sin kidy sinat  (8.94)
ky k cosh kh 2 2
which can be rendered dimensionless by normalizing with respect to the
displaced weight:
F, H, sinh kA — sinh k(h — d) sin k,d,/2 sin k,i,/2

==k, YY 7 sin ot (8.95)
pgdll, 2 kd cosh kh k2 kl/2

The interpretation of the equation above is interesting. Considering
long waves, Eq. (8.95) reduces to

B _ B ng = (8.96)
pgdld, 2 X | x=0,y=0

As noted, comparison with Eq. (8.91) will show that this represents the
instantaneous slope of the water surface in the x direction evaluated at the
center of the platform. In other words, for very long waves, the horizontal
wave force component is simply that due to the body tending to “slide” down
the sloping surface (see Figure 8.23). Also, it is clear that if the wave
propagation direction is 90°, then &, =0 and F, = 0.
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iz 2

Figure 8.23 Wave forces on a “small” floating object are equivalent to the weight
of the object acting down a surface slope.

For the more complete equation, the sin w/w terms are always less than
unity (unless the argument is zero) and represent the reduction due to the
finite length of the object; that is, the effective slope over the length of the
object is less than the maximum slope (see Figure 8.24 for a plot of sin w/w).

The sway force (y direction) can be written down by inspection from Eq.

(8.95), and is
F, __H k, (sinh kh - sinh k(h - d)) sin k.l,/2 sin k,l,/2 sinot  (8.97)
pg dld, 2 kd cosh kh kdo/2  Kkl/2

2.0

0.5

Figure 8.24 Variation of the functions sin w/w and sinh w/w with w.
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The computation of the moments is somewhat more complicated than the
forces. The pitch moment (about the y axis) will first be developed; the roll
moment (about the x axis) could be written down by inspection.

The pitch moment about the center of gravity consists of a primary
contribution due to pressure on the (large) horizontal bottom surface and a
smaller contribution from the two ends of the object.

Referring to Figure 8.25 the pitch moment about the center of gravity
M, is

Ma,=11+12+13 (8.98)
where
W2 (0 I
I, = f f (z- zl)p<— =y, z) dz dy (8.99)
~ly2J-d 2
Iy/2 (] l
L= —f f (z- zl)p<—x, ¥V, z) dzdy (8.100)
-ly/2Jd-d 2
1,12 [h2
I = —f p(x, v, —d) xdx dy (8.101)
~ly2J -1/

in which z, represents the distance of the center of gravity above the mean
water line, the first two integrals, I, and I,, represent the contributions from
the two ends, and the third integral is the moment due to the pressures acting
on the bottom of the barge. The resulting expression for pitch moment is

l.x
p(+ 7075 t)

13
p(x,y,—d, 1)

Figure 8.25 Definition sketch for pressures acting on a fixed rectangular barge to
cause pitch moments.
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M, =2 ee(@)ﬂ cosh k(h = d) (8.102)
2 2 /k, coshkh
2
—cos fecls + S(k"lx> [1 - —COS—B—G}
2 2 cosh k(h - d)

in which

$(x) = M X (8.103)
and
G = kd sinh k(h — d) — [cosh kh — cosh k(h — d)] (8.104)

+ kz, [sinh kh — sinh k(h - d)]

The roll and yaw moment would be obtained similarly; however, the expres-
sions will not be presented here.

8.4.2 Numerical Methods for Wave Loading on
Large Objects of Arbitrary Shapes

For problems of this class, Garrison and a number of colleagues (1971,
1972, 1973, and 1974) have utilized numerical approaches in which the
surface of the structure of interest is represented as a number of surface
elements with an oscillating source located at the center of each of these
elements. These sources, when combined with the incident wave field, satisfy
the appropriate boundary conditions. In the following sections, the method
will be outlined briefly and representative results presented; the reader is
referred to the original papers for greater detail.

Although the boundary value problem will not be specified in detail, it
is noted that it consists of the usual no-flow boundary conditions on the
seafloor and the structure. For purposes of illustration, and since the problem
is considered to be linear, it may be discussed in two parts. First, consider the
object to be “transparent” to the flow which is due only to the incident wave
field. Velocity components would occur normal to the surface of the struc-
ture. Denote this velocity as V,,(S), that is, the normal velocity through the
structure due to the incident wave field. The objective then is to determine a
second velocity potential which satisfies the Laplace equation, all of the
boundary conditions, and which yields a velocity V,;(.S) which is due to the
Green’s function and exactly cancels the normal velocity on the structure due
to the incident velocity field, that is,

Vag(S) = =Vu(S) (8.105)

Green’s functions, G, are developed which satisfy the Laplace equation



Sec. 8.4 Inertia Force Predominant Case 247

and the bottom and free surface boundary conditions, and are denoted by
G(x, &) (8.106)

in which the generalized field vector coordinate is represented as x and the
surface coordinate as the vector &. The forms of the Green’s functions may be
found for various problems in Garrison et al. (1971, 1972, 1973, and 1974). The
velocity potential at any location, x, is given by

l .
<I>G(x)=af J; fE)G(x; &) dS (8.107)

in which fl€) represents the proper weighting of all contributions on the
surface S; this factor is determined in accordance with Eq. (8.105), that is

—f f f(é)——( 8) dS = Va(S) (8.108)

The solution to this equation is carried out numerically by partitioning
the surface into N area elements and expressing the integral as a matrix with
N elements such that

S = Vay, (8.109)

oy = fj;s[—(x,, ) ds (8.110)

The coefficient matrix is first calculated from Eq. (8.110) and then Eq.
(8.109) is inverted to find the weighting factor matrix f,

and

Examples. Garrison and Stacey (1977) have presented calculations of
wave forces on a number of large offshore structures, including several for
which exact solutions were available and other more complex structures for
which wave tank experiments were conducted. Figure 8.26 shows a vertical
cylindrical caisson for which calculations were carried out. The exact and
approximate results are presented in Figure 8.27 for a caisson with a height-
to-radius ratio of unity.

As a second example, consider the case of a CONDEEP structure

Figure 8.26 Fixed vertical caisson.
(From Garrison and Stacey, 1977.) rzzz24 Z
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Figure 8.27 Horizontal inertia coefficients for vertical caisson for e/a = 1.0.
(From Garrison and Stacey, 1977.)
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consisting of 19 cylinders extending upward approximately 47 m from the
bottom; above this level three tapered cylinders extend up through the water
surface and support the platform deck. In the idealization of this structure,
Garrison and Stacey represented the lower caisson structure and portions of
the three support columns by a distribution of sources; the upper portions of
the three support columns were represented by the Morison equation [Eq.
(8.32)). Comparisons of calculated and measured maximum horizontal and
vertical forces and moments are presented in Figures 8.28, 8.29, and 8.30.

8.4.3 Analytical Methods for Impulsive Loading
on a Large Circular Cylinder

The forces imposed on a structure due to its motions can be determined
in some cases from the solution of the wavemaker (Chapter 6) problem. For
example, Jacobsen (1949) has presented the solution for the case of a vertical
right circular cylinder oscillating in a direction perpendicular to its axis;
Garrison and Berklite (1973) have also presented this solution with some
corrections to Jacobsen’s solution. There is no incident wave field and the
boundary condition on the cylinder is expressed as

u(a, 6) = U cos 8 cos ot (8.111)

in which a is the cylinder radius and 8 is the azimuth relative to the line of
oscillation; the remainder of this “wavemaker” boundary value problem is as
previously formulated. The solution is somewhat similar to that for the
MacCamy-Fuchs problem and occurs as Bessel functions; the reader is
referred to Garrison and Berklite or Dalrymple and Dean (1972) for the
details. Although the solution is developed for a simple harmonic oscillation
of the cylinder, it is possible, due to the linearity of the problem, to employ
linear superposition and represent arbitrary time displacements such as
those caused by earthquake motions of the seabed.

8.4.4. Forces Due to Impulsive Motions of Large
Structures of Arbitrary Shape

The methodology employed by Garrison and Berklite (1973) for this
more difficult problem is quite similar to that described previously for the
case of large objects of arbitrary shape in which the use of Green’s functions
was outlined. The only differences are that there is no incident wave field and
the normal velocity on the surface of the structure is now specified in
accordance with the motions of the structure rather than specified as zero as
for the case of a motionless structure. The linearity of the equations govern-
ing the problem allows each of the six motion components® to be solved

SHeave, pitch, roll, yaw, surge, and sway.
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separately and then combined later. For any given structure, the added mass
coefficients were found by Garrison and Berklite to be frequency dependent,
and at very high and low frequencies it was possible to simplify the combined
free surface boundary condition for periodic motion.

—02¢+g935=0 (8.112)
az
to
=0, o large (8.113)
or
?ié =0, o small (8.114)
az
and
p=pd (8.115)

The low-frequency limit corresponds to the case of a “rigid lid” boundary;
that is, the motion is so slow that there is very little displacement at the free
surface and the high-frequency limit corresponds to the case of standing
waves located near the structure, with very little generation of waves pro-
pagating away from the structure.

It is of interest to note that the solutions for the limiting cases repre-
sented by Egs. (8.113) and (8.114) do not represent wave-like behavior, but
rather cases of antisymmetrical flow about the free surface and uniform flow
as idealized in Figures 8.31 and 8.32, respectively.
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Figure 8.31 Interpretation of free surface boundary condition j—’ =0 (for low-
frequency motions). 9z
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Figure 8.32 Interpretation of free surface boundary condition ¢ = 0 (for high-
frequency motions).

Example 8.3

Consider the case of a vertical circular cylinder oscillating along the x axis. The added
mass for the cylinder is presented in Figure 8.33 for the case of a rigid boundary
(d¢/3z = 0) and (¢ = 0). It is seen that for the case of a rigid boundary, the added mass
coefficient is unity as expected and that for the solution corresponding to a boundary
condition, ¢ = 0, the added mass approaches unity as #/a becomes large.

Low frequency (rigid upper boundary)

081

High frequency

£

~

5

3 0.6f
b

%4

8 a a

g =Y

£ 04 h
E | | Motion
<
< 7

0.2
i ! I L I L T
0 5 10

hla

Figure 8.33 Added mass coefficient k,, versus ratio h/a for oscillating right
circular cylinder. (Adapted from Garrison and Berklite, 1973.)
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Figure 8.34 Dimensions of oil storage tank analyzed by Garrison
and Berklite (1973).

A second example presented by Garrison and Berklite is that of an oil
storage tank located on the seafloor as shown in Figure 8.34. The added mass
and lever arm are presented in Figure 8.35.

k,, = Fy/pUA, A = disp. vol. y

a 2 wlh=hla
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Figure 8.35 Added mass k,, and lever arm / for an oil storage tank on the seafloor.
(From Garrison and Berklite, 1973.)
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8.5 SPECTRAL APPROACH TO WAVE FORCE PREDICTION

The Morison equation for wave forces on a structural member is nonlinear in
the water particle velocity # appearing in the drag force component [cf. Eq.
(8.32)]. A second possible source of nonlinearity for the case of a surface-
piercing piling is due to the variation in total immersed water depth due to
the fluctuation of the free surface. However, in cases where the inertia force is
dominant, the drag force component is negligible and the equation is now
linear in the water particle acceleration u. In addition, since the maximum
acceleration occurs for the wave phase corresponding to zero water surface
displacement, 1 = 0, there is no contribution at this phase from the second
possible source of nonlinearity.

In view of the discussion above, for the case of inertia dominance, the
local and total force are approximately linear in the wave height H, and the
spectral methods described in Chapter 7 apply directly. From Eq. (8.35) the
relationship can be expressed as

(FDmax = G()H (8.116)
in which for the total force on a structure,
pnD?
G(o) = Cy —— 8.117
(9) ok ( )

Borgman (1965a), (1965b), and (1967) has investigated the application of
spectral methods to the problem of wave forces for the case in which the drag
force components are not negligible. Only the most simple result of Borg-
man’s approach will be presented here; the reader is referred to the original
papers for additional detail. The incremental wave force dF on an elemental
length ds of vertical piling located a distance s above the seafloor can be
expressed as

CypnD?

dF = (% u2, cos at |cos ot | ~ U O SIN at> ds (8.118)

in which u,, represents the maximum of the horizontal velocity component.
To apply linear spectral approaches, it is necessary to linearize the above
equation. An intuitive form is

2
dF = (—Cbzﬁum cos ot — CManDuma sin ot) ds (8.119)

Borgman shows that the force spectrum S;+0) is related to the sea surface
spectrum S,(o) by

Sar(0) = | Xar(0)|2S (o) (8.120)
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in which

2
| Xar(0) |2 = H% ﬁ UnmeX(0, s)J ¥ Fﬂ%’fﬂzxu(a s)aﬂ 8.121)
n

where
Xi(0,5) =t g OIS
Ini sinh kh

and the linearized drag coefficient Cp, is defined in terms of the actual drag
coefficient Cp and the root-mean-square velocity Uy at the level s by

Cp, = Cp VE Unens (8.123)
b/

That is, Cp, has dimensions of velocity and U, is defined by

(8.122)

Utms = VJ;OO | X, (0, $)|%S,(0) do (8.124)

For the case of total wave forces over the entire water depth, the
integration of Eq. (8.120) is carried out only up to the mean free surface, z = 0,
and the result is

SHo) = H:(CDTPD>2 a-§ G, (a):| + ‘:(%)2 Gz(o')}}S,,(a) (8.125)
I

in which

h
J; Ums(S) cosh ks ds

G(o) = 8.126
() sinh kh ( )

G0) = % (8.127)

Borgman (1967) has extended this method to the computation of moments
and to multilegged platforms.
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8.1

8.2

PROBLEMS

The triangular cross section shown below is being considered for underwater
petroleum storage. The “tank’ would be in shallow water, so the waves may be
regarded as long.

(a) Develop a relationship for the horizontal wave force on the tank. Express
your answer in dimensionless form, normalizing by the displaced water
weight.

(b) At what position of the wave profile would the horizontal wave force be a
maximum?

ZZ4
L[/z —— 2 j

What is the maximum uplift force on the slab below due to a wave of 10-m
height and 12-s period? Assume that the presence of the slab does not interfere
with the wave motion. At what phase of the motion will be maximum uplift
occur?
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8.3 Given the following wave conditions:

H=15.6ft
T=14s
h=20ft

(a) Consider the case of a single piling supporting a small observation deck.
From corrosion considerations, the thickness of the tubular piling is 1 in.
Assuming that the drag moment predominates, develop an equation for the
stress g in the outer fiber of the base of the piling as a function of the

diameter D.
T
\zzzzz L2228
—_—
YN ol
R A
20 ft

@)

(b) What is the required diameter D if the maximum allowable o is
Omax = 20,000 psi?

(c) For the diameter determined in part (b), calculate the maximum inertia
moment component and express as a percentage of the maximum drag
moment component.

(d) Allowing a freeboard for the lower deck elevation of 10 ft, at what elevation
would this be?

FEquations for Calculating Stress

M
o= 3 = stress on outer fiber

T
S = section modulus = D* - Dt
sect 2p> ~ P
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84

8.5

8.6

8.7

88

8.9

8.10

D=5ft
D=2ft

-
|

&
P

Given
H=156ft
T=14s
h=20ft

(a) Calculate and tabulate the maximum total wave force on the two vertical
cylinders shown above as a function of wave approach direction « for a =
0°, 30°, 60°, and 90°.

(b) What is the ratio of maximum inertia to drag force for the larger cylinder?

(c) What would be the total overturning moment for the direction o, of
maximum force?

Determine the inertia coefficients (horizontal and vertical) for a pipeline
exactly half buried in the bottom.

Based on the experimental results presented in Figure 8.4 and using the Cp
versus IR relationship presented in Figure 8.5, develop a relationship of the
separation angle 6; versus Reynolds number R. Use the approach of Eq. (8.11)
and assume that p,.. can be taken as p(a, 6;). Compare and comment on your
results with those in Figure 8.4.

Referring to Eq. (8.13), and accounting for the effect of separation, develop a
fairly simple equation for the added mass coefficient versus separation angle 6.
(Hint: Use the same considerations suggested in Problem 8.6.)

Discuss the reasons for the decrease in C,, with increasing D/L, using the
results of the MacCamy-Fuchs theory.

Consider the case of waves propagating past and aligned with the major axis of

a barge.

(a) If the dominant forces on the barge are due to being “immersed” in the
wave pressure field, develop an equation for the surge displacement xz(¢) of
the barge.

(b) Demonstrate that xz(t) is exactly the same as the average horizontal
displacement of the water particles displaced by the barge.

A circular cylinder of diameter D and length / is held fixed in a horizontal plane

at an elevation s above the bottom in a total water depth / as shown below.

