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The initial substantive interest in and contributions to water wave mechanics 
date from more than a century ago, beginning with the analysis of linear wave 
theory by Airy in 1845 and continuing with higher order theories by Stokes in 
1847, long wave theories by Boussinesq in 1872, and limiting wave heights by 
Michell in 1893 and McCowan in 1894. 

Following that half-century of pioneering developments, research con- 
tinued at a relatively slow pace until the amphibious landings in the Second 
World War emphasized the need for a much better understanding of wave 
initiation and growth due to winds, the conservative and dissipative transfor- 
mation mechanisms occurring from the source area to the shoaling, and the 
breaking processes at the shore. The largely unsuccessful attempt to utilize 
portable and floating breakwaters in the surprise amphibious landing at 
Normandy, France, stimulated interest in wave interaction with fixed and 
floating objects. 

After the Second World War, the activity in water wave research 
probably would have subsided without the rather explosive growth in ocean- 
related engineering in scientific, industrial, and military activities. From the 
1950s to the 1980s, offshore drilling and production of petroleum resources 
progressed from water depths of approximately 10 meters to over 300 meters, 
platforms for the latter being designed for wave heights on the order of 25 
meters and costing in excess of $700,000,000 (U.S.). The financial incentives 
of well-planned and comprehensive studies of water wave phenomena 
became much greater. Laboratory studies as well as much more expensive 
field programs were required to validate design methodology and to provide 
a better basis for describing the complex and nonlinear directional seas. A 
second and substantial impetus to nearshore research on water waves has 
been the interest in coastal erosion, an area still only poorly understood. For 
example, although the momentum flux concepts were systematized by 
Longuet-Higgins and Stewart and applied to a number of relevant problems 

xi 
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in the 1960s, the usual (spilling wave) assumption of the wave height inside 
the surf zone being proportional to the water depth avoids the important 
matter of the distribution of the applied longshore stress across the surf zone. 
This can only be reconciled through careful laboratory and field measure- 
ments of wave breaking. Wave energy provides another example. In the last 
two decades remote sensing has indicated the potential of defining synoptic 
measures of wave intensity over very wide areas, with the associated benefits 
to shipping efficiency. Simple calculations of the magnitudes of the “standing 
crop” of wave energy have stimulated many scientists and engineers to devise 
ingenious mechanisms to harvest this energy. Still, these mechanisms must 
operate in a harsh environment known for its long-term corrosive and 
fouling effects and the high-intensity forces during severe storms. 

The problem of quantifying the wave climate, understanding the inter- 
action of waves with structures and/or sediment, and predicting the associ- 
ated responses of interest underlies almost every problem in coastal and 
ocean engineering. It is toward this goal that this book is directed. Although 
the book is intended for use primarily as a text at the advanced undergraduate 
or first-year graduate level, it is hoped that it will serve also as a reference and 
will assist one to learn the field through self-study. Toward these objectives, 
each chapter concludes with a number of problems developed to illustrate by 
application the material presented. The references included should aid the 
student and the practicing engineer to extend their knowledge further. 

The book is comprised of twelve chapters. Chapter 1 presents a number 
of common examples illustrating the wide range of water wave phenomena, 
many of which can be commonly observed. Chapter 2 offers a review of 
potential flow hydrodynamics and vector analysis. This material is presented 
for the sake of completeness, even though it will be familiar to many readers. 
Chapter 3 formulates the linear water wave theory and develops the simplest 
two-dimensional solution for standing and progressive waves. Chapter 4 
extends the solutions developed in Chapter 3 to many features of engineering 
relevance, including kinematics, pressure fields, energy, shoaling, refraction, 
and diffraction. Chapter 5 investigates long wave phenomena, such as 
kinematics, seiching, standing and progressive waves with friction, and long 
waves including geostrophic forces and storm surges. Chapter 6 explores 
various wavemaker problems, which are relevant to problems of wave tank 
and wave basin design and to problems of damping of floating bodies. The 
utility of spectral analysis to combine many elemental solutions is explored 
in Chapter 7. In this manner a complex sea comprising a spectrum of 
frequencies and, at each frequency, a continuum of directions can be repre- 
sented. Chapter 8 examines the problem of wave forces on structures. A slight 
modification of the problem of two-dimensional idealized flow about a 
cylinder yields the well-known Morison equation. Both drag- and inertia- 
dominant systems are discussed, including methods for data analysis, and 
some field data are presented. This chapter concludes with a brief description 
of the Green’s function representation for calculating the forces on large 
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bodies. Chapter 9 considers the effects of waves propagating over seabeds 
which may be porous, viscous, and/or compressible and at which frictional 
effects may occur in the bottom boundary layer. Chapter 10 develops a 
number of nonlinear (to second order in wave height) results that, somewhat 
surprisingly, may be obtained from linear wave theory. These results, many of 
which are of engineering concern, include mass transport, momentum flux, 
set-down and set-up of the mean water level, mean pressure under a progres- 
sive wave, and the “microseisms,” in-phase pressure fluctuations that occur 
under two-dimensional standing waves. Chaper 11 introduces the perturba- 
tion method to develop and solve various nonlinear wave theories, including 
the Stokes second order theory, and the solitary and cnoidal wave theories. 
The procedure for developing numerical wave theories to high order is 
described, as are the analytical and physical validities of theories. Finally, 
Chapter 12 presents a number of water wave experiments (requiring only 
simple instrumentation) that the authors have found useful for demonstrat- 
ing the theory and introducing the student to wave experimentation, specifi- 
cally methodology, instrumentation, and frustrations. 

Each chapter is dedicated to a scientist who contributed importantly to 
this field. Brief biographies were gleaned from such sources as The Dictionary 
of National Biography (United Kindom scientists; Cambridge University 
Press), Dictionary of Scientific Biography (Charles Scribner’s Sons, New 
York), Neue Deutsche Biogruphie (Helmholtz; Duncker and Humblot, Berlin) 
and The London Times (Havelock). These productive and influential indivi- 
duals are but a few of those who have laid the foundations of our present-day 
knowledge; however, the biographies illustrate the level of effort and inten- 
sity of those people and their eras, through which great scientific strides were 
made. 

The authors wish to acknowledge the stimulating discussions and 
inspiration provided by many of their colleagues and former professors. In 
particular, Professors R. 0. Reid, B. W. Wilson, A. T. Ippen, and C .  L. 
Bretschneider were central in introducing the authors to the field. Numerous 
focused discussions with M. I? O’Brien have crystallized understanding of 
water wave phenomena and their effects on sediment transport. Drs. Todd L. 
Walton and Ib A. Svendsen provided valuable reviews of the manuscript, as 
have a number of students who have taken the Water Wave Mechanics course 
at the University of Delaware. Mrs. Sue Thompson deserves great praise for 
her cheerful disposition and faultless typing of numerous drafts of the 
manuscript, as does Mrs. Connie Weber, who managed final revision. 

Finally the general support and encouragement provided by the Uni- 
versity of Delaware is appreciated. 

Robert G. Dean 
Robert A .  Dalrymple 
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Dedication 
SIR HORACE LAMB 

Sir Horace Lamb (1849-1934) is best known for his extremely thorough 
and well-written book, Hydrodynamics, which first appeared in 1879 
and has been reprinted numerous times. It still serves as a compendium 
of useful information as well as the source for a great number of papers 
and books. If this present book has but a small fraction of the appeal of 
Hydrodynamics, the authors would be well satisfied. 

Sir Horace Lamb was born in Stockport, England in 1849, edu- 
cated at Owens College, Manchester, and then Trinity College, Cam- 
bridge University, where he studied with professors such as J. Clerk 
Maxwell and G. G. Stokes. After his graduation, he lectured at Trinity 
(1822-1825) and then moved to Adelaide, Australia, to become Profes- 
sor of Mathematics. 