Considering only the inertia force component and a linear wave of height H

and period T to the propagating in the x direction, develop expressions for the
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time-varying components of forces in the x and y directions, F.(¢) and Fy(?),
and the moment M,(¢) about the z axis.

P

A
/\ j//fo
1 %
————
Direction of wave

propagation

Plan view

8.11 Simplify Eqgs. (8.35) and (8.38) for the cases of shallow and deep water. Discuss
the variation of drag and inertia force and moment components with wave
period for these two regions. Also evaluate the lever arms implied by the
results.

8.12 A circular cylinder is immersed in an idealized flow of free stream velocity U.
The cylinder is instrumented with strain gages to measure the force at the two
locations shown. Develop an expression for the force per unit cylinder length
measured by each of the two sets of strain gages. Interpret the sign of the force.

Strain gage

Strain gage

8.13 Considera cylinder with axis horizontal located one-quarter wave length below
the mean free surface with a wave of height H and period 7 propagating with
crests parallel to the cylinder axis. The water depth is 4.

(a) Develop an expression for the time-varying magnitude and direction of the
total wave force (i.e., drag plus inertia) acting on the cylinder.

(b) Discuss your results for the limiting case of shallow and deep water.

(c) Specifically for the case of deep water, discuss and interpret the time
variation of the magnitude and direction of the total wave force.
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Dedication
JOSEPH VALENTIN BOUSSINESQ

Joseph Valentin Boussinesq (1842-1929) laid the foundations of hydro-
dynamics, together with Cauchy, Poisson, and St.-Venant. His work in
waves is largely remembered for the solitary wave theory that bears his
name and the Boussinesq approximation, which facilitates the study of
stratified flow.

Boussinesq was born in St.-André-de-Sangonis, France, and
earned his baccalaureate from a seminary in Montpellier. Despite his
informal education in the sciences, he produced a paper on capillarity in
1865 and presented it to the Academie des Sciences. From 1866 to 1872
he taught at the Colleges of Agdé, Le Vigan, and Gap. His doctoral work
on the spreading of heat in 1867 won him the attention of Barre de St.-
Venant.

In 1873 he became a professor at Lille and subsequently assumed
the chair of physical and experimental mechanics in Paris.

Boussinesq's scientific work ranged over many fieids of classical
physics: light and heat, ether, fluid forces on bodies, waves, hydraulics,
vortex motions, and elasticity. He also studied philosophical and reli-
gious matters such as determinism and free will.

9.1 INTRODUCTION

Historically, the mathematical treatment of water wave theory by various
investigators has been carried out with the assumption of a rigid, impermea-
ble horizontal seabed. In nature, of course, the actual bottom varies drasti-
cally from locales in the Gulf of Mexico where the muds behave as viscous
fluids, to rippled porous sand beds, to rough rocky bottoms. The degree of bed
rigidity (as measured by the shear modulus, say), the porosity, and the
roughness all influence the water waves to varying degrees. This interaction

261
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with the bed results in wave damping and a local change in wave kinematics.
Significant wave damping can occur if the bed is very soft, or if the waves
propagate a long distance; in either case, shoaling formulas developed earlier
are no longer strictly valid.

If the presence of the wave over the bed causes significant bed deforma-
tion and stresses, the possibility exists of soil failure and significant forces on
buried pipelines and on bottom-mounted structures.

9.2 WAVES OVER SMOOTH, RIGID, IMPERMEABLE
BOTTOMS

9.2.1 Laminar Boundary Layer

The equations governing the water waves in a viscous fluid are the
Navier-Stokes equation [Eqgs. (2.39a) and (2.39¢)], shown here in linearized

form.
2 2
?ﬁ:-lﬁg+v<a_u+9_bl_> (91)
ot p ox ax? az?
2 2
a—w=-13—p+v<"—’:+"—f)—g 9.2)
at poz ax° oz

where v (= 1/p) is the kinematic viscosity.

It is useful to examine the relative sizes of the various terms in these
equations; this can be done best by putting them in dimensionless form.
Therefore, knowing a priori for waves that a length scale is the inverse of the
wave number and a time scale is the inverse of the wave frequency, we can
write

X=", z==—, t=—, u=aou', p=pgap

where a is the wave amplitude and the primed variables are dimensionless.
Substituting into the equations for the x direction, we get

duw __gkop vk’ (6214' +a_21g>
ot o dx’ o \dx? 9z7?
The two dimensionless quantities that result are of different orders of
magnitude. The first, the inverse of the square of a Froude number (C/+/gk™)
is of order unity [written as O(1)], from the dispersion relationship, while the
second term, vk?/o, is the inverse of a Reynolds number and O(107" to 10°%)
for normal ocean waves. Hence, in general, this term may be neglected—an a
posteriori justification of something that was already done in Chapter 3.
Neglecting the frictional stresses implies that there is a slip boundary
condition at the bottom, z = —A, as from Chapter 3 we know that the bottom

(9.3)
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velocity is nonzero. However, physically, there is no flow at the bottom, due
to the presence of fluid viscosity; hence our argument above must be
modified.

Consider that near the bottom there is a small region where u varies
radically with elevation. The vertical length scale there must be different and
thus, rescaling, we have z = dz’, where J is the thickness of the region over
which u changes rapidly. Again, the horizontal equation of motion is
ou' _ gkap N vk? 0*u’ LY u’

ar’ a?dx’ o x?* b 9z?
The last term can become of O(1) if & o /v/a. The length scale J is a
convenient measure for the laminar boundary layer thickness and it is very
small. For example, for a 5-s wave, d oc 1 mm.

To summarize the scaling argument, very near the bottom, O(J),
viscous effects can become very important. It is therefore convenient to
divide the flow field into two parts, an irrotational and a rotational compo-
nent, or

(9.4)

u=u,+u, (9.5)

where u, satisfies the Euler equation,

19
ou, __1dp (9.6)
at pox
and u, satisfies the approximate rotational equation
du,  du,
=y 9.7)
at 9z* ¢

The reader should verify the validity of this procedure using Eq. (9.1) and the
principle of superposition. It is expected that u, goes to zero away from the
boundary.

For water waves, we know u,, from Chapter 3.
U, =@wcos (kx — at) (9.8a)
o cosh kh

or, in complex notation,
_ gak cosh k(h + z) pitkx-a)
o cosh kh

where only the real part is used here and in the following complex-valued
expressions. To find u,, separation of variables is used, and keeping only the
term that decays away from the bed, we find that'

(9.8b)

p

'The u, term is exactly the same expression as found by solving the problem of an oscillating
bottom in a still fluid (Lamb, 1945, Sec. 345).
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u,= AeV-ioz+hypithx=ot) . g o—(1-i)Jo/2nz+h) gilkx-0t) (9.9)

The complex nature of the exponent of the (z + /) term indicates that there is
an exponential decay away from the bed modified by an oscillating term. The
no-slip boundary condition at z = -, u = u, + u, = 0, fixes 4,

__gk 1 (9.10)
o cosh kh
The real part of the total horizontal velocity u is therefore
gak [cosh k(h + z) cos (kx — at) (9.11)

UH=————
o cosh kh
— e~VolMzth) cog (kx — ot + V 50— (z + h))]

v

which shows there is a phase shift of the viscous term with elevation. The
horizontal velocity profile near the bed is shown in Figure 9.1, for a given
wave, with kd = 0.01 and = /v/20.

The vertical velocity in the bottom boundary layer is most conve-
niently found from the continuity equation,

h+z
__ f u 4o ____gak _ [sinh k(h + 2)e ©0.12)
0 dx o cosh kh

- kﬁ (e—(l—i)./a/zv(z+h) _ 1)ei(./r+3n/4)]
o

R I [ T
5=+
20
k& =0.01
th + 2)
8
v =-—nf2
Figure 9.1 Normalized velocity
profiles for various phase positions y in
— a laminar boundary layer. For x =0,

the velocity profiles depict the fluid
u motion in the boundary layer as the
up crest arrives.
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where ¥ = kx — ot and s is the elevation above the bottom. The vertical
velocity consists of two terms near the bottom. The first is the wave-induced
term and the second is the boundary layer correction term, which, inciden-
tally, is much smaller than u,.

The instantaneous shear stress exerted on the bed may be obtained
from the Newtonian shear stress term

(au 6w>
To=pv| —+—
4z dx

of which only the first term 1is large,

u,
Txz = pV <az >
(9.14)
Toz = va gak cos (kx - ot - E)
o cosh kk 4

The bed shear stress is thus harmonic in time and lags the free surface
displacement by 45°. The mean bed shear stress is zero.
A conventional form for a shear stress in an oscillatory flow is

(9.13)

z=—h

z=~h

or

=L st (9.15)
where u, is the bottom velocity given by potential flow outside of the
boundary layer (i.e., the potential flow value) and f is a friction factor. In
terms of the maximum value (T;)max, We use

gak _
o cosh kh

where {, is the maximum of the (inviscid) horizontal excursion of the water
particle at the bottom. Relating the conventional form of the shear stress to
the previously derived form,

(ub)max = Cba (916)

2
pvi gak = pf(ub)max (9.17)
o cosh kh 8
or, after some manipulation,
8
f= [R—l‘,’z (9.18)

where R ;, is the Reynolds number defined as

R, = 4% (9.19)
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Figure 9.2 Stanton diagram for friction factor under waves as a function of R,
and {,/k.. The line labeled ‘‘Laminar’’ denotes Eq. (9.18). (From Kamphuis,
1975.)

The friction factor is plotted versus R, in Figure 9.2. For smooth bottoms, the
expression is valid for R, up to 10*,

Due to the presence of the shear stress, there is work done by the waves
against the shear stress within the fluid. The mean rate of energy dissipation
per unit time is given by

h 2 2 2
€p = pv f 2(5‘-3) + ("—’3 + f’ﬁ) + 2("—“’) ds (9.20)
o ox ax o0z 0z

where the overbar denotes the time average over a wave periodand s = /4 + z.
The largest term in this expression is

R 2
€p = pv f (a_u_,> ds
0 \ 9z

(9.21)
—pv gla*k? vzl _ pvga’k ‘ /_a_ _vk\Jo/2vE
o’cosh’kh ¥ 2v4 2sinh2kh Y 2v  sinh 2kh
If in the conservation of energy equation we set
dE
— =—€ 9.22
" D (9.22)

where E =} pga’ and a = ape™, which is the assumed damping law for the
wave amplitude, where a = g, at ¢ = 0, we have for a damping coefficient,

k2
= — \/g _ ko2 (9.23)
40 cosh” kh o 2sinh 2kh

Clearly, since the boundary layer thickness J (= \/v/20) is in general
small, the damping is also small. For a 5-s wave in 5 m of water, with a l-mm-
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thick boundary layer, a;, = 4.8 x 107 s, or for a wave to decay to ¢ = 0.368
requires 1 x 10* s or a propagation distance equal to 126 km. (This is only
considering the bottom effect.)

Example 9.1

Determine the amount of damping that will occur after a wave propagates a distance /
in water of constant depth 4.

Solution. Using Eq. (9.21), we get

d—E=ng—E=—eD=—,~LVEE (9.24)
dt dx sinh 2kh ¥ 2v
Now, since / and k are not functions of x, we can write this as
aE___ ¥k Vi dx (9.25)
E Cgsinh 2kh ¥ 2v
Integrating yields
vic? g A
E=E e e | 9.26
°exp< no sinh 2kh \/2vx) 9.26)

where the boundary condition of E = E, at x = 0 was used. The wave amplitude at

x =/ where ! = 100 km will be
k2 Jv/2al )

(9.27)
2kh + sinh 2kh

a = ay exp(

In the irrotational part of the wave motion, the loss of energy can be
calculated in the same manner:

2
€p= pvf{ aw+au> + 2<aw>}dz (9.28)
dx a9z dz

€p = 2pva’gk? (9.29)

Integrating

where

~Qt

a = dpe

For this internal damping, o, = 2vk?.
If we compare the two damping rates, we find that in deep water the
latter damping is greater, as the bottom does not affect the waves, whereas in

shallow water
(ED)bottom =1<i)_l_ (930)
(€p)ecre 8\Kkh/ ko
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Since in shallow water, k& < /10 and k6 is much smaller, the bottom
damping is much more significant.

At the free surface, there exists another boundary layer which contri-
butes a small damping (Phillips, 1966),

o = vk Ja/2v (9.31)
7™ 2 tanh kh
This is always much smaller than the interior and the bottom boundary
layer damping:
% _ K0 tanh kh (9.32)
Q; n
252
& __ko (9.33)
oy cosh® kh

9.2.2 Turbulent Boundary Layers

When waves become large or the bottom is rough, the boundary layer is
turbulent. In fact, for most cases in nature, a turbulent boundary layer exists.
This implies (in analogy to steady flow over flat plates) that the boundary
layer is thicker, the shear stress on the bottom is larger, and it depends on the
square of the bottom velocity rather than linearly.

Experimental work by Jonsson (1966), Kamphuis (1975), and Jonsson
and Carlsen (1976) as well as theoretical work by Kajiura (1968) has provided
insight into the nature of the turbulent boundary layer and its dependency on
Reynolds number and the relative roughness of the bed, which is defined as
k./(», where k. is the equivalent sand grain size on the bed and {;, is the
excursion of the wave-induced water particle motion at the bottom in the
absence of the boundary layer. Kamphuis (1975) indicates, with some reser-
vations due to accuracy, that k, can be related to the distribution of sand sizes
present on the bottom by

ke = 2d90

where dy is the sand size for which 90% of the sand is finer. Using a Stanton-
type diagram (as used for pipe friction factors), Kamphuis has plotted the
friction factor f versus Reynolds number and relative roughness as shown in
Figure 9.2. As in pipe flow, for rough turbulent flow, there is no effect of R,,
and Kamphuis proposed that

ke 3/4
f~01 ¢— for k./C, > 0.02 (9.34)
b

and

1 + ¢n A ~0.35 - 4 fn ke for k./{, < 0.02 (9.35)

2Jf 2Jf 36
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These equations are valid when

ke R, sz 200 (9.36a)
& 8
or, more stringently,
k. 2200 (9.36b)
L R,

which is the condition for rough turbulent flow, when R , > 5 x 10*.
The mean bottom shear stress due to the action of the waves is still zero:

7';=%fub|ub|

pf

(us,.) cos (kx - at) |cos (kx —at) | (9.37)

=0

The energy damping however is nonzero and determined by the rela-
tionship

TxyUp = €p
or
€p _ej_‘ubm)3 cos’ (kx - at) |cos (kx - at) | (9.38)
Averaging over a wave period, we have
PN ( ao )3
€p = =Hu, 9.39
——( ) = 67\ sinh kA (9:39)

which clearly increases as the depth decreases.
The decay of the wave height with distance over a flat bottom can be
obtained from the energy equation.

dEC,
dx

or (9.40)
1 da> pf o 2
2 dx 67 sinh? kk

Solving for the wave amplitude a by separation, we find that

= —€p

ao
2f kKraox
371’ (2kh + sinh 2kh) sinh kh

a(x) = (9.41)
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Figure 9.3 Damping of waves due to damping in a turbulent boundary layer.

This relationship is plotted in Figure 9.3. The amount of wave height decay
clearly increases with friction factor as expected and depends on the water
depth. In deep water a/a, goes to unity as the bottom friction becomes
negligible, while the shallow water asymptote is

a__ 1 (9.42)

Qo 1+ l_ M
6m h’
The energy loss for a wave with a turbulent boundary layer can be

compared to the laminar boundary layer case by relation to the two formulas
(9.21) and (9.39):

Evk \Ja/2v

) T i
(o)annr __sinh 2Kh__ b /- sinh 9.43)
(ED)turbulent Pf a (73 fa 20

67 sinh® kh
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The smallest value of f is its laminar value f;. Expressing f as ff; for the
turbulent case where B is greater than 1, the ratio is reduced to
(ED)laminar - 6n (944)
(ED)turbulcnt 8\/5 ﬂ
or f#> 1.66 for turbulent boundary layer to give greater damping. In general,
this is the case, as can be deduced from the wave friction factor diagram.

Example 9.2

A wave of 5 m amplitude propagates a distance / with an average depth of 30 m. What
is the final wave height? Givenis #=30m, T =10 s, dgo = 0.3 mm, and / = 100 km.

Solution. From the dispersion relationship, k = 0.0457 m™. Next the friction factor
must be determined.

k.  2(0.0003)

" S/sinn 1372 as {, = a/sinh kh (5.45)
A .
=0.00022
and
2
R,=% b0 0 53, g (9.46)

v v vsinh® kh
From Figure 9.2, f= 0.004.
The quantity fk’agx = (0.004) (0.0457) (5) (100,000) = 4.18 and

a._ L ~0.956 (9.47)

a . 2., 1
1+ —(fk‘aex)
320 A T sinh 2k sinh K

or
a=478m

This represents a 4% decrease in wave amplitude due to bottom frictional damping
(over a smooth bottom).