After ten years, he returned to Owens College (part of Victoria 
University of Manchester) as Professor of Pure Mathematics; he 
remained until 1920. 

Professor Lamb was noted for his excellent teaching and writing 
abilities. In response to a student tribute on the occasion of his eightieth 
birthday, he replied: “I did try to make things clear, first to myself.. .and 
then to my students, and somehow make these dry bones live.” 

His research areas encompassed tides, waves, and earthquake 
properties as well as mathematics. 

1 



2 Introduction to Wave Mechanics Chap. 1 

1 .I INTRODUCTION 

Rarely can one find a body of water open to the atmosphere that does not 
have waves on its surface. These waves are a manifestation of forces acting on 
the fluid tending to deform it against the action of gravity and surface 
tension, which together act to maintain a level fluid surface. Thus it requires a 
force of some kind, such as would be caused by a gust of wind or a falling 
stone impacting on the water, to create waves. Once these are created, 
gravitational and surface tension forces are activated that allow the waves to 
propagate, in the same manner as tension on a string causes the string to 
vibrate, much to our listening enjoyment. 

Waves occur in all sizes and forms, depending on the magnitude of the 
forces acting on the water. A simple illustration is that a small stone and a 
large rock create different-size waves after impacting on water. Further, 
different speeds of impact create different-size waves, which indicates that 
the pressure forces acting on the fluid surface are important, as well as the 
magnitude of the displaced fluid. The gravitational attraction of the moon, 
sun, and other astronomical bodies creates the longest known water waves, 
the tides. These waves circle halfway around the earth from end to end and 
travel with tremendous speeds. The shortest waves can be less than a 
centimeter in length. The length of the wave gives one an idea of the 
magnitude of the forces acting on the waves. For example, the longer the 
wave, the more important gravity (comprised of the contributions from the 
earth, the moon, and the sun) is in relation to surface tension. 

The importance of waves cannot be overestimated. Anything that is 
near or in a body of water is subject to wave action. At the coast, this can 
result in the movement of sand along the shore, causing erosion or damage to 
structures during storms. In the water, offshore oil platforms must be able to 
withstand severe storms without destruction. At present drilling depths 
exceeding 300 m, this requires enormous and expensive structures. On the 
water, all ships are subjected to wave attack, and countless ships have 
foundered due to waves which have been observed to be as large as 34 m in 
height. Further, any ship moving through water creates a pressure field and, 
hence, waves. These waves create a significant portion of the resistance to 
motion enountered by the ships. 

1.2 CHARACTERISTICS OF WAVES 

The important parameters to describe waves are their length and height, and 
the water depth over which they are propagating. All other parameters, such 
as wave-induced water velocities and accelerations, can be determined 
theoretically from these quantities. In Figure 1.1, a two-dimensional schema- 
tic of a wave propagating in the x direction is shown. The length of the wave, 
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. 
I Trough 
h 

Figure 1.1 Wave characteristics. 

L, is the horizontal distance between two successive wave crests, or the high 
points on a wave, or alternatively the distance between two wave troughs. 
The wave length will be shown later to be related to the water depth h and 
wave period T, which is the time required for two successive crests or troughs 
to pass a particular point. As the wave, then, must move a distance L in time 
T ,  the speed of the wave, called the celerity, C, is defined as C = L/T. While 
the wave form travels with celerity C, the water that comprises the wave does 
not translate in the direction of the wave. 