9.3 WATER WAVES OVER A VISCOUS MUD BOTTOM

One representation of a soil bottom would be to characterize it as a viscous
fluid. Examples of this type of bottom exist around the world, particularly
near the mouths of large sediment-bearing rivers, such as in the Gulf of
Mexico near Louisiana (Gade, 1958) and the coast of Surinam (Wells and
Coleman, 1978). The mud bottom often damps out wave energy so rapidly
that these areas can serve as a harbor of refuge for fishermen caught far away
from home port by storms.

The mathematical treatment follows by assuming a laminar flow of a
highly viscous liquid overlain by an inviscid fluid. The surface water wave
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Figure 9.4 Schematic of waves over a mud bottom.

described by linear theory will drive an interfacial wave on the mud-water
boundary that induces flows in the lower layer. These flows are rapidly
damped by viscosity. Figure 9.4 shows a schematic of the waves and fluid
regions.

9.3.1 Water Wave Region

In the overlying fluid, the Laplace equation and the linearized free
surface boundary condition as discussed in Chapter 3 must be satisfied by the
fluid motions. Further at the mud-water interface, continuity of pressure and
vertical velocities must hold across the interface.

In the upper fluid region, denoted region 1, the velocity potential is
assumed to be

bi(x, z, t) = (4 cosh k(h + z) + B sinh k(h + z))e'®" (9.48)
The ¢, is clearly periodic in space and time, and satisfies the Laplace
equation (3.19). The LDFSBC (3.33b) yields

A cosh kh + B sinh kh = 8% (9.49)
g

while the LKFSBC (3.29) yields

A sinh kA + B cosh kh = za% (9.50)

The Bernoulli constant C(¢) has been taken to be zero, to ensure a zero spatial
mean for 7(¢), which has been assumed as the real part of 7(x, t) = e,
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With two equations and three unknowns, 4, B, and k, we can solve for two of
them.

_ iao cosh kh

A (gk - & tanh kh) (9.51)
ok

B-= Mﬁ’;hﬂ (® - gk tanh kh) (9.52)
gl

Now, if we were solving the rigid bottom case, as in Chapter 3, we would
finally specify that the vertical flow, at z = -/, was zero. This would require B
to be zero, which implies that the terms within the parentheses must be zero.
Hence the dispersion relationship, relating k to g, results as before. However,
in this case, since the bottom is not fixed and its location is unknown a priori,
two interfacial boundary conditions are necessary to find an equivalent
dispersion relationship. First, however, the fluid motion within the mud will
be prescribed.

9.3.2 Mud Region

For convenience, we will assume that the mud region is infinite in depth
(practically, this requires that it be at least as deep as L/2, where L is the wave
length). Furthermore, a boundary layer approach will again be used; that is,
the flow will be assumed inviscid except in the boundary layer regions
(which, of course, can be very large). This is valid (Mei and Liu, 1973) as long
as the kinematic viscosity vis very small. Therefore, the fluid mud region will
be described by a solution to the Laplace equation, which is spatially and
temporally periodic, since it is driven by the water wave. The potential
function is then presumed to be of the following form, where d is unknown:

b, z, 1) = de"=Pein (9.53)
A boundary layer correction for ¢, is prescribed.
U, = fe(l—i)Ja/Zv(z+h)ei(kX—Ut) (9.54)

Recall from the laminar boundary layer treatment for waves that the vertical
boundary layer velocity correction is very small.

The vertical velocity in each region must be the same as the motion at
the interface (this is a kinematic boundary condition), so we have

A__0p_ 3 onz=-h+xx,1) (9.55)

ot dz 0z
where x(x, ) is the vertical displacement of the interface, assumed to be

(X, 1) = mee'® (9.56)
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Linearizing the kinematic boundary condition yields
ox__ob__ o,

Py 2 as onz=-h (9.57)
or
—iomg = —kB = —dk
Thus
d=B (9.58)
and
My =— ikB (9.59)
o

The continuity of pressure, which states that the pressure must be the same
on both sides of the interface (since it is free and is assumed to have no
surface tension, it cannot develop a force), can be written (in linear form) as

Pi=D2 onz=-h+jx
or

pljzl—plg _p2 d) -pgz+(p—-plgh onz=-h+y (9.60)

Note that the last term on the rlght-hand side is necessary due to the two fluid
densities present. Linearizing, we obtain

P —(}! -pgxX= Pz d’ -pgX onz=-h (9.61)

Substituting for @, (1')2, and z results in the following equation relating A to B:

(P2 _8k\, 8k
A—Ll<1 ol>+02]3 (9.62)

We have, however, already developed equations for 4 and B in terms of k
[Egs. (9.51)and (9.52)] and by substituting for 4 and B, we find the dispersion
relationship, or

<p2 + tanh kh )o" -2 gk (1 + tanh kh)o® + (— - 1> (gk)* tanh kh =0
D P Y4

(9.63)

This relationship, relating k to ¢, can be factored as

(6 - gk) [ﬁ(% + tanh kh) - (/p’z > gk tanh kh] (9.64)
1 1
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Thus two possible roots exist for waves propagating in the positive x
direction:

o =gk (9.65)
and

gk(& - > tanh kh
@ =P (9.66)
P + tanh kh
4

These two dispersion relationships are plotted in Figure 9.5. The two possible
wave modes can be distinguished by the ratio of the amplitudes of the surface
wave and interfacial wave, which is for each case (Lamb, 1945)

Q0 _ okt (9.67a)

o’ =gk
1.0 T | T ' : '
1 -4
09— —
tanh kh
0.8 -
0.7
0.6 p—l = 5.0 —
Py
2
[
gk 3
0.4 2.5 ]
0.3 2.0 —
0.2
1.5
0.1 =
1.2
| 1.0 I
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kh

Figure 9.5 The dispersion relationship for waves over an infinitely deep denser
lower fluid. Note that the deep water asymptotes are 6%/gk = (p2/p; — D p2/pr + 1)
for the model wave.
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a0 _ _(/2 _ 1>e—kh (9.67b)

mo P/

Therefore, the two cases are distinguished by which is larger, the surface
or the interfacial amplitude, and whether the interface is in phase with or 180°
out of phase with the free surface.

The first wave mode, ¢° = gk, is interesting, as from Eq. (9.62), 4/B = 1.
The expressions for the two velocity potentials are

d)l — ¢)2 - Aek(h+z)ei(k.x—ut) (968)

Thus the two regions, above and below the interface, are indistinguishable.
The presence of a lower, more dense layer has no effect on the wave motion.
This result, which is only true for the case of an infinitely deep mud layer,
results from the fact that the interface is a constant pressure surface. Heuristi-
cally, we could remove the overlying water and the interfacial wave could
propagate as a surface with the same (deep water) celerity. In shallow water,
this would not be true as the interfacial wave no longer corresponds to a
constant pressure surface.

For this mode of wave motion, there is no discontinuity of horizontal
velocity across the interface and hence there is no boundary layer and no
associated damping. (There would be damping if the mud were highly
viscous, as damping would take place outside the boundary layers.) For the
shallow water case, damping does occur and Dalrymple and Liu (1978) have
treated this problem.

The other wave mode with the large out-of-phase interfacial wave
creates an unusual effect in the upper layer. The free surface displacement can
be viewed as a right-side-up wave, while the interfacial wave is an upside-
down wave propagating at the same speed and in the same direction. In
between the two, it could be intuitively expected that a quasi-bottom might
exist, and in fact, one does. At the elevation z, in the upper layer where
w(x, zo) = —0¢/9z =0, there is no vertical flow and this then is the false
bottom. For this elevation, it can be shown (Problem 9.1) that the dispersion
relationship in Eq. (9.66) reduces to

o = gk tanh k| z| (9.69)

The damping in the lower layer is determined by matching the horizon-
tal velocities at the interface.

_9b_ o
dx ax
yielding f = ik(d — A) or

+ Uy atz=-h (9.70)

f= —% (o — gk) (9.71)
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The damping in the boundary layer is found as

h 2
€D=P2V2f (%) dz 9.72)
—® az
2
=sz/40'V2§22 (g2 — gk)? (9.73)

Of the two possible wave modes discussed, the problem remains as to
which mode is more “realistic.” The quotation marks are used as both
solutions are in fact realistic, but the means by which the waves are generated
determines the mode. For example, for waves propagating into a muddy
region, it is probable that the first mode (o> = gk) is the most likely one, as the
wave lengths associated with the second mode are very short, particularly for
small values of p,/p.. However, as p,/p: becomes large, it is possible that both
modes are excited. If, on the other hand, the waves are generated at the
interface by a displacement of the mud, it is more likely the second mode will
be the only one present. This wave, which exists primarily at the interface,
propagates very slowly, due to the fact that the restoring force which causes
the wave to propagate is a result of the density differences between the two
fluids.

Example 9.3

Determine the wave lengths of the two possible modes of wave propagation over an
infinitely deep mud layer, with p,/p, = 1.2. The overlying water column is 4.6 m in
depth and the wave period is 8 s.

Solution. In Figure 9.5, the ordinate may be written as o?4/gkh for convenience.
d’h/g is computed as 0.287 for this case. For mode | we have a’h/gkh =1 at
kh = 0.287. This yields a wave length of 100 m. For the second mode, we have to use
an iterative technique. If we guess k2 = 2.0, from the figure we find for k2 = 2.0 and
po/pi = 1.2 that o*h/gkh ~ 0.087. Dividing this number into o°h/g vields kh;
kh = 3.30. Therefore, an estimate of 2 for kh was too low. Now we estimate k4 as 3.0,
which yields a’h/g = 0.09, or kh = 3.19. Iterating, we find that 3.16 is a good value.
Therefore, L = 9.1 m. By comparison, the wave length of the wave over a rigid bottom
at4.6 mis 51 m.

9.4 WAVES OVER RIGID, POROUS BOTTOMS

Sandy seabeds can be characterized as a porous medium, thus permitting
mathematical treatment. Since Darcy’s experiments in the 1800s, investiga-
tors have treated soils as a continuum, with spatially averaged flows, rather
than worrying about the flows in the tortuous channels between the sand
grains. The solution of this problem will be similar to the preceding case. A
governing equation will be developed for the flows in the bed; these flows will
be matched to those induced by the waves in the fluid region, and the
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damping due to the forced flow in the granular medium will be calculated.
For a full saturated soil, which is assumed to be incompressible (as is the
fluid), the conservation of mass leads to

Veu=0 (9.74)

where uis the discharge velocity or the average velocity across a given area of
soil (including both the intercepted areas of the soil particles and the pores
between them). Darcy’s law relates the velocity to the pressure gradients in
the fluid:

u=- K vp; (9.75)
U

where K is a constant called the permeability, which is a characteristic of the
soil, and u is the dynamic viscosity of the fluid.” The governing equation for
the fluid in the soil is obtained by substituting for u into the conservation of
mass equation, Eq. (9.74), or

v.<—5vm>=o (9.76)
u

or
Vip, =0

Thus the pore pressure satisfies the Laplace equation, as does the velocity
potential in the fluid. In order to match the two solutions, p; and ¢, the
boundary conditions will be that the pressure be continuous across the soil-
water interface, as are the vertical velocities.

The assumed progressive wave forms of ¢ and p; are

&(x, z) = [A4 cosh k(h + z) + B sinh k(h + z2)] &®" (9.77)
and
Ds(x, t) = Dekh+? githx=on (9.78)
The continuity of pressure across the interface requires that
p(x, —h) =pdx, —h) (9.79)

where the subscript s again denotes the soil region pressure. Rewriting, we
have

p i = ps(x, —h) (9.80)
Ot | z=—h

This equation, which neglects the acceleration terms, assumes that the flow can be treated quasi-
statically. An order-of-magnitude analysis bears this out for most sand beds.
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or
—igpA =D
For the vertical velocities to be continuous,
_d6__Kop atz=-h
0z u oz
or
B= KD (9.81)
U

So far we have two equations for the three unknowns 4, B, and D; now
we use the linear free surface boundary conditions to relate them to the wave
amplitude a2 and to obtain the dispersion relationship. The linear dynamic
free surface boundary condition yields

n= 196 = E(A cosh kh + B sinh kh)e'®™ = ge'®™-  (9.82)

g at g
Substituting for 4 and B from above yields
inaK -1
D = pga {cosh kh[l - (%) tanh kh]} (9.83)

Application of the linear kinematic free surface boundary condition
provides the dispersion relationship,

6—’7=—592 onz=0 (9.84)
at 0z
ica = Ak sinh kh + Bk cosh kh

or, substituting for a, 4, and B, in terms of D, resuits in
& {1 - z<£<> tanh kh} — gk (tanh e - ’E—Ii> (9.85)
v v
where v = 4/p, the kinematic viscosity. Reordering gives

o’ — gk tanh kh = _l-<§7_1£> (gk — o® tanh kh) (9.86)
v

This dispersion relationship is complex, yielding a complex k, which may be
written as k = k, + ik;. The real part of k represents the real wave number,
that is, it is related to the wavelength, while the imaginary component
determines the spatial damping rate. This follows by examining the free
surface profile,

”(x [) - aoei(kx~dl) - aoei((kr+iki)x—at)
9

= goe ™tk (9.87)
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Thus there is exponential damping due to k; being greater than zero.

The quantity oK/v in Eq. (9.86) is generally small. For sand, K ranges
from about 10~ to 102 m?, while the kinematic viscosity is O(107°). There-
fore, 6K /v ranges from 107 to 107, which is small.

Approximate solutions can be obtained from the dispersion relation-
ship. In intermediate depth we can replace cosh kh = cosh k.4 + ik;h sinh kA,
as a priori we expect k;i << 1; similarly for sinh k/. Substituting into Eq.
(9.86) for the hyperbolic functions and k, we can separate it into real and
imaginary parts.

Real: (6* — Rgk,) — Rgkhk, tanh k.h
= gk, tanh k.h — (gk; + RoDkh (9.88)
Imaginary: (0® — Rgk)k;h tanh k.h
= gk R + k;h) + (gk; + Rd®) tanh k,h (9.89)
where R = oK/v. Neglecting the small products of Rk; and k? in the real
expression gives
o* ~ gk, tanh k,h (9.90)
while the second expression, after some algebra, yields
__ 2AoK/v)k;
2k.h + sinh 2k, h

as found by Reid and Kajiura (1957). This result is plotted in Figure 9.6.
In shallow water, | k4 | < /10, the dispersion relationship can be written

9.91)

i

as
o’ — gk*h = ~iRgk (l - %) (9.92)
Substituting again k = k, + ik; and separating into real and imaginary parts
gives
s 12 *h
Real: o’ - g(k? - k})h = Rgk;| 1 - a (9.93)
. a*h
Imaginary: 2gk.kh =-Rk,gl1 - ra (9.94)

Solving for k; and k, gives us

_(1-d’h/g) (aK/v) _(1 = koh) (9K/v)
2h 2h

k,=—"{1 _ R (1 - ﬂ)}"z (9.96)
il e\

These expressions are more accurate in shallow water than the previous
expressions. The shallow water asymptote for k; is (1/2A)}(Ko/v).

ki (9.95)
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Figure 9.6 Dimensionless damping coefficient versus depth.

Liu (1973) included a laminar boundary layer at the fluid-soil interface,
50 as to eliminate the discontinuity in the horizontal velocity, and developed
an approximate expression for the combined damping due to the porous
media and the laminar boundary layer. These can be shown to O(gK/v) to be
the sum of the damping rates due to the porous media, Eq. (9.91), and that due
to the laminar boundary layer, Eq. (9.27):

ki = 2k, (ﬁ ik, \/i> (9.97)
2k.h +sinh 2k,h \ Vv 20

i

The damping rate of energy per unit time and per unit area € is related
by k; by the energy conservation equation,
0C,E

—€p (9.98)
ax



282 Waves Over Real Seabeds Chap. 9

or approximately for a constant depth and E = } pgale ¥,
__pg'a’Kk,
® ™ 2v cosh? k.
for the porous damping alone and

pgla’k, (K k. ‘ / y >
€p=—"" L | — ¢+ {f/— 9.100
®Tacosh’kh\v 20 Y 20 ( )

including the laminar boundary layer.

(9.99)
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PROBLEMS

9.1 Show that the dispersion relationship given for waves propagating over a
viscous mud can be expressed as ¢° = gk tanh k| z,} [Eq. (9.69)].

9.2 For Example 9.3, find the damping €, for both modes.
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9.3

9.4

9.5

Develop and solve the boundary value problem for waves propagating over a
porous layer of thickness 4.