The coordinate axis that will be used to describe wave motion will be 
located at the still water line, z = 0. The bottom of the water body will be at 

Waves in nature rarely appear to look exactly the same from wave to 
wave, nor do they always propagate in the same direction. If a device to 
measure the water surface elevation, 9, as a function of time was placed on a 
platform in the middle of the ocean, it might obtain a record such as that 
shown in Figure 1:2. This sea can be seen to be a superposition of a large 
number of sinusoids going in different directions. For example, consider the 
two sine waves shown in Figure 1.3 and their sum. It is this superposition of 
sinusoids that permits the use of Fourier analysis and spectral techniques to 
be used in describing the sea. Unfortunately, there is a great amount of 
randomness in the sea, and statistical techniques need to be brought to bear. 
Fortunately, very large waves or, alternatively, waves in shallow water appear 

z = -h. 

Figure 1.2 Example of a possible recorded wave form. 
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Figure 1.3 Complex wave form resulting as the sum of two sinusoids. 

to be more regular than smaller waves or those in deeper water, and not so 
random. Therefore, in these cases, each wave is more readily described by one 
sinusoid, which repeats itself periodically. Realistically, due to shallow water 
nonlinearities, more than one sinusoid, all of the same phase, are necessary; 
however, using one sinusoid has been shown to be reasonably accurate for 
some purposes. It is this surprising accuracy and ease of application that have 
maintained the popularity and the widespread usage of so-called linear, or 
small-amplitude, wave theory. The advantages are that it is easy to use, as 
opposed to more complicated nonlinear theories, and lends itself to superpo- 
sition and other complicated manipulations. Moreover, linear wave theory is 
an effective stepping-stone to some nonlinear theories. For this reason, this 
book is directed primarily to linear theory. 

1.3 HISTORICAL AND PRESENT LITERATURE 

The field of water wave theory is over 150 years old and, of course, during this 
period of time numerous books and articles have been written about the 
subject. Perhaps the most outstanding is the seminal work of Sir Horace 
Lamb. His Hydrodynamics has served as a source book since its original 
publication in 1879. 

Other notable books with which the reader should become acquainted 
are R. L. Wiegel's Oceanographical Engineering and A. T. Ippen's Estuary 
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and Coastline Hydrodynamics. These two books, appearing in the 1960s, 
provided the education of many of the practicing coastal and ocean engineers 
of today. 

The authors also recommend for further studies on waves the book by 
G. B. Witham entitled Linear and Nonlinear Waves, from which a portion of 
Chapter 11 is derived, and the article “§Surface Waves,” by J. V. Wehausen and 
E. V. Laitone, in the Handbuch der Physik. 

In terms of articles, there are a number ofjournals and proceedings that 
will provide the reader with more up-to-date material on waves and wave 
theory and its applications. These include the American Society of Civil 
Engineers’ Journal of Waterway, Port, Coastal and Ocean Division, the 
Journal of Fluid Mechanics, the Proceedings of the International Coastal 
Engineering Conferences, the Journal of Geophysical Research, Coastal 
Engineering, Applied Ocean Research, and the Proceedings of the Offshore 
Technology Conference. 



Dedication 
LEONHARD EULER 

Leonhard Euler (1707-1783), born in Basel, Switzerland, was one of the 
earliest practitioners of applied mathematics, developing with others 
the theory of ordinary and partial differential equations and applying 
them to the physical world. The most frequent use of his work here is 
the use of the Euler equations of motion, which describe the flow of an 
inviscid fluid. 

In 1722 he graduated from the University of Basel with a degree in 
Arts. During this time, however, he attended the lectures of Johan I. 
Bernoulli (Daniel Bernoulli’s father), and turned to the study of mathe- 
matics. In 1723 he received a master’s level degree in philosophy and 
began to teach in the philosophy department. In 1727 he moved to St. 
Petersburg, Russia, and to the St. Petersburg Academy of Science, 
where he worked in physiology and mathematics and succeeded Daniel 
Bernoulli as Professor of Physics in 1731. 

In 1741 he was invited to work in the Berlin Society of Sciences 
(founded by Leibniz). Some of his work there was applied as opposed to 
theoretical. He worked on the hydraulic works of Frederick the Great’s 
summer residence as well as in ballistics, which was of national inter- 
est. In Berlin he published 380 works related to mathematical physics in 
such areas as geometry, optics, electricity, and magnetism. In 1761 he 
published his monograph, “Principia motus fluidorum,” which put forth 
the now-familiar Euler and continuity equations. 