The dynamic bottom pressure under a wave can be written as

pg a cos (kx — at)
’ ‘hyt =
plx ) cosh kh

With this as the boundary condition at z = —A for the pressure p,(x, z) in a
porous medium, develop the expression for p,(x, z). Compare this solution to
that obtained in the text. What are the physical differences?

Relate the laminar damping under a progressive wave with distance [Eq.
(9.27)] to the damped long wave [Eq. (5.80)]. What is fin terms of R, for the
long wave? Why the difference from Eq. (9.18)?
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Nonlinear Properties
Derivable from
Small-Amplitude Waves

Dedication
HERMANN LUDWIG FERDINAND VON HELMHOLTZ

Hermann Ludwig Ferdinand von Helmholtz (1821-1894) was born in
Potsdam, southwest of Berlin. The dedication of this chapter to
Helmhoiltz is in recognition of his extensive contributions to fluid dynam-
ics and physics in general. While he did work in the area of waves, his
major contribution to this text is the Heimholtz equation, which governs
the motion of waves in harbors.

Helmholtz entered the Pepiniere Berlin University in 1838 to study
medicine. During his formal education, Gustav Magnus and others
influenced him to expand his interest to natural sciences. In 1842 he
graduated, successfully defending his work on ganglia. From 1842 to
1845, simultaneous to Kelvin’s activities, he investigated the mechanical
equivalent of heat. In 1849 he took a professorship in physiology at
Konigsburg, where he developed an interest in the importance of
electricity in the working of the human body and studied ophthalmology
and color vision. In 1855 he moved to Bonn and in 1858 to another chair
at Heidelberg. There he developed his theories on vortex motion, free
streamiine flows, and the viscosity of water. In 1871 he succeeded
Magnus at the University of Berlin, where he built a physical sciences
institute which educated many well-known scientists, such as Heinrich
Hertz and Max Pianck. Pianck has been quoted as observing: “Wir
hatten das Gefiihl, dass er sich selber mindestens ebenso langweilte
wie wir” (“We had the feeling that he himself was atleast as bored as we

284
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were"). Clearly, he engendered a testimonial distinct from the one Lamb
received from his students.

In 1883 Helmholtz became a Prussian noble in recognition of his
scientific contributions. In 1888 he assumed the leadership of the
Physical Technical Government Institute (Reichsanstalt) in Charlotten-
burg, West Berlin.

Other areas of interest for Helmholtz included the physiology of
optics, binocular vision, acoustics, and the physiology of the ear, sound
(harmony), and electrodynamics.

10.1 INTRODUCTION

Wave energy and power, which were derived in Chapter 4, are nonlinear
quantities obtained from the linear wave theory—nonlinear in the sense that
they involve the wave height to the second power. In this chapter other
nonlinear quantities will be sought which have a bearing on coastal and ocean
design. These quantities, which are time averaged, are correct to second order
in ak, yet have their origin strictly in linear theory. In Chapter 11 a further and
more complete study of nonlinear waves is undertaken.

10.2 MASS TRANSPORT AND MOMENTUM FLUX

If a small neutrally buoyant float is placed in a wave tank and its trajectory
traced as waves pass by, a small mean motion in the direction of the waves
can be observed. The closer to the water surface, the greater the tendency for
this net motion. This motion of the float, which is indicative of the mean fluid
motion, is a nonlinear effect, as the trajectory of the water particles from
linear theory are predicted to be closed ellipses (see Chapter 4).

There are two approaches for examining this mass transport: the
Eulerian frame, using a fixed point to measure the mean flux of mass, or the
Lagrangian frame, which involves moving with the water particles.

10.2.1 Eulerian Mass Transport

Examining the horizontal velocity at any point below the water surface
and averaging over a wave period shows that

— 1 (7
u(x, z) = T J; u(x,z)dt=0 (10.1)

However, in the region between the trough and the wave crest, the horizontal
velocity must be obtained by the Taylor series. For example, for the surface
velocities we have, approximately,'

'Neglecting some contributions from second-order theory.
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M&m=Mnm+n% (10.2)
0z | z=0
21,2
_ gak cosh k(h + z) cos (kx — ot) + ga’k’ tanh kh cos’ (kx — at)
0 cosh kh 2=0 I]
gak

=22 cos (kx — ot) + a*ko cos’ (kx — at)
o

The surface velocity is periodic, yet faster at the wave crest than at the wave
trough, as the second term is always positive at these two phase positions.
This asymmetry of velocity indicates that more fluid moves in the wave
direction under the wave crest than in the trough region. This is, in fact, true.
If we average u(x,n) over a wave period (an operation denoted by an
overbar), there is a mean transport of water?

T 5 R
u(x, ) E%j; u(x, r;)dt=_a2k"=(ka¥

To obtain the total mean flux, or flow of mass, we perform the following
integration, where M is defined as the mass transport

(10.3)

Jpuwis= [ pue =
M = pudz = 7hpudz+npu=6 (10.4)

a result first presented by Starr (1947). Note that the first term in Eq. (10.4) is
zero; again, there is no mean flow except due to the contribution of the region
bounded vertically by 7. The depth-averaged time-mean velocity, due to mass
transport, is

M

U=— 10.5
oh (10.5)

10.2.2 Lagrangian Mass Transport

The Eulerian velocity discussed above is obtained by examining the
velocity at a fixed point. A Lagrangian velocity is one obtained by moving
with a particle as it changes location. The velocity of a particular water
particle with a mean position of (x,, z,) is u(x; + {, z, + &), where { and £ are
locations on the trajectory of the particle. An approximation to the instanta-
neous velocity is

e+ G2+ &) = uln, 2y + g e (10.6)
ax 0z

Clearly, u(x, ) is much less than the phase speed of the wave, C.
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Using the values of the trajectory obtained in Chapter 4 [Eqs. (4.9) and (4.10)
evaluated at (x,, z,)], . can be written as
_ gak cosh k(h + z) c
) cosh kh
a‘ck
sinh? k.

os (kx — at) (10.7)

[cosh2 k(h + z) sin® (kx - at) + sinh? k(h + z) cos® (kx — ot)]

The mean value of u; is

a’ok cosh 2k(h + z) _ ga*k? cosh 2k(h + z)
2 sinh? kh o sinh 2kh

This mean Lagrangian velocity indicates that the water particles drift in the
direction of the waves and move more rapidly at the surface than at the
bottom.

Integrating over the water column to obtain the total transport and
multiplying by the density of the fluid yields, as before,

2
M= f pu d ”gak Ié (10.9)

ur(xi+4zi+8= (10.8)

10.3 MEAN WATER LEVEL

The Bernoulli equation at the free surface, Eq. (3.13), is

(9d/3x)* + (3¢/0z)° o
2 ot

Expanding to the free surface by the Taylor series yields to first order in 7 after
time averaging (which is denoted by the overbar),

3 3 T 3d
(9/9x) ;(6<1>/6Z) v g ’738? Nen) (10.11)

where 7 is a mean displacement in water level from z = 0. Substituting for #
and ¢ from the linear progressive wave theory, we have

a’k C(t) @)
2 sinh 2kh g )+

There are several choices for C(¢) here, depending on the problem. Ifthe
problem is one of waves propagating from deep to shallow water, a customary
boundary condition is 7 is zero in deep water, which fixes C(f) = 0 every-
where. Thus 7 is always negative, becoming more so as the wave enters
shallow water until breaking commences. This is called the setdown. Alterna-
tively, we can force the x axis (z = 0) to be the mean water level at some fixed

+gz=C(t) onz=n (10.10)

n=- (10.12)
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x, by setting C(¢) = f{x1)g in Eq. (10.12), where fis now a constant. As another
example, in an enclosed tank where the amount of water in the tank must be
conserved, a continuity argument must be invoked for C(¢). If the tank is of
length /, then

!
% J; nx)dx =0 (10.13a)
or, from Eq. (10.12),
. —
1 f fxy dx = €D (10.13b)
[ Jo g
The mean water level associated with standing waves is
T\ 2
n= 0] + 'a k (cosh 2kh cos 2kx ~ 1)
g  4sinh 2kh

This is left as an exercise for the reader (Problem 10.3).

10.4 MEAN PRESSURE

The mean pressure under a wave can be most easily obtained by time-
averaging the Bernoulli equation:

2 2
0 LW AW e C(1) (10.14a)

Z=___
p()pat 5

or

ut+ w?

p(z)=—p — pgz + C(1) (10.14b)

under a progressive wave. If C(¢) = 0, the case for shoaling progressive waves,
then it is clear that the mean pressure is decreased from its hydrostatic value.
As (u, w) decrease with depth into the water, the mean pressure approaches
hydrostatic with depth. Substituting into the equation above yields
_pga’k cosh 2k(h + z)
2 sinh 2kh

Alternatively, if the coordinate system is located at the mean water level such
that C(t) = fix,)g and n = 0, it can be shown that

p(z*) = -pw* — pgz* (10.16)

where z* differs by # from the z of the other coordinate system (see Fig-
ure 10.1).

p(z) = pgz (10.15)
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Z'

> J Stilt water level [{C(r) = 0]
Mean water level [C(7) = fg)

Figure 10.1 The two vertical reference systems and associated Bernoulli con-
stants.

Under a standing wave of amplitude a,

_ pga’k
=—_TS" ™  [cosh 2k(h + z) - cos 2kx] — 10.17
p(z) 2 sinh 2kA [ (h+2) 1-pgz (10.17)
and at the bottom,
- pga‘k
_hy=_Fo ™ 2kx - 1) + pgh 10.18
p(-h) 2 sinh 2K% (cos 2kx - 1) + pg. (10.18)

10.5 MOMENTUM FLUX

At a point above the trough level, there is a mean momentum flux as well as
mass flux. The mean vertically averaged momentum flux correct to second
order in ka is

I Z (pu)u dz = MC, (10.19)

where C, is the group velocity, the speed at which the wave energy propagates.
The flux of momentum in the direction of the wave past a section and
the pressure force per unit width is defined as

n
I.=MC, + f (@) dz (10.20)

From Newton’s second law, this quantity is unchanged between any two
sections unless forces are applied. Evaluating the last integral yields the
expression

I,=MC, +4pgh® (10.21)
I, can be rewritten as
I.=Sw+4pgh +n)? (10.22)
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where S, is the radiation stress in the direction of the waves.

" —
S = J:h p(z)dz -3pgh+n)+MCy=EQn -1 (10.23)

The difference between the two forms for 7 is that the latter explicitly
includes the mean water level 7. Each form is important for different
applications.

For the flux of momentum transverse to the wave direction, we have

J:: (pvyvdz =0 (10.24)

The sum of momentum flux and pressure force in the transverse
direction is

n
Iy=L p(2) dz =} pgh’

or
I, =8, +3pglh + 1)

where

’7 —
Sy = L p(z) dz -} pg(h + ny?

= —pghn to O(ka)?
=E(n-3)

If a progressive wave is propagating at some angle 6 to the x axis, then
Sx and S,, are modified to the following forms:

S = E[n (cos* 6 + 1) — }] (10.25)
S,y = E[n (sin? 6 + 1) - ] (10.26)

in which »n is the ratio of group velocity to wave celerity (n = C¢/C). In
addition, for this case there is an additional term representing the flux in the
x direction of the y component of momentum, denoted S,

n 0
Sy = fh puvdz ~ fh p(uv) dz (10.27)
and employing linear wave theory, it can be shown that

Syy = % n sin 20 (10.28)
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It is of interest to note that, if the bathymetry is composed of straight and
parallel contours and if no energy dissipation or additions occur, there is no
change in S, from deep to shallow water.

For further information on radiation stresses and their uses, the reader
is referred to Longuet-Higgins and Stewart (1964), Longuet-Higgins (1976),
and Phillips (1966).

Example 10.1: Wave Setdown and Setup

As waves shoal and break on a beach, the momentum flux in the onshore direction is
reduced and results in compensating forces on the water column. Consider a train of
waves encountering the coast with normal incidence. For a short distance dx (Figure
10.2), a force balance can be developed

ILi=I,-R, (10.29a)
j_dlax_, dldx o (10.29b)
dx 2 dx 2
or finally,
Ly (10.29¢)
dx

using the Taylor series expansion, where I is evaluated at the center and R, is the
reaction force of the bottom in the (-x) direction. Using the radiation stress approach,

dl,

d —
—Z =[S +3ipgh ?
I dx[ +3p8(h + 1))

~Bxy poth 4 AL (10.30)
dx dx

I I

o]

Figure 10.2 Schematic diagram for calculation of wave setup or setdown.
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For a mildly sloping bottom, the reaction force R is due to the weight of the
column of fluid and thus

R.=pglh + )% ax
dx

Substituting yields

1 dS«_dn (10.31)
pgh+n) dx dx

There is therefore a change in mean water surface slope whenever there is a
change in S... The change in # offshore of the breaker line is described by Eq. (10.12),
which describes a gradual reduction of the mean water level as the shoreline is
approached. At x = x,, the breaker line, the wave amplitude is a = k(h + 11)/2, where k
is the breaking index (Chapter 4), and 7 (in shallow water) is

2

n=-L
4h,
as given by Longuet-Higgins and Stewart (1964) or
— Khy
=-— 10.32
n 16 ( )

The setdown therefore is less than 5% of the breaking depth for k = 0.8.
Inside the surf zone, where a(x) = k(h + 17)/2, based on a spilling breaker model,
the setup is found from the force balance, Eq. (10.31):

1 d[l xz(h+71)2§}=d_77

—pg(h+7])a§ 4 2] dx
Simplifying yields
d_’l<1+§'ﬁ>=_3ﬁﬁ (10.33)
dx 8 8 dx
Finally,
= 31K%/8
=-—""h+C 10.34
=TT 3iK%/8 (1039
Evaluating the constant at x = x,, the breaker line, where 7 = 1, gives finally
- — 3x%/8
X) =1+ ———[hs - h(x 10.35
nx) =1 l+3K_2/8[b 69| (10.35)

The mean water surface displacement 7 thus increases linearly with depth as the
shore is approached. This water surface slope provides a hydrostatic pressure gradient

directed offshore to counter the change of wave momentum by breaking across the
shoreline.

38,

B
MO =+ e

(10.36)
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or, for k = 0.8, 7(0) is about 15% of the breaker depth or about 19% of the breaking wave
height.

Example 10.2: Applied Longshore Wave Thrust

For waves propagating obliquely into the surfzone, breaking will result in a reduction
in wave energy and an associated decrease in S, [cf. Eq. (10.28)], which is manifested
as an applied longshore wave thrust F, on the surf zone. For straight and parallel
bottom contours, thrust per unit area is given by

F,=—-%» (10.37)

ox

Thus gradients of the momentum flux terms provide a useful framework for the
driving forces in the nearshore zone. In the present case, the longshore wave thrust per
unit area is resisted by shear stresses on the bottom and lateral faces of the water
column (Longuet-Higgins, 1970).

10.6 SUMMARY

The results of linear wave theory may be used to calculate nonlinear mean
quantities, correct to second order in ka. These quantities, such as mass
transport and mean momentum flux, play a major role in coastal engineer-
ing. In fact, the mean momentum flux of the waves in the longshore
direction, relative to a coastline, is related to the currents engendered at the
coastline and the amounts of sediments transported along the coast. See, for
an overview, the book by Komar (1976). In the open ocean, the mean
momentum flux results in the drifting of objects, such as ships, ice flows, and
oil slicks.
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PROBLEMS

Determine the mean water level due to a wave train impinging on a perfectly
reflecting vertical wall with an angle 6.

Calculate the mean water level associated with an edge wave,

¢ = B2 ghomb= o5 kx sin ot
)
where y is positive offshore, x is alongshore, and f is the bottom slope.
Show that the setdown under a standing wave system is

- a*k
= h 2kh 2kx -1
nx) 3 sinh 2% (cos cos )

Show by two different methods that for the origin of the vertical coordinate
taken at the mean water line, the mean pressure for a progressive wave system
is

p=-pgz —pw’
One method is suggested in the paragraph following Eq. (10.15). A second
method involves integration of the vertical equation of motion from an
arbitrary depth z up to the free surface, the use of the Leibniz rule, and time
averaging over a wave period.
For the case of straight and parallel bottom contours, combine energy conser-

vation consideration with Snell’s law to demonstrate that S, is the same from
deep to shallow water.

Verify Eqs. (10.25) and (10.26) for the radiation stresses developed by a wave

train traveling at an angle 6 to the x axis. Use ¢(x, y, z, t) as developed in
Chapter 4.
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Nonlinear Waves

Dedication
SIR GEORGE GABRIEL STOKES

Sir George Gabriel Stokes (1819-1903) was born in Skreen, Ireland. He
entered Bristol College at 16 and matriculated at Pembroke College,
Cambridge, in 1837. He became a Fellow of Pembroke College in 1841
and in 1849 received the Lucasian Professorship of Mathematics at
Cambridge—the same professorship held by Airy from 1826. To bolster
his teaching salary he also taught at the Government School of Mines.

Stokes'’s contributions range from optics, acoustics, and hydro-
dynamics to viscous fluid problems (a unit of viscosity is named for him)
and to the proof that the wave of maximum height has a crest angle of
120°. He also did a great deal of work related to the concept of ether
which was hypothesized to exist between the planets and stars.

In 1842 he solved three-dimensional flow probiems by introducing
an axisymmetric stream function. In 1849 he developed the dynamical
theory of diffraction using Bessels series and Fourier integral theory,
and in 1852 he received the Rumford Medal of the Royal Society for the
discovery of the nature of natural fluorescence.

His inclusion in this chapter derives from the development of
Stokes waves, large-amplitude waves that he conceived through a
nonlinear wave theory. This theory, although usually extended to higher
orders of accuracy than he was able to achieve, remains in use today.

In 1845 Stokes produced a number of papers on viscous flow. He
was unaware that the French scientists Navier, Poisson, and St.-Venant
had treated these problems, and he independently derived the now-
called Navier-Stokes equations.

Stokes received a number of awards and prizes as well as
numerous honorary doctorates for his work, a process that cuiminated
in 1889 when he became a Baronet.

295
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11.1 INTRODUCTION

The water waves that have been discussed thus far have been small-ampli-
tude waves, which satisfied linearized forms of the kinematic and dynamic
free surface boundary conditions. We have seen that the linear wave theory
has been useful in many respects, even when the requirements of linear
theory, small kH/2, have been violated. In this chapter, extension of the
linear theory to a second-order Stokes (1847) theory and then an “any”-order
theory will be developed. The desire is to develop a water wave theory to best
satisfy the mathematical formulation of the water wave theory. In shallow
water a different expansion will then be explored, where the classical Stokes
expansion is inefficient.

11.2 PERTURBATION APPROACH OF STOKES

Reviewing the periodic water wave boundary value problem for waves
propagating in the +x direction, we have linear and nonlinear boundary
conditions applied to a linear governing differential equation.

11.2.1 Linear Equation and Boundary Conditions

Vi¢p =0 governing differential equation (1.1)
_%o

dz

d(x, z,t)=(x + L, z, t) lateral boundary condition  (11.3)

=0 onz=-h bottom boundary condition (11.2)

dx, z, ) =d(x, z,t + T) periodicity requirement (1.4)

11.2.2 Nonlinear Boundary Conditions

Dynamic free surface boundary condition (DFSBC):

2 2
P, ©Ob/OX) +©89/02) 0, . _cuy  onz=nix.1) (11.5)
p 2 ot
Kinematic free surface boundary condition (KFSBQC):
b an o
—_—— = onz=nx,t 11.6
dz a4t 0x dx ", 1) (1.6

It is convenient at this juncture to put the governing equations and the
related boundary conditions into dimensionless forms. We define the follow-
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ing dimensionless variables, developed in terms of g, a, and k, which are
gravity, the wave amplitude, and the wave number, respectively.

X =kx
Z=kz
n="
a
(o} kb

avek
T =gkt

k
0=~ Cs(1)
b4
o
W =—-—
ek
p=%2
g
The governing equation is thus
&P I D
2o+ 20 11.7
ax* oz* (L)

The periodicity and lateral boundary conditions remain the same in
dimensionless form; however, the free surface boundary conditions are
modified to be

(3D/IX) + (9D/IZ)
2

where P will be taken as zero on the free surface. (Note that if ka = 0, then
Z = 0; there are no waves and therefore only a trivial solution exists.) The
KFSBC becomes
@—(ka)@E=—@ on Z = kall (11.9)
aT X X 9z
In our previous derivation of small-amplitude wave theory, we
expanded the nonlinear conditions about Z = 0, the mean water level, and
then neglected products of very small quantities, such as (a®/dX)*. This
clearly was neglecting terms of order (ka)* when compared to ka.
In the perturbation approach, we will assume that the solution will

P + (ka)? [ J ~ (ka) %? +Z=0Q(@) onZ=kall (11.8)
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depend on the presumed small quantity ka, which we will define as €. The
linear solution will not depend on €, while the second order will, the third
order will depend on €, and so on. Therefore, we will decompose all
quantities into a power series in €, which is presumed to be less than unity.

H=H1+EH2+€2H3+ s
O=D +eb, + D3+ - - -
Q(t) =€QT) + €0AT) +€QT) + - - -

W=+ €W, + €W+ -+ -

(11.10)

Again, as we a priori do not know the location of the free surface
Z = (ka)II(X, T), we will resort to expanding the nonlinear free surface
boundary conditions about Z = 0 in terms of €ll, retaining the higher-order
terms up to €2, denoted as O(€?). Using the Taylor series we have

{lez[<@>2+ (Qq—)y]—eajz+2} +€ell —a—[lez[<?2>2 (1111
2 X 0z oT 0z |2 oX

2 SR B3
+<(—:)9>:|—6@+Z}—€—E 9D = Q1) onZ=0

0z oT 2 87229T
and
<—@—§E+ @QE>+€H_8_<_§9+€6_(B@> (11.12)
dZ 9T X 0X 8Z\. oZ X X
2712 a3
—€H§2=0 onZ=0
2 37}

where we have accounted for the fact that Il and Q(T) are not functions of
elevation.

Substituting the perturbation expansions, Eqs. (11.10), into the linear
conditions, Egs. (11.1) to (11.4), we have, retaining only terms of first order in
€ (the others being much smaller)

VD, + VD, + - - - =0 (11.13)
_3;()1_6@; -=0 atZ=-kh
0z oz
OX,Z, T+eDAX,Z, TN+ -+ - =O(X+L,Z DN +eDy(X+L,Z,T)
OX,ZT)+ePX,Z, T)+ - - =D(X, Z, T+ T,)+eDx(X, Z, T+ T,)

where 7, is the dimensionless wave period, 27/w. At the free surface, we
obtain for the DFSBC and KFSBC, respectively:
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2 2 2,

El:(.@l) +(®>:|_Qg_ea_()é+nl+enz_enlﬂ (1114)

20\ X 9Z aT  aT T 3Z
=QT)+€QAT) - - - onZ=0

2,
_00_ 90, AL AL | 0D OIL g 9Py (11.15)
dZ 9Z T aT X 80X 97Z?

=0 onZ=0

The original nonlinear boundary value problem has now been reformulated
into an infinite set of linear equations of ascending orders. To visualize the
manner in which the linear equations are obtained, consider the following
general form of the perturbed equations:

A +€d,+€A4y--- =B, +€B, +€B;5 - - - (11.16)

The required condition that the equality holds for arbitrary € is that the
coefficients of like powers of € must be equal. Therefore,

A,= B,
Ay=B;
A3=B3, etc.

This procedure will now be used to separate the equations by order.

11.2.3 First-Order Perturbation Equations

If we gather together all the terms that do not depend on €, the linear
equations result.

VZ(D, = 0

_9P_
YA

—?&= -1, + Q,(T) onZ=0 (11.17)

oT

oM, __ oo,

=~ onz=0
oT 9z

OX,Z =P (X+2n,Z,T)
X, Z,T)=D(X,Z, T+ T,

0 on Z = -kh

These are the equations that were used in Chapter 3.
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The solutions are, in dimensionless form,
_cosh (kh + Z)

@i =  cosh kh sin (X - o)
IM=cos (X -~ wT) (11.18)
? = tanh kh

2N =0

which in dimensional form are Eqs. (3.42), (3.43), and (3.34).

11.2.4 Second-Order Perturbation Equation

To the order of €,

VD, =0
—@—2=0 on Z =-kh
Z

P, 9, ad, oI, 3D,
it St S bt Bkl B fhdt

aZ 9T X oX dZ*?

9D, 1 (aq)l)Z <acblﬂ D,
m, -2 () (Y i 22 20 onZ=0
2= - D 2[ oX oZ '8Z aT

QX,Z, T)=Dy(X+21,2,T)
OAX,Z, T)=DyX,Z, T+ T,)

nzZ=90 (11.19)

Note that all the equations and conditions are linear in the variables of
interest, ®»(X, Z, T) and [1(X, T), but the free surface boundary conditions
have inhomogeneous terms that depend on the first-order solution. Since the
first-order solution is known, the terms on the right-hand side are known
also.

To solve for the second-order solution it is convenient to use the
combined free surface boundary condition, which is found by eliminating Il
from the free surface conditions,

FD, 00, 9QT) 90,3l _ Il 5,
aT*  oZ oT X X 9T 9ZaT

2 2 2
RN AN AL R
AZ\ 6T 0oZ 29T\ X YA

For convenience, the right-hand side of this expression will be defined as D.

(11.20)
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Substituting for @, and I, from Egs. (11.18) into the expression for D and
using trigonometric identities, it is possible to express D simply as

D= i"— sin 2(X — ©T) (11.21)
2kh
As a trial solution for ®,( X, Z, T), the following form is taken:
OAX, Z, T) = a, cosh 2(kh + Z) sin 2(X — wT) (11.22)

which satisfies the Laplace equation and the bottom boundary condition.
Examining the second-order combined free surface boundary condition, Eq.
(11.20), it is clear that 3Q(T)/8T = 0,as it cannot depend on sin 2(X ~ wT) as
do all the other terms (being on/y a function of time), and thus the inequality
could not otherwise be satisfied. Therefore, (0,(¢) = constant, 0,. Substituting
@, into the combined condition yields a,.

3 w
== 11.23
“= 7 8 sinh* ki (11.23)
Therefore,
3 w cosh 2(kh + Z)
O(X,Z, T)=-= n2(X-w 11.24
A 8 sinh* kh ( n ( )

To determine the corresponding free surface elevation, I'l,(X, T), the
second-order dynamic free surface boundary condition is used,

2 2
I, = o] +Q0s— —K‘L‘)‘> + ("i‘) } +m, 2 il onZ=0 (11.25)
oT oX 0z 8Z T

Substituting for ®, and ®, yields, in dimensional form,

3 H?d’ cosh 2kh
J ) =——""——""—cos 2(kx - ot
(X, 1) 16 g sinh* kh cos 2 e
H} &
7 h 2kh 2kx — ot 11.26
te 16 g sinh® kh [eos Hoos oon (120

2
+ Hyo [1 + cos 2(kx — at)]
8g

where H | is the first-order wave height (H, = 2a).

There are two options that can be applied to this equation in order to
proceed. First, as in Chapter 10, we can specify the Bernoulli constant to be
zero, corresponding to no setdown in deep water and then separating 77 into a
mean 7 and a fluctuating 7 term.

Me=1+7 (11.27)
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and from Eq. (11.26),

2 2
fe-—ho_____ Hik (11.28)
16 g sinh’ kA 8 sinh 2kh
as in Chapter 10, and
; k;‘ QshhT’f’l(z + cosh 2kh) cos 2(kx — of) (11.29)
sin

The second alternative is to specify / as the mean water level depth and
then i has a zero mean. Then the Bernoulli constant is

_ Hi7
16 sinh? kh
and the fluctuating part of n,, as before is given by Eq. (11.29). The resulting
second-order wave profile is much more peaked at the wave crest and flatter
at the wave troughs than the previous sinusoidal wave form. This is shown in
Figure 11.1.

The velocity potential and water surface displacement, to second order
then, in dimensional form are

(11.30)

¢ = ed, + €,
_Higooshkth+2) oo e — or) (1L31)
20  cosh kh
_iH%acosh 2k(h +2) . sin 2(kx — ot)
32 sinh? kA
and n=en +€n (11.32)

1.0

7, | ka=0.100
- a | kh=0785 .

| n 2n

L 7

L o ]

-1.0 s

1.0 n_ M €1y E
= 21, T

— a a a -

o.st =

_{

0
T 2r
—05 |- | Figure 11.1 A second-order stokes
water surface profile as composed of i,

1.0 and €, contributions where € = ka.
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H, H? Hik cosh kh
—cos (kx — ot 2 + cosh 2kh 2(kx — ot
= 2 ( )+ 16 sinh® kh (2 + cos ) cos 2 "
The dispersion equation relating ¢ to kX remains the same,
o* = gk tanh kh (11.33)

However, it is noted that a correction occurs to the dispersion equation at the
third order.

Convergence. A measure of the validity of the Stokes expansion
procedure is whether or not the series for ¢ converges. This can be checked
for the second-order theory by examining the ratio of the second-order term
to the first-order term, which must be less than 1 in order for the series for ¢,
Eq. (11.10), to converge.'

R _e;ﬁz 3 ka cosh 2kh
&, 8 cosh kh sinh® kh

In deep water, defined as kh > 7, the asymptotic forms of hyperbolic
functions can be substituted to reduce R to

R =3¢ Mg (11.35)

R is thus very small in deep water, particularly since ka has been assumed
small previously. The highest value in deep water would occur for kh = 7,
ka = n/7, occurring for the wave of maximum steepness,

<1 (11.34)

or

3—7” 21 = 0.0025 (11.36)

In shallow water, kh < 7/10, the hyperbolic functions can again be
replaced by the asymptotic values,

3 ka 3 [L’H
8 647:2( 2 > <! -3

The relative depth k4 thus becomes an important parameter in shallow
water. In fact, ka < 8(kh)*/3; this is a severe restriction on wave height, as this
can be written as a/h < (8/3) (kh)?, where k# is small. The maximum that the
ratio a/h can obtain is a/h = 87%/300 for kh = /10, or the maximum wave
amplitude is about one-fourth of the water depth. (In shallower water, this
ratio must decrease.) However, as mentioned in Chapter 4, the wave ampli-
tude for breaking is almost 0.4 the water depth. Therefore, for high waves in

'Properly for the power series for ¢ in terms of € to converge, the ratio test requires that ratio of
the n + 1 term divided by the n™ term be less than unity as n ~ co.
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shallow water, the Stokes expansion is not very good, at least when carried
out to only the second order.

The term in parentheses in Eq. (11.37) is called the Ursell parameter
(Ursell, 1953), which, for second-order Stokes theory to be valid, has a
magnitude

L’H  64n’
<<
h? 3

The value of the Ursell parameter actually should be less than indicated
above, due to the fact that in shallow water the theoretical wave form will
develop an anomalous bump in the trough for large waves due to the
largeness of the second-order term. To investigate this, the free surface
equation will be examined at the trough and the second derivative will be
obtained. From the calculus, a negative second derivative indicates a con-
cave downward curvature, or, for this application, a secondary crest or
bump.

(11.38)

H H?k cosh kh
=—cos (kx — ot 2 + cosh 2kh) cos 2(kx - at 11.39
=" cos ( ) ) cos 2( ) (11.39)
and
2 21,3
S _H . Hk coshkhi, | o oshokh) forkx - ot =7 (11.40)
ax? 2 4 sinh’ kh
Setting the second equation to zero and solving for ka yields
: 3
_ sinh’ kh (11.41)
cosh kh(2 + cosh 2kh)

This is the maximum value of ka for which there is no bump in the trough. In
deep water, the maximum permissible ka from this equation is 4, which is
greater than the limiting steepness value of 7n/7; therefore, in deep water a
secondary crest will not occur in the wave profile, while in shallow water, the
maximum value of ka is

L khy (11.42)

In comparing this rate to that for R, determined previously, this latter
condition is eight times more stringent. In fact, the Ursell parameter reduces
to
L’H 8=’
< —
h? 3
Therefore, for shallow water, the requirement that the wave be single crested

(11.43)
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should be used as the criterion for the maximum height wave. This idea has
been used for fifth-order Stokes waves by Ebbesmeyer (1974).

Kinematics. The velocities under the second-order wave are, in
dimensional form,
__9¢ _H gkcosh k(h +z)
T 9x 2 0 coshkh
3 H’ak cosh 2k(h + 2)
16 sinh* kA

cos (kx — at)

cos 2(kx — at)

(11.44)

_d¢ _H gk sinh k(h + z)
9z 2 o coshkh
. 3 Hgk sinh 2k(h + z)
16 sinh* kh
The presence of the second-order term increases the velocities, but in a
manner that varies along the wave due to the 2(kx — a¢) phase function. For
the horizontal velocity the velocities are greater under the crest but are

reduced under the trough when compared to linear wave theory.
The total horizontal acceleration is, to second order,

sin (kx — at)

sin 2(kx — at)

2 : _
Du _H gk cosh k(h + 2) sin (kx — ot) - H* gk? sin 2(kx — at) (11.45)
Dt 2 cosh kh 4 sinh 2kh
2
% _thl:h cosh 2k(h + z) sin 2(kx - at)
sin

The total vertical acceleration is found similarly (see Problem 11.1).