He returned to St. Petersburg in 1766 after a falling-out with 

6 
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Frederick the Great and began to depend on coauthors for a number of 
his works, as he was going blind. He died there in 1783. 

In mathematics, Euler was responsible for introducing numerous 
notations: for example, i = f i ,  e for base of the natural log, and the 
finite difference b. 

2.1 INTRODUCTION 

In order to investigate water waves most effectively, a reasonably good 
background in fluid dynamics and mathematics is helpful. Although it is 
anticipated that the reader has this background, a review of the essential 
derivations and equations is offered here as a refresher and to acquaint the 
reader with the notation to be used throughout the book. 

A mathematical tool that will be used often is the Taylor series. 
Mathematically, it can be shown that if a continuous functionfix, y) of two 
independent variables x and y is known at, say, x equal to XO, then it can be 
approximated at another location on the x axis, xo + Ax, by theTaylor series. 

~" JTXO~Y)(~)"  + . . . + . . .  + 
dx" n! 

where the derivatives offix, y) are all taken at x = xo, the location for which 
the function is known. For very small values of Ax, the terms involving 
(Ax)", where n > 1, are very much smaller than the first two terms on the 
right-hand side of the equation and often in practice can be neglected. If 
Ax, y) varies linearly with x, for example, Ax, y) = y 2  + mx + b, truncating 
the Taylor series to two terms involves no error, for all values of Ax.' 
Through the use of the Taylor series, it is possible to develop relationships 
between fluid properties at two closely spaced locations. 

2.2 REVIEW OF HYDRODYNAMICS 

2.2.1 Conservation of Mass 

In a real fluid, mass must be conserved; it cannot be created or 
destroyed. To develop a mathematical equation to express this concept, 
consider a very small cube located with its center at x, y ,  z in a Cartesian 
coordinate system as shown in Figure 2.1. For the cube with sides Ax, Ay, and 

'In fact, for any nth-order function, the expression (2.1) is exact as long as (n + 1) terms in the 
series are obtained. 
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W 

Velocity 
components 

Figure 2.1 Reference cube in a fluid. 

Az, the rate at which fluid mass flows into the cube across the various faces 
must equal the sum of the rate of mass accumulation in the cube and the mass 
fluxes out of the faces. 

Taking first the x face at x - Ax/2, the rate at which the fluid mass flows 
in is equal to the velocity component in the x direction times the area through 
which it is crossing, all multiplied times the density of the fluid, p. Therefore, 
the mass inflow rate at x - Ax/2, or side ACEG, is 

where the terms in parentheses denote the coordinate location. 

truncated Taylor series, keeping in mind the smallness of the cube, 
This mass flow rate can be related to that at the center of the cube by the 

Ax Ax 
2 2 (2.3) P(x - -7 Y ,  Z ) W  - -7 Y ,  z )  AY A.2 

For convenience, the coordinates ofp and u at the center of the cube will not 
be shown hereafter. The mass flow rate out of the other x face, at x + Ax/2, 
face BDFH, can also be represented by the Taylor series, 

[pu +d@u)s+ ax 2 . . ) y A z  

By subtracting the mass flow rate out from the mass flow rate in, the net flux 
of mass into the cube in the x direction is obtained, that is, the rate of mass 
accumulation in the x direction: 

where the term O ( A X ) ~  denotes terms of higher order, or power, than (Ax)’ 
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and is stated as "order of  AX)^.'' This term is a result of neglected higher- 
order terms in the Taylor series and implicitly assumes that Ax, Ay, and Az 
are the same order of magnitude. If the procedure is followed for the y and z 
directions, their contributions will also be obtained. The net rate of mass 
accumulation inside the control volume due to flux across all six faces is 