11.3 THE STREAM FUNCTION WAVE THEORY

Should the reader have followed through the details of the second-order wave
theory, it would have been quite arduous. Clearly, higher-order Stokian wave
theories [third order, Borgman and Chappelear (1958); fifth order, Skjelbreia
and Hendrickson (1961)] become quite difficult. Expanding to even higher
orders becomes extremely formidable. For this reason, it was desirable to
have wave theories that could be developed on the computer to any order.
The first such theory was developed by Chappelear (1961) involving the use of
the velocity potential. Dean (1965) used the stream function to develop the
stream function wave theory, which was computationally simpler than
Chappelear’s technique.
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Cokelet (1977) has extended the method originally developed by
Schwartz (1974) to allow a very accurate calculation of the characteristics of
water waves, including heights ranging up to near breaking. The procedure
involves expressing the complex potential solution in a Fourier series and
represents the Fourier coefficients as series in terms of a perturbation
parameter. An interesting result is that the wave speed, wave energy, and
wave momentum all exhibit maxima at wave heights slightly smaller than the
breaking height.

At present, the Cokelet method appears to yield the most accurate
results for nearly breaking waves; however, the differences from the numeri-
cal theories (Chappelear and Dean) are generally small and the Cokelet
approach is not known to have been applied to design.

11.3.1 Formulation and Solution

In Chapter 3 the linear form of the stream function for water waves was
given as
H g sinh k(h + z)
X, Z,)=-—2"—~ " cos (kx ~ Ot 11.46
W ) 2 0 coshkh ( ) ( )
or if the coordinate system is moved with celerity of the wave, C, thereby
rendering the system steady, as

_ Hg sinh k(h + z) c
20 cosh kh

The advantage of moving the coordinate system with speed C is that the
problem is rendered steady, thus reducing the number of terms in the
boundary conditions.

The boundary value problem for progressive water waves is, in stream
function form,

wix,z)=Cz 0s kx (11.47)

V2w =0, throughout the fluid (11.48a)
2 2
1[(6_:/{) + (f?l/) :I + gn=Qp, aconstant, onz =n(x), (11.48b)
2L\ 9z ox the DFSBC
W =— W é’l, on z = f(x), the KFSBC (11.48¢)
ox 0z

Using the stream function, the latter condition is true by definition; that is,
the free surface, wherever it is, is a streamline. This condition, therefore, is
satisfied exactly.

oy

—=0 onz=-h, BBC (11.484)
ox

wix,z)=w(x + L, z), lateral boundary condition (11.48e)
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Now, from analogy to the second-order wave theory, we might assume that
the N™-order stream function might look like

N
w(x, z) = Cz + 2, X(n) sinh {(nk(h + z)} cos nkx (11.49)
n=1

oy
9z (11.50)
_ W

dax

and U=—

w

Note that for the linear theory, we must have the coefficient

X() =~ Hg _1_
o sinh kh

The only condition not satisfied by this assumed form is the dynamic
free surface boundary condition. The X(N) are, therefore, chosen to satisfy
this condition. On the computer, this condition is satisfied at I discrete points
along the wave profile, each point being denoted by i. The DFSBC is thus
evaluated at each i/ point along the profile, giving Og,. According to the
DFSBC, all the Q5; must be equal to (5, where (5 is a constant.

)
9z /i ox /i
Q5 == ; X gni= Qs (11.51)

However, to get the Qp, the X(n)s (n=1, 2,..., N) must be known to
calculate dw/dz, dw/dx, and . The procedure then must be an iterative one;
values of X(n) are used to determine the Qp,, the O3, are then used to get new
X(n), and so on, until the boundary condition is satisfied.
The measure of the satisfaction of the boundary condition will be
defined as E,, which is the mean squared error to the boundary condition
2

L2 ,
E = Z J; (@5 - Qs) dx (11.52)

where
2 L2
Oz = 7 J; Qs dx

For an exact solution, E, must be zero.
As occurred with the second-order analytical solution for which Qp is
different from zero, 7(x) must have a zero mean, that is,

Lj2
(2/L) J; nx)dx =0
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Further, for design purposes, it is desirable to be able to prescribe the wave
height a priori. These last two conditions can be considered as constraints to
the condition that E| be zero, or at least very small. To solve for the X(n)’s, E,
must be minimized, subject to the constraints. Note that there are two
additional unknowns, due to the necessity of also determining the wave-
length L and the value of the free surface streamline w(x, 7), which is a
constant. Using the method of Lagrange multipliers (Hildebrand, 1965), we
minimize the objective function Oy:

L2
O,=FE, +%IJ; : n(x) dx+iz[n(0)— 11(%) —H:l (11.53)

where 4, and 4, are Lagrange multipliers. The objective function is nonlinear
and in order to facilitate the solution, it is expanded by a truncated Taylor
series:

. ) N+2 601 )
o =0+ AX(n 11.54
Y 0 El G_LX(n) (n) (11.54)
where AX(nY is a small correction to X(n):
X*(n) = X(n) + AX(n) (11.55)

and the superscript j indicates the number of iterations that have been made.
Minimizing the expanded objective function with respect to all the X(n); plus
Ay and 4, yields a series of linear equations for the AX’(n) for fixed j.

Solving the equations for AX(n) in matrix form yields the solution for
iteration, j + 1. This process is repeated for several iterations until 0/ is
acceptably small. This technique is simply a Newton-Raphson procedure,
but applied to a set of nonlinear equations (see, e.g., Gerald, 1978).

The stream function wave theory has been used to generate 40 represen-
tations of nonlinear waves by Dean (1974) and the results tabulated in
dimensionless form. Using these tables, most designs using nonlinear wave
theory can be carried out without the use of a computer.

Chaplin (1980) has developed an improved approach to that of Dean
(1965) for calculating the stream function coefficients, although it is not clear
that his method is an improvement over that of Dalrymple (1974), which is
presented above. Chaplin formulates the problem in dimensionless form
with A, H, and T as the independent parameters and the dimensionless
surface displacements as the unknowns. The method, which is more com-
plex, but vields greater accuracy, particularly for nearly-breaking waves,
commences by determining a set of orthonormal functions representing the
terms in the series given by Eq. (11.49). These functions then allow a more
direct solution of the stream function coefficients which satisfy the dynamic
free surface boundary condition [Eq. (11.48b)]. The method has the advan-
tage that, in contrast to that originally developed by Dean, a maximum in
wave length (or celerity) is represented at wave heights slightly smaller than
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breaking. Chaplin carried out comparisons of a number of parameters and
concluded that for waves up to 75% of the breaking height the errors in the
tables of Dean were less than 1% except in extremely shallow water. For waves
of 90% of the breaking height the errors were less than 5% in most cases.

Extension of the theory to waves on vertically sheared currents has
been done by Dalrymple (1974) and Dalrymple and Cox (1976), and for
irregular measured water surfaces by Dean (1965). The latter procedure
involves determining the best-fit stream function to a given water surface
profile.

11.4 FINITE-AMPLITUDE WAVES IN SHALLOW WATER

In the Stokes perturbation procedure, the perturbation parameter was ka, the
wave steepness. In very shallow water the Stokes wave profile [Eq. (11.32)]
becomes (using shallow asymptotic expansions for the hyperbolic functions)

3ka?
4(kh)?

The second term is a function of wave amplitude and length, as well as the
water depth, being proportional to the Ursell number or (a/h)(L*/h?), which
will be defined as the ratio a/f, where a = a/h, f = h*/L% In fact, the
Stokian wave profile for higher orders in shallow water is an expansion using
the ratio «/f as the perturbation parameter. This implies that a/f must be
much less than unity or @ << . In shallow water, this requires quite a short
wavelength or a small-amplitude wave, as discussed previously. It would be
desirable for design purposes to have a perturbation expansion in shallow
water which would at least allow a and £ to be of the same magnitude. This
can be achieved with a different perturbation procedure than that used
previously.

First, the shallow water wave will be assumed to be propagating without
change in form; thus, by moving with the wave celerity C, the motion
becomes stationary, and a stream function approach becomes convenient, as
in the preceding section.

The free surface boundary conditions are

2 2
(%) . (QV_’> +2gh+m)=Q onz=h+n  (1L57a)
ax 9z

n(x, t) =a cos (kx — at) + cos 2(kx — ot) (11.56)

and
v=Ch onz=h+n (11.57b)

In this context, the coordinate system is taken to be on the bottom and Q is
the Bernoulli constant. At the bottom,

=0 onz=0 (11.57¢)
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This condition ensures that there is no flow through the horizontal bottom, as

w= W =0 onz=0

0x
For a wave propagating on a quiescent fluid, Q = C? + 2gh, which is deter-
mined from the dynamic free surface boundary by moving far upstream of
the wave, where the wave motion is negligible.

It is again convenient to express the equation in nondimensional form
prior to the perturbation procedure. In contrast to the Stokes expansion,
however, the x, z coordinates will be nondimensionalized differently, recog-
nizing the fact that there will be larger gradients in the vertical direction than
the horizontal.

xoX
L
7 Z
h
0"
a (11.58)
yo ¥

h\/ga

The governing Laplace equation, in terms of the nondimensional variables,
is written as

’Y 9
) G VA ( )
where, again, f = (h/L)%.
The two free surface conditions are
C
¥Y=— onZ=1+all (11.59b)
Jga
where
a
o = — 11.59¢
P ( )
and

2 2
ﬂ(ﬂ) + (@E) + g(l + aH) = —Q~ onZ=1+all (11-59(1)
X 0z o &a
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By differentiating’ with respect to X, we can eliminate the constants to obtain
the form we will use:

I 3P IV oM Il oY &Y Y FY oIl oIl
f——+af— — to—— —+— (11.60)
X X2 X X Z dX 0ZIAXdZ  9ZdZ*3X aX

=0 onZ=1+all

Using a Frobenius power series solution technique, we will assume a solution
in terms of a series in Z (see, e.g., Wylie, 1960):

Y(X, Z)= 2) Z'(X) (11.61)

To satisfy the bottom boundary condition, fo must be zero. Substituting the
assumed solution into the dimensionless Laplace equation and grouping
terms yields

2f22°+<6f +Bd2f'>Z‘ (12f4 +ﬂ§j—£)22 (11.62)

d’f.
+<20f5+/?;1}%>23+---=0

For this equation to be satisfied for any Z, the coefficients of the Z" terms
must be zero. Therefore,

Jfi=0 (11.63)
o Bdh B
20dXx? 120dXx*
fe=0
and so on. Therefore, the series may be written
-z Lo B2 AL
dX2 120 dX“
or

(2n+1) 2n
o3y B Bz d”f

fr’ Qn + D) dX* Led)

%Since Z at the free surface is a function of X, the total derivative is used.
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Clearly, we now have a series in terms of 5, the relative depth parameter. The
objective is to determine the functional form of /| in order that ¥ satisfies the
two free surface boundary conditions. Substituting the expansion for ¥ into
the kinematic and dynamic free surface boundary conditions yields

1 d*f, C
(1 +all}f; - AL+ all) £=4 + O = Jea (11.65)
B 2afvdfy L df B 2 dft  dll 2 _
2(l +all) d—-—X —dX2 + /i d—X 2(1 + all)*f, _—dX3 + —dX +0(B)=0 (11.66)

First, examining the zeroth-order solution for ¥ in g, that is, the solution
depending on £, it is clear that the horizontal velocity, U = — d¥/dZ, is
uniform over depth, as f, is not a function of Z. In this case, the kinematic
boundary condition reduces to

(1 + oID)f; =—C—
ga

or

7i=-S (1 + oty (1L67)
ga
Substituting into Eq. (11.66) will yield, to order £°, an expression for C:
2
_Cadliydyy | dll_ (11.68)
ga(l +oIl)® dX

or

2
[— ¢ ol +all)3 + 1}@ =0 (11.69)
ga dX

For this last equation to be true everywhere, the term within the parentheses
must be zero. Therefore,

C? = gh(l + odl)’ (11.70a)
or’
3all )
Cx+Jgh{l+ > to order (o, f°) (11.70b)

To the first approximation- in «, we have the usual shallow water wave
celerity, which depends solely on the mean water depth, C = \/gh. The wave

*Recall the binominal series approximation:

(1+e)":1+ne+§—(nz—‘_l—)e2
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form I1 can be arbitrarily chosen for this case. The next approximation, to
O(c?, B, provides a correction term, 3 o1, which indicates that the larger the
local water surface displacement, the faster the local wave speed. This result
was first due to Airy (1845). The difficulty is that we originally postulated that
we were moving the coordinate system with wave speed C, which was
assumed to be constant for the wave. Clearly, this is not the case, so we expect
the wave to deform as it propagates, with the higher portions of the wave
profile moving faster than the lower portions, so that, in fact, the wave profile
continually steepens in front until our assumption of « being small is
violated. Physically, the wave eventually breaks in the form of a bore.
Theoretically, we must find a better solution, one that vields a constant
celerity.
To a higher order, O(a?, af), the solution is assumed to be

fi= < (1 + oIl + B4 (11.71)
ga
where A is an unknown function of x. Substituting into the kinematic free
surface boundary condition and retaining terms O(f8) yields the following
equation for 4 in terms of IT and its derivatives:

2
4=-25 [d - (‘m> 1 (11.72)
6 \/ga dX* 1+all\dX

Substituting f, and 4 into the dynamic free surface boundary condition yields
a very complicated expression, which, however, to O(a?, o)) reduces to this
nonlinear equation:

2 2 13
@[ 1-S% - 3aII)} apC’dll_, (11.73)
dx ga 3ga ax?
or
3
1dH+3al'Idl'I+d1'I< 1) (1174
3dX* " B dX dX\BCa B

This equation is the steady-state form of the Korteweg-DeVries (1895)
equation. The solution to the linearized form of this equation,* which is of
O(a, af), is

Il =cos 2nX

with the following equation for the wave celerity:

_ V___g” ~ ( _2”2/3> 1.7
1+4n1/3/3~‘/g7’ -3 (11.76)

“That is, neglecting the second term.
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The effect of including the parameter f is to reduce the celerity, just the
opposite of the parameter «. In fact, by introducing 8, the relative depth (i.e.,
making it different from zero, the infinite wave length case), we have
developed a wave moving at constant C, a wave that does not form a bore as
did the solution when g = 0. This wave is equivalent to the small-amplitude
wave theory we have developed in the first eight chapters. In fact, it is easy to
show that the celerity given above is equal to the first two terms in the
shallow water expansion of Eq. (3.35).

11.4.1 The Solitary Wave

We will now seek a solution containing both « and 8 such that their
influence results in nonlinear waves of permanent form. The equation above
can be solved without the necessity of linearization. The procedure is to
integrate once with respect to X:

2
1d—q+§‘—¥n2+n< £4 —1>+D=0 11.77)
3dx* 28 pC B
Multiply by dT1/dX and integrate again to yield
2 2

1@9) +ﬁn3+5< &4 -1>+DH+E=0 (11.78)

6\dx/ 2B 2 \pC'a B
where D and E are constants of integration. If we solve this equation for the
case of a single wave which has no influence at infinity, then I1=dIl/dX =0 at

X = o. Clearly, D and E must be zero, from Eqs. (11.77) and (11.78). The
remaining equation is, therefore,

(9’2)2 _ar (1 _ﬂ> (1 __i"_n> (11.79)
dx B C'a 1 - ga/Ca

For the wave form to be symmetric about the X axis, dI1/dX must go to zero
at IT = 1, the wave crest. Thus

ga
a=1-=2— 11.80
Ca (11.80)
or
c-\/-& - Jgh (1 + 2) to O(a?, af) (11.81)
-« 2
and the equation becomes
2
(5@) =32 -1 (11.82)
ax B



Sec. 11.4 Finite-Amplitude Waves in Shallow Water 315

IT = sech? V 3a X (11.83)
48
7 = a sech? V % % x (11.84)

This is called the solitary wave of Boussinesq (1872). Munk (1949) has
advocated the use of superimposed solitary waves to describe waves in the
surf zone. The solitary wave form is shown in Figure 11.2. The entire wave
profile is positive for this wave; there is no 7 less than zero. The a therefore
represents the height of the wave and 4 the depth at infinity. The volume of
water contained in a solitary wave, V, over a distance -/ < x </, that is, the
amount of water above the mean water level, is found by integrating the
profile.

The solution is

or in dimensional form

J’ dc 2a tanh \/a(aT (11.85)
Via/nd)

For / equal to infinity, the hyperbolic tangent is unity and

Ve =4h V % (11.86)

Clearly, for engineering use, an infinitely long wave has no value; however,
the effective length of the solitary wave is much less. For example, 95% of this
volume is contained within the distance

[ 2.12h

(11.87)

Ja/h

Figure 11.2 Dimensionless free surface profile of a solitary wave.
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For example, if a/h = 0.5, then 95% of the volume is within a space of about
six water depths.