Let us now consider this accumulation of mass to occur for a time increment 
At and evaluate the increase in mass within the volume. The mass of the 
volume at time t is p( t )  Ax Ay Az and at time ( t  + Al) is f i t  + At) Ax Ay Az.  
The increase in mass is therefore 

Lp(t + At)  -At)]  Ax Ay Az = 9 At + O(At)2 Ax Ay Az (2.7) 

where O(At)* represents the higher-order terms in the Taylor series. Since 
mass must be conserved, this increase in mass must be due to the net inflow 
rate [Eq. (2.6)] occurring over a time increment At, that is, 

L t  I 

(2.8) . ,  
a@u) + a@v) + a@w' Ax Ay Az At + O ( A X ) ~  At 
ax ay -1 az 

Dividing both sides by Ax Ay Az At and allowing the time increment 
and size of the volume to approach zero, the following exact equation results: 

(2.9) ap apu apv apw 
at ax ay az 
-+-+-+-= 

By expanding the product terms, a different form of the continuity equation 
can be derived. 

Recalling the definition for the total derivative from the calculus, the term 
within brackets can be seen to be the total derivative* of p(x, y ,  z, t )  with 
respect to time, Dp/Dt or dpldt, given u = dx/dt,  v = dy/dt,  and w = dz/dt.  
The first term is then ( l /p)(dp/dt)  and is related to the change in pressure 
through the bulk modulus E of the fluid, where 

E = p -  dP 
dP 

'This is discussed later in the chapter. 

(2.11) 
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where dp is the incremental change in pressure, causing the compression of 
the fluid. Thus 

I dp 1 dp 
p dt E dt 
--=-- (2.12) 

For water, E = 2.07 x 109Nm-2, a very large number. For example, a 
1 x lo6 Nm-2 increase in pressure results in a 0.05% change in density of 
water. Therefore, it will be assumed henceforth that water is incompressible. 

From Eq. (2.10), the conservation of mass equation for an incompressz- 
ble fluid can be stated simply as 

I I 

(2.13) 
I I 

which must be true at every location in the fluid. This equation is also 
referred to as the continuity equation, and the flow field satisfling Eq. (2.13) 
is termed a “nondivergent flow.” Referring back to the cube in Figure 2.1, this 
equation requires that if there is a change in the flow in a particular direction 
across the cube, there must be a corresponding flow change in another 
direction, to ensure no fluid accumulation in the cube. 
Example 2.1 
An example of an incompressible flow is accelerating flow into a corner in two 
dimensions, as shown in Figure 2.2 The velocity components are u = -Axt and 
w = Azt .  To determine if it is an incompiessible flow, substitute the velocity com- 
ponents into the continuity equation, -At + A t  = 0. Therefore, it is incompressible. 

2.2.2 Surface Stresses on a Particle 

The motion of a fluid particle is induced by the forces that act on the 
particle. These forces are of two types, as can be seen if we again refer to the 
fluid cube that was utilized in the preceding section. Surface forces include 
pressure and shear stresses which act on the surface of the volume. Body 
forces, on the other hand, act throughout the volume of the cube. These forces 

Z 

+ Figure 2.2 Fluid flow in a corner. 
Flow is tangent to solid lines. 0 
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include gravity, magnetic, and other forces that act directly on each individ- 
ual particle in the volume under consideration. 

All of these forces which act on the cube of fluid will cause it to move as 
predicted by Newton’s second law, F = ma, for a volume ofconstant mass m. 
This law, which relates the resultant forces on a body to its resultant accelera- 
tion a, is a vector equation, being made up of forces and accelerations in the 
x, y, and z coordinate directions, and therefore all forces for convenience 
must be resolved into their components. 