The water particle velocities under the solitary wave are found by
U =-0¥Y/dZ and W = 3¥/3X from Eqs. (11.64), (11.71), and (11.72).

U=-f +1B22‘—1%+0(ﬂ2)

Y 2n J2n
=2 )"*‘B;Z, ZXQ, (11.88)
2 1 dh 2)
Zx Pt 0P
(2n+1) 2n+1
_Z( )n(/’"Z )’sz,{, (11.89)

Substituting for f; from Egs. (11.71) and (11.72) for the horizontal velocity

yields

2 2

U= —C-{—l +all — (aIl)* + oz,B(l - Z—) i_l;
Jea 6 2/dX

L P [a + 3a2(1 - -Z—zﬂn —a (7 9 zz)m} (11.90)
Jza 6 2 4 4

where IT is given as a function of position by Eq. (11.83). The first term in
brackets, that is, the minus 1, is to account for the speed of translation of the
coordinate system. For a fixed observer, this term would be neglected. The
remainder of the expression for U consists of terms proportional to IT;
therefore, away from the crest the velocity becomes small. Under the crest of
a solitary wave, IT = 1 and the expression for U is greatly simplified:

J to O(c?, af)

or

Uc=—\/%{—l +a[1 +%(3zz—5)ﬂ (11.91)

or in dimensional form,

el g (G- oo

For the vertical velocity

W= L[Za AL ool =1y - “—/’ dar’(z 23)} 00 af)  (11.93)

Jea
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or

W=-—C—[azilg[uga-m-za—m))ﬂ (1.94)

Vea |77 ax

where Il is given by Eq. (11.83) and

—=-2n \/39‘- ——X (11.95)
In dimensional form

2
= azn 3a l+i[1—7ﬁ—<£> (1-&)}
w=C Y hhtanh( 4h3X>{ Y . P .

(11.96)

=

For applications of the solitary wave theory, the reader is referred to the
extensive work of Munk (1949).

11.4.2 Cnoidal Wave Theory

In 1895, Korteweg and Devries (1895) developed a shallow water wave
theory which allowed periodic waves to exist. These waves have the unique
feature of reducing to the solitary wave theory at one limit and to a profile
expressed in terms of cosines at the other limit, thus spanning the range
between the linear and solitary theories. The wave profile is developed in
terms of a Jacobian elliptic integral, cn(u), and they called the theory
“cnoidal” to be consonant with the sinusoidal, or Airy theory.

The development of the periodic theory follows the previous perturba-
tion procedure for solitary waves with the exception that in Eq. (11.78) we
cannot force the unknown constants D and FE to be zero. If, however, for our
cnoidal waves we force II =0 at Z = 1, defined as the wave trough, then
dIl/dX should be zero there also, as the wave form is periodic. Therefore, £
must be zero and the integrated equation becomes

2 2
l(ﬂ) +2mr-rX p-o (11.97)
6\dx,/) = 28 2
where
1 ga >
F=-1-2°= 11.98
ﬂ( £, (11.98)
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At the wave crest, I1 = 1 and again dT1/dX = 0; thus D can be readily found:

«
D= %(F - E> (11.99)
The equation is now
2
<gg>=—§gHMJFHLJ<F—g>T (11.100)
dx B B
or
dll\? 3a
— ) ==TII0-IDJII+ S 11.101
( dX> 5 ( ) ( ) ( )
where
S=1 —Fé (11.102)
o

The substitution I = cos? x will be used to transform this equation into
a more tractable form, involving x. From the imposed conditions on I1 at the
crest and trough, the values of y are seen to be 0 and n/2 for the crest and first
trough, respectively. Substituting, we obtain

x —dx

S—a\/l +S —siny
4B

or
1 f" ds
§5(1+S) Vl—- ! sin’ s
48 1+S
X = 1 F( ! X) = I F(k, p) (11.103)
Voo N Ve

2X1+5) S

4p 4 Bk’
where

1

J1+S

and where F(k, ) is the notation for the elliptic integral of the first kind with
modulus £ and amplitude x. The amplitude of x is then given, from the theory
of elliptic functions, as

k (11.104)
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" 3a

X = COos [cn(X V4ﬁ’k2>} (11.10%)
2 ‘ / 3a

II=cn (X 4,Bk’-> mod(k) (11.106)

or in dimensional form,

n=a cn’ <x V Z%) =a cn® [F(k, )] (11.107)

To be consistent, the parameter a has been used in the definition for #;
however, in this connection, a is the wave height, as in the solitary wave
theory.

The Jacobian elliptic function cn is a periodic function with a period of
4K, where K is the complete elliptic integral of the first kind, K = F(k, n/2),
as shown in Figure 11.3. The function cn’u is periodic with period 2K. The
wave length of the cnoidal wave is found by setting X equal to unity in the
argument of ¢n u. Therefore,

or

3a
4Bk’

1=2K (11.108)

or

2

ab” _ y, 216 gap (11.109)
h? 3

The parameter & is uniquely related to wave amplitude a, the length L, and
the water depth 4. A graph of % versus the Ursell parameter U,, K(&), and
E(k), the complete elliptic integral of the second kind, is shown in Figure 11.4.
For shallow water (Chapter 3) #/L < 1/20, and therefore the Ursell parameter
has a minimum value of U, = 400(a/h). For nearly-breaking waves, a (the
wave height) is about 0.84. This gives an Ursell value of 320 and a & value of

o
=Y

Figure 11.3 The Jacobian elliptic  _;
function, cn u. i
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Figure 11.4 Complete elliptic integrals of the first and second kinds and the

Ursell parameter as a function of the modulus k.

0.999999 or larger for shallow water. Various water surface profiles are shown
in Figure 11.5 for various values of 4.

The parameter h refers to the water depth at the wave trough. To
determine the mean water depth, the wave profile is averaged and denoted IT.

1
M= J; cn’(2KX) dX (11.110)

7]=[1 +7:_2<—EIE- 1>}a (11.111)

where F is the complete elliptic integral of the second kind. The total depth is
then (4 + 7).

The cnoidal wave celerity can be found using the definition for F, S,
and k following Eqgs. (11.98), (11.102), and (11.104). Solving for C, we have

or

(11.112)

To find the related wave period, we use the definition of L (C = L/T),

21212
T=£=V&Kkh LHﬂ(L_zﬂ (IL113)
C 3 ga N

from Eqgs. (11.109) and (11.112).
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Several interesting asymptotic features of the cnoidal wave should
be pointed out. As & - 1, the wave length becomes infinite, as K(1) - « and
cn? (x) - sech? (x), the solitary wave.’ On the other hand, as & -~ 0, cn(x) -
cos(x), and K - n/2, and the wave form changes:

n=acn’2KX)~»acos’| x 3al = a cos® X (11.114)
4n K L

which can be written in terms of elevation from the bottom as
z=h+2+2cos (27:)—() (1L115)
2 2 \ L

where £ + a/2 denotes the elevation of the mean water level above the
bottom. This also follows from Eq. (11.111), as the ratio of E/K goes to
(1 - £%/2) for K - 0. Thus cnoidal wave theory spans the range from sinusoi-
dal or Airy theory in deep water to solitary wave theory in shallow water.

The velocities under a cnoidal wave can be found as for the solitary
wave, Egs. (11.90) and (11.96).

B _Q_Ezi%l EZ][ a’
u—C[ 1+h (h> +2k2[6 (h) (l+1e);1—2 (11.116)
+20Qk-1) <ﬁ>2 - 3Ie2<ﬁ>4h2:H
h h
__clanz( _,n 3 _<E>H e }
w C{dxh( 2h+1>+hk2[1 P 2k l)h 3Kkn (11.117)

where

éﬂz_a\P_‘ll 2va1_ __v < 25{_1> (11.118)
ax h kh

The leading terms for # and w are, as might be expected, the same as those
developed for the long waves in Chapter 5 [see Egs. (5.2) and (5.3)].

11.5 THE VALIDITY OF NONLINEAR WAVE THEORIES

It is important to know which of the various water wave theories to apply to a
particular problem, where the wave characteristics and water depth are
specified. For example, is the linear wave theory suitable or must cnoidal
theory be used? In order to address these problems, the validity of the various

*Iwagaki (1968), using this asymptotic behavior, has developed the hyperbolic wave theory (valid
for K > 3), which means that k > 0.98, which is a blend of solitary and cnoidal theory having the
mathematical advantage of the solitary theory and some of the properties of the cnoidal theory.
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theories must be known. This “validity” is composed of two parts: the
mathematical validity and the physical validity. The first is the ability of any
given wave theory to satisfy the mathematically posed boundary value
problem. For example, all the theories in the book satisfy the bottorr
boundary condition exactly, but the cnoidal and solitary wave theories only
approximately satisfy the Laplace equation within the fluid. All of the
theories only satisfy the dynamic free surface boundary approximately, while
the kinematic free surface boundary condition is satisfied (to the numerica
accuracy of the computer) by the stream function theory. On the other hand.
the physical validity refers to how well the prediction of the various theories
agrees with actual measurements. This part of the validity has been difficult
to obtain due to the problem of wave tank design and measurement require-
ments. The interested reader is referred to Dean (1974).

The analytical validity of many wave theories was examined by Dear.
(1970) (see also Dean, 1974). Figure 11.6 shows the results of the comparisor
of the theories, denoting the regions for which each theory provides the bes!
fit to the dynamic free surface boundary condition. As would be expected, the

hiLg
1072 107} 10°
10° T T
1071
Stokes V
Breaking
limit Iy
-1
10 /ybd
i 102
5 H 5
N
-2 n
10 &8"
98
- 10~3
Shallow | lDeep water
water waves waves
1073
1072 10-! 10° 10’

R{T? (ftfsH)

Figure 11.6 Periodic wave theories providing best fit to dynamic free surface
boundary condition (analytical theories only).
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cnoidal wave theory does well in shallow water, while in deep water, the
Stokes V wave theory proved to be more applicable. Somewhat surprisingly
the linear wave theory did well for the intermediate water depths. However,
when high-order stream function wave theory is used, it provides the best fit
of all the theories, even in shallow water (although quite high orders, such as
twentieth order, are necessary).
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PROBLEMS

11.1 Verify that the total horizontal acceleration given in Eq. (11.45) for the Stokes
wave theory is correct to second order. Determine the total vertical accelera-
tion.

11.2 Develop the horizontal and vertical velocities, correct to O{a, af) for
n = a cos kx, Eq. (11.75). Compare with linear (Airy) theory.

11.3 For shallow water waves, develop the equation correct to O(a?, aff) for the
pressure under the waves.

11.4 Determine the region of validity for the second-order Stokes theory. Which
value of the Ursell parameter is more restrictive?

11.5 Calculate the pressure under Stokes waves, correct to second order.

11.6 What is the o, f° order solution of Eq. (11.74)? What is the physical signifi-
cance of this flow?

11.7 Verify Eqgs. (11.90) and (11.96).

11.8 Assumingequipartitioning of the energy and finding the potential energy, show
that the total energy in a solitary wave per unit crest width is

2
E=8pghavi
3 3h
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A Series of Experiments
for a Laboratory Course
Component in Water
Waves

12.1 INTRODUCTION

There are several important reasons to include a laboratory component as a
portion of a course in water waves. First, since the field of water waves is
evolving rapidly with new significant developments, the experience in labo-
ratory techniques will develop a student’s capability to test new analytic
results and will provide a better basis for evaluating the validity of experi-
mental results reported in the literature. Second, and probably of greater
significance, is the confidence (hopefully) and perspective gained by the
student in conducting measurements and assessing the associated theoretical
results.

12.2 REQUIRED EQUIPMENT

Most of the equipment required for the experiments to be described is usually
available with wave tank facilities.

12.2.1 Wave Tank
The size of the wave tank is not critical, but should be of a sufficient size

that capillary waves are not significant and that a plane beach of small slope
(say 1:15) can be placed in the tank and still allow room for measurements. It

326
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assists greatly if a portion of the tank is glass- or Lucite-walled. Also, a
movable carriage mounted on level rails is useful for transporting the wave
gage and possibly other equipment. The tank at the University of Delaware is
approximately 24 m long, 1 m deep, and 0.5 m wide, although a smaller tank
would be suitable. The experiments to be described will be based on a
capability to generate monochromatic waves; however, the range of experi-
ments would be greatly expanded with the availability of a spectral-generat-
ing capability.

12.2.2 Wave Gages and Recording Equipment

Laboratory wave gages and recording oscillographs are quite standard
and will not be described in detail. Either capacitance or resistance gages are
suitable. It is helpful to mount the wave gages on a point gage support to allow
static calibrations to be carried out readily (see Figure 12.1). Generally, two
wave gages are required with output on the same oscillograph and as noted
previously, it is desirable if one of the gages is movable on a level surface.

12.2.3 Velocity Sensor

A small laboratory version of a biaxial electronic current meter is useful
in conducting measurements of the water particle velocity field. If an
equivalent current meter is not available, it is possible to measure water
particle excursions visually.

«————Point gage support for ease of
calibrating wave gage

ﬁ Mount for point gage
»/1
Z}

N

Ljfﬂ_ [muww |} SR AR SRR SR

To signal conditioning -«——
and oscillograph

Resistance or capacitance———__ |
wave gage wires —_—
=

/
)

a

N —

.

Figure 12.1 Wave gage mounted on graduated point gage support.
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Figure 12.2 Two possible arrangements for measuring pressure field in waves: (a)
permanent taps through Lucite wall of wave tank; (b) movable pressure port with
pressure tubing housed in movable streamlined strut.

12.2.4 Pressure Sensor

A reasonably sensitive pressure sensor is desirable. A strain gage total
head sensor with a range of 0.005 to 1 psi is very satisfactory. If the observa-
tional section of the wave tank is made of Lucite it may be possible to drill
ports and connect these to a manifold as shown in Figure 12.2a. If the walls
are glass or it is not desired to tap through the walls, a somewhat streamlined
strut can be placed flush with the tank wall (see Figure 12.2b). With either
system it is essential to be able to bleed any air from lines connecting the port
to the sensor.

12.2.5 Wave Forces

A “portal-type” force gage is inexpensive to construct and useful since it
responds to forces and is insensitive to moments. Figure 12.3 portrays the
main features of a portal gage. The upper and lower plates are rigid relative to
the side plates. The sensing is by four strain gages connected to a full bridge
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circuit as shown. For purposes of measuring a wide range of forces with good
sensitivity, different sets of web plates can be constructed. The strain € at the

extremes (top and bottom) of the web plates can be shown to be

natural frequency g, of the system is

3 Fi
€==
2 Ewe?

in which F is the applied force, /, w, and ¢ are the plate length, with, and
thickness, respectively, and E is the modulus of elasticity of the material. The

(12.1)
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3
o, = \/% i’;’ (12.2)
T

in which M7 is the total mass of the system, including any added hydro-
dynamic mass. The natural frequency should be significantly higher than the
highest excitation frequency.

If, in addition to the total force on an object, it is desired to determine
the location of the effective force, a set of strain gages can be added to the rod
to yield moments, as shown in Figure 12.3.

Note that it is extremely important to have firm connections or the
natural frequency will be too low.

12.3 EXPERIMENTS

Following is a list of nine experiments that can be carried out. It should be
possible to complete the experiment and a substantial portion of the report
documentation during the class time allotted to each experiment.

Experiment No. Description

1 Wave length, profile, and group velocity as a function of wave period,
water depth, and wave height

2 Wave profiles and particle trajectories as functions of wave height, water
depth, and wave period; progressive and standing waves

3 Pressure variations as a function of wave height, water depth, and wave
period; progressive and standing waves

4 Wave height transformation in shoaling water; wave breaking

5 Wave reflection from beach; comparison with Miche’s theory

6 Wave reflection from a partial vertical barrier; comparison with approxi-
mate theory

7 Wave forces on cylinders and spheres

8 Plane wavemaker

9 Approximate wavemaker theory for a perfectly reflecting “beach”

The report describing the laboratory experiment should be fairly con-
cise. A reasonable format for the reports is as follows:

1. Purpose—stating the objectives of the experiment.

2. Background and/or theory—describing the problem and present-
ing theoretical relationships to be tested.

3. Equipment description—this section can be quite brief, especially
if the equipment has been used previously and is described in an
earlier report.

4. Procedure—describing the experimental, data reduction, and/or
analysis procedures.
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5. Results (and conclusions)—presentation of results and possible
reasons for any significant differences between theory and experi-
ment. Can you suggest a procedure (experimental or analytical)
that would verify or disprove your suggested reasons for any
differences noted between theory and experimental results?

The report, excluding graphs and data sheets, should not exceed several
pages. Items 1 through 4 and any graphs for item 5 can be a laboratory group
effort; the conclusions and interpretation of results in item 5 should be an
individual effort. The “group effort” portions of the report can be copies;
however, each group member should turn in a complete report.