Hydrostatic pressure. By definition, a fluid is a substance dis- 
tinguished from solids by the fact that it deforms continuously under the 
action of shear stresses. This deformation occurs by the fluid‘s flowing. 
Therefore, for a still fluid, there are no shear stresses and the normal stresses 
or forces must balance each other, F = 0. Normal (perpendicular) stresses 
must be present because we know that a fluid column has a weight and this 
weight must be supported by a pressure times the area of the column. Using 
this static force balance, we will show first that the pressure is the same in all 
directions (i.e., a scalar) and then derive the hydrostatic pressure relation- 
ship. 

For a container of fluid, as illustrated in Figure 2.3a, the only forces that 
act are gravity and hydrostatic pressure. If we first isolate a stationary prism 
of fluid with dimensions A x ,  Az, A1 [= J(Ax)* + (Az)’], we can examine the 
force balance on it. We will only consider the x and z directions for now; the 
forces in the y direction do not contribute to the x direction. 

On the left side of the prism, there is a pressure force acting in the 
positive x direction, px Az Ay. On the diagonal face, there must be a balanc- 

+z +z 

t S F ,  

Figure 2.3 Hydrostatic pressures on (a) a prism and (b) a cube. 
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ing component ofp,, which yields the following form of Newton's second law: 

px A z  Ay  = p n  sin 8 A1 Ay (2.14) 

In the vertical direction, the force balance yields 

pz  Ax Ay =pn cos 8 A1 Ay + &g A z  Ax Ay (2.15) 

where the second term on the right-hand side corresponds to the weight of the 
prism, which also must be supported by the vertical pressure force. From the 
geometry of the prism, sin 8 = Az/Al and cos 8 = Ax/Al, and after substitu- 
tion we have 

P x  = P n  

~z = Pn + iPg 

If we let the prism shrink to zero, then 

P x  = Pz = Pn 

which indicates that the pressures in the x-z plane are the same at a point 
irrespective of the orientation of the prism's diagonal face, since the final 
equations do not involve the angle 8. This result would still be valid, of 
course, if the prism were oriented along they axis, and thus we conclude at a 
point, 

P x  = P y  = P z  (2.16) 

or, the pressure at a point is independent of direction. An important point to 
notice is that the pressure is not a vector; it is a scalar and thus has no 
direction associated with it. Any surface immersed in a fluid will have a force 
exerted on it by the hydrostatic pressure, and the force acts in the direction of 
the normal, or perpendicular to the surface; that is, the direction of the force 
depends on the orientation of the face considered. 

Now, to be consistent with the conservation of mass derivation, let us 
examine a small cube of size Ax, Ay, A z  (see Figure 2.3b). However, this time 
we will not shrink the cube to a point. On the left-hand face at x - Ax/2 there 
is a pressure acting on the face with a surface area of Ay Az. The total force 
tending to accelerate the cube in the +x direction is 

aP Ax 
ax 2 

Ay AZ = P ( X ,  y, Z )  Ay AZ - - - Ay AZ + * . . (2.17) 

where the truncatedTaylor series is used, assuming a small cube. On the other 
x face, there must be an equal and opposite force; otherwise, the cube would 
have to accelerate in this direction. The force in the minus x direction is 
exerted on the face located at x + Ax/2. 

(2.18) aP Ax 
ax 2 

Ay AZ = p  Ay AZ + -- Ay AZ 
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Equating the two forces yields 

-= ap 0 
ax 

(2.19) 

For the y direction, a similar result is obtained, 

In the vertical, z,  direction the force acting upward is 

which must be equal to the pressure force acting downward, and the weight of 
the cube, pg AX Ay Az,  where g is the acceleration of gravity. 

Summing these forces yields 

or dividing by the volume of the small cube, we have 

aP - = -pg 
az 

(2.22) 

Integrating the three partial differential equations for the pressure results in 
the hydrostatic pressure equation 

p = -pgz 4- c (2.23) 

Evaluating the constant C at the free surface, z = 0, where p = 0 (gage 
pressure), 

P = -P@ (2.24) 

The pressure increases linearly