Each of the experiments above is described briefly in the following
sections.

12.3.1 Experiment 1: Wave Length, Profile, and
Group Velocity as a Function of Wave
Period, Water Depth, and Wave Height

The purpose of this experiment is to compare measured wave profiles,
wave lengths, and group velocities with the corresponding values as pre-
dicted by small-amplitude wave theory.

Small-amplitude wave theory.
Wave Profile n. The wave profile 5 generated by a simple harmonic

wavemaker is
H 2nt  2nx
=—co§| — ——— 12.3
7 2 ( T L ) (12.3)

where H, T, L, x, and ¢ are the wave height, wave period, wave length, and
distance and time coordinates, respectively.

Wave Length L. The small-amplitude relationship for wave length L
18
h
L =Lytanh 27 I (12.4)
where } is the water depth and L, is the “deep water” wave length expressed
by
_er
2n
The quantity L/L, is plotted against h/L, in Figure 3.9.

Lo (12.5)

Group Velocity Cs.  The group velocity Cg is the speed at which the
wave energy propagates and is also the speed of propagation of the leading
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edge of a train of waves. The group velocity can be expressed as

Co= G tanh (27&) [1 + M} (12.6)
2 L sinh 4n(h/L)
where C, is the deep water celerity, that is
Co= T 1.7
2n

The ratio Cs/C) is also plotted against 4/L, (Figure 3.9).

Measurements. The major piece of equipment for this experiment is
the wave tank. Two capacitance wave gages connected to a two-channel
oscillograph are used to sense and record the moving water surface.

For each of the runs, the water depth, wave height, and wave period
should be observed.

Wave Length. The wave length can be established by first spacing the
two wave gages approximately one wave length apart along the channel. A
final spacing can be established by adjusting the position of one gage until the
oscillograph traces are observed to be in phase.

Group Velocity. The group velocity is determined by spacing the two
wave gages 5 to 10 m apart and then starting the wave generator. The “leading
edge” or front of the wave train will travel at the group velocity. The group
velocity can be calculated from the known separation distance between the
two gages and the observed difference in “leading edge” arrival times at the
two gages.

Wave Profile. It is desirable to obtain a reasonably high speed oscillo-
graph record of one or two wave periods.

12.3.2 Experiment 2: Wave Profiles and Particle
Trajectories as Functions of Wave Height,
Water Depth, and Wave Period;
Progressive and Standing Waves

The purpose of this experiment is to compare measured and theoretical
profiles and water particle trajectories of progressive and standing waves.

Background. The maximum water particle displacements |{| and
[€] in the x and z directions, respectively, can be expressed as functions of the
incident and reflected wave heights, the mean position of the particle in the
waves (both horizontally and vertically), and the wave period and water
depth (see Figure 12.4).
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(a)

R

(b)

Figure 12.4 Definition sketch for experiment 2: (a) progressive wave; (b) pure
standing wave.
H
n= 5 cos(kx — ot) (12.8)
_ H cosh k(h + z)
2 sinhkh

H sinh k(h + 2)
2 sinh kA

14

1€l =

n= % cos kx cos ot (12.9)
_H cosl? k(h+2) sin kx
2 sinh kh
1€] = H M cos kx
2 sinh kh

o = tan" (tanh k(h + z)>
tan kx

9
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Measurements

Progressive Waves. With the barrier removed, generate a progressive
wave system.

1. Measure the wave characteristics

2. Using approximately neutrally buoyant particles, measure |{|
and || at two depths within the wave.

Standing Waves. Establish a standing wave system using the vertical
barrier as a reflector.

1. Measure the characteristics of the standing wave system.

2. Using approximately neutrally buoyant particles measure the
maximum water particle displacement components |{| and |&|
and inclination of streamlines at any depth at the node and
antinode positions and also at a position intermediate to these
positions.

Reference: See pp. 80-89.

12.3.3 Experiment 3: Pressure Variations as a
Function of Wave Height, Water Depth,
and Wave Period; Progressive and
Standing Waves

The purpose of this experiment is to compare measured and theoretical
pressure variations within progressive and standing waves.

Background. The pressure deviations from hydrostatic pressure as
derived for small amplitude waves is
cosh k(h + z)
- = arre (12.10)
b=pet cosh kh
in which 7(x, t) can be the water surface displacement for either progressive,
standing, or partially standing waves.

Measurements. Measure the pressure fluctuations near the bottom
and at three additional elevations along a tank wall, for a progressive and a
standing wave system. Also measure simultaneously the water surface dis-
placement at the longitudinal position (x) of the pressure sensor. Both the
amplitudes and phases of these measured pressure fluctuations are to be
compared with theory. For the standing wave system, conduct the measure-
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ments at two different positions along the standing wave envelope. Waves of
two different periods should be used.

Equipment. The equipment consists of a wave gage, a total head
pressure sensor, and a recording oscillograph. If the wave tank is Lucite-
walled, it may be worthwhile to drill and tap several permanent pressure taps
to be used in conjunction with a manifold. If the tank is glass-walled, a
streamlined pressure strut support can be placed along the side of the tank at
the desired location (see Figure 12.2).

12.3.4 Experiment 4: Wave Height
Transformation in Shoaling Water; Wave
Breaking

The purpose of this experiment is to investigate the characteristics of progres-
sive and standing breaking water waves and to compare these results with the
available theory.

Theory for breaking waves

Progressive Water Waves. The breaking characteristics of progressive
water waves have been studied theoretically in deep and shallow water. In
shallow water, for beaches of mild slope, the relationship is

%= 0.78 (12.11)

and 1t is remarked that slopes greater than about 1:40 increase this ratio
substantially. For deep water, the deep water steepness (H;/L,) at breaking

<H3> =(0.142 (12.12)
where L, = 1.2(gT?/27) for breaking waves, including nonlinear effects. These
asymptotes and some data are presented in Figure 12.5. Additionally, for
deep and shallow water, it is predicted that at the inception of breaking, the
“interior” angle of the wave is 120° as shown in Figure 12.6.

For relatively steep slopes in shallow water, there is considerable scatter
of the data, as shown in Figure 12.7.

Standing Waves. For standing waves the limiting theoretical steep-

ness is
(-H~13> =0.218 (12.13)

(]
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Figure 12.5 Breaking index curve. (From Reid and Bretschneider, 1953.)

and the maximum 7. and minimum #, water surface displacement at break-
ing are

N = 0647H
n =0.353H

(12.14)

and the “interior” angle of the wave is 90°.
For shallow water, no theory for the limiting standing wave has been
developed, although the experimental results indicate the following ratio:

H
HY | 2.
(h>b 1.37 (12.15)

Figure 12.6 Crest angle at maximum

a=120° steepness.
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Figure 12.7 Experimental observations of dy/H, versus breaker steepness H,/T7.
(From Weggel, 1972.)

Measurements

Progressive Waves. Due to the difficulty of measuring kinematics, our
experimental study will concentrate on the ratio of wave height to water
depth in shallow water. For three wave periods and one water depth (in the
uniform depth section), measure the wave height and water depth at which
breaking occurs. Also attempt to observe the location of incipient instability.
Comment on any extraneous effects in the wave tank, such as reflections
from the beach and the effect that these may have on this breaking ratio. You
should observe the breaking process carefully to provide a description in
your report.



338 Experiments for Laboratory Course Component in Water Waves Chap. 12

Standing Waves. For standing waves, using a barrier to provide wave
reflection, the experimental efforts will concentrate on measuring;

1. Breaking wave height as a function of water depth and wave
length.

2. The downward acceleration at the antinode. At breaking this
value should be equal to the gravitational acceleration.

Again careful observations of the breaking process should be made of
standing waves in order to provide a perceptive description in the report.

12.3.5 Experiment 5: Wave Reflection from
Beach; Comparison with Miche’'s Theory

The purpose of this experiment is to compare measured and “theoreti-
cal” beach reflection coefficients and to investigate the “wave height enve-
lope” for standing wave systems.

Standing Wave Systems. The wave system incident on and reflected
from the beach can be represented schematically as shown in Figure 12.8,
where, according to small-amplitude wave theory, the incident and reflected
wave systems are

1

N = % cos (kx - ot)

(12.16)
H
nr=7'cos(kx+ ot + )
———— - Reflected wave, 7,
4——2— Incident wave, #; Wave height envelope
N T __\/g\/ N
¢ 217, 1¢x) | |
h | !
Wavemaker —:—» }
| !
7

Z

Figure 12.8 Experimental arrangement for experiment 5.
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in which H; and H, are the incident and reflected wave heights, respectively,
and

k=20
L
2n
o="=
T

The combined wave system 1, is

Ne=ni+1n, (1217)

The total vertical displacement, 2 |#.|, of the combined wave system can be
shown to be

2(n.| = VH? + 2H,H, cos 2kx + J) + H? (12.18)

Equation (12.18) defines a quantity referred to as the “wave height envelope™
as a function of distance along the channel. The maximum and minimum of
this expression are

2|7 | max = Hi + H, (12.19)

and
2|7 | min = H; — H, (12.19)

and occur at positions along the channel separated by L/4.
The reflection from the beach can be defined in terms of a reflection
coefficient,

K _gr___zlnclmax_zlnclmin

r_Hi 2lnclmax+2|nclmin

The minimum and maximum values of the reflection coefficient are 0 and
1.0, respectively.

(12.20)

Miche’s “Theory”. A very approximate “theory” for the reflection
coefficient from a plane smooth beach has been developed by A. Miche.
Miche defines a critical deep water wave steepness (Ho/Lo)eric In terms of the

beach slope f:
<5> y @)m et (12.21)
L,/ crit n n '

Miche’s results predict that the beach reflection coefficient will vary with
deep water wave steepness, H,/L,, in the following manner:

H, (H)
K=1 —<| —
Lo \Lo /et (12.22)
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K, = (Ho/Lo)crit & > (&)
crit

HJL, = L, \L,
The deep water wave height referred to in these equations is that of the

incident wave. The relationship between the deep water wave height and the
incident wave height is

2Cs
Co
where the ratio Cs/C, is plotted versus A/L, in Figure 3.9.

H,=

H, (12.23)

Measurement. For two wave periods, the wave height envelope is to
be established by moving a wave gage along the channel over a distance of at
least one wave length. From these envelopes, the measured beach reflection
coefficients can be determined and compared with those of Miche’s theory.

12.3.6 Experiment 6: Wave Reflection from a
Partial Vertical Barrier; Comparison with
Approximate Theory

The purpose of this experiment is to derive an approximate theory for
the wave height transmitted past the vertical partial barrier shown in Fig-
ure 12.9 and to test the theory for various wavelengths and a fixed “gap
opening” of height A.

Background and theory. A portion of the wave energy incident on the
barrier will be reflected as a reflected wave component and a portion will pass
beneath the barrier and form a transmitted wave component. As a first
approximation to determining the height of the transmitted wave compo-
nent, one could assume that all the progressive wave energy being propagated
at those levels below the lower edge of the barrier is transmitted past the

+x ~—

Transmitted wave Reflected wave Incident wave
- Z — -~
T TN .
— S — T SN e’ S—

7

‘{A = gap opening

Figure 12.9 Experimental arrangement.
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barrier and results in a transmitted wave. Develop an approximate theory on
this basis and express the result in the form of transmission coefficient x,,
where

k, = function of (kA, kh) (12.24)

For aratio A/h =}, plot k, as a function of kA for the range 7/10 < kh < 7. Also
plot the deep and shallow water asymptotes for k.. If no energy is lost in the
reflection-transmission process, then

H?+ H?= H? (12.25)

or defining a reflection coefficient,
H,
K= ﬁ: (12.26)
then 2 + k2 = 1.

Measurements. For A/h =}, measure the wave envelope for x <0
and the transmitted wave height H, for x > 0. From the wave envelope,
determine H, and H, and compare your experimental values of k, with the
approximate theory.

Calculate the sum x? + k7 for your individual experiments and deter-
mine the percentage energy loss in the reflection-transmission process.

Carry out the measurements and calculations described above for four
different wave lengths.

12.3.7 Experiment 7: Wave Forces on Cylinders
and Spheres

The purpose of experiment 7a is to measure wave forces and moments
on a circular cylinder and to determine the “best fit” drag and inertia
coefficients associated with these measurements. Experiment 7b will consist
of the measurement of wave forces on a sphere with the prior calculation of
wave forces based on drag and inertia coefficients obtained from the litera-
ture (see, e.g., Grace and Casciano, 1969).

Measurements. The measurements will be conducted using a portal-
type force gage and a cantilever moment gage (see Figure 12.10). In addition,
the wave profile near to the object should be measured.

Theory of wave forces. The Morison equation for horizontal wave
forces is written for an elemental length of a cylinder as (see Figure 12.11)

dF = CopA, ﬁ'—z“—' ds + CopdVi (12.27)
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Figure 12.10 Test arrangement for measuring wave forces and moments.
in which
Cp = drag coefficient
Cy = inertia coefficient
p = mass density of water
A, = cylinder area per unit length projected onto a vertical plane
perpendicular to the velocity vector
ds = elemental length of cylinder
dV = elemental volume in length, ds
u, u = horizontal component of water particle velocity and
acceleration, respectively
For a circular cylinder, Eq. (12.27) becomes
2
dF = CopD 3‘% ds+ Cup % uds (12.28)
which, for linear water wave kinematics, can be integrated to
H? kh cos ot |cos ot |
F=yCpD— (12.29)
y 8 sinh 2kh
1. n n nD*H sinot | . n
—— sinh 2kh<1 +—>+ <1 +—>J— yCy——————|sinh kAl 1 +—
[21(;1 h h "8 cosh kh h
D
N2

L dF(S, )
T u(S, 1), u(S, 1)

Figure 12.11 Elemental force on a
S >~ cylinder.




Sec.12.3  Experiments 343

and the total moment about the bottom of the tank is
H? hkh cos ot |cos ot |

M=ycop
7ol e T i 2k

2
[(1 + 1/h) + L+ n/h sinh 2kh<1 + ﬂ) +———1 (1 - cosh 2kh<1 + E))]
2 2kh h/  (2kh) h

(12.30)

) .
—yCM@—M[<1 +—’Z> sinh kh(l +ﬁ> +—l—<l ~ cosh kh(l +Q>>:]
8 cosh kh h h kh h

For a sphere, the equation is

2 3
F= CDp“—4D— “‘2“‘ +Cup % " (12.31)

Scope of measurements. For a sphere and/or cylinder, measure the
waves, wave forces, and moments for two wave periods of approximately 1.0
and 2.5 s. Measure the wave reflection in the tank.

For the two combinations of experimental wave conditions, calculate
the waves, wave forces, and wave moments on the object and compare with
those measured.

12.3.8 Experiment 8: Plane Wavemaker

The purpose of this experiment is to evaluate the wavemaker theory for
the piston-type wavemaker used in our studies. Although the beach is a fairly
efficient energy dissipator, the wave envelope should be measured to remove
the effect of the reflected wave in the measurements.

Wavemaker theory for a piston-type wavemaker. The wavemaker
theory for a piston-type wavemaker (as presented in Chapter 6) is

H _ 2Acosh 2kh - 1) (12.32)
S sinh 2kh + 2kh

See Figure 12.12 for a plot of H/S versus kh.

Measurements. Measure the wave generated for approximately 10
wave periods (say 0.8 < 7' < 2.5 s) for which the waves are well behaved.
Evaluate the effect of reflection by measuring the wave envelope.
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Figure 12.12 Test of wavemaker theory for small wave steepnesses. o, experi-
ments corrected for reflection; ®, experiments not corrected for reflection. (From
Ursell et al., 1960.)

12.3.9 Experiment 9: Approximate Wavemaker
Theory for a Perfectly Reflecting ‘‘Beach”’

The purpose of this experiment is to develop an approximate theory for
the waves in a wave tank with perfectly reflecting boundaries and to conduct
measurements to evaluate this theory.

Theory. Theapproximate theory will be developed for the case below.
Although this problem is for shallow water waves in order to satisfy the
boundary condition requirements, in comparing the results with measure-
ments, the actual wave characteristics (particularly the wavelength) appro-
priate to the water depth and period should be used.

Consider the vertical barrier located at an arbitrary distance / from a
piston-type wavemaker (see Figure 12.13). Assuming that shallow water
waves are generated, calculate and plot the ratio H/S as a function of /L. For
this problem ¢ = 1 rad/sand 2 = 1 ft.

Measurements. With a rigid vertical barrier located in the tank,
conduct sufficient wave height measurements at the barrier over as wide a
range of wave periods as possible to verify the approximate theory. Note that
it will be helpful (perhaps in locating the barrier) if the theory is developed
and incorporated in the planning phase of the experiment.
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Figure 12.13 Experimental arrangement for experiment 9.
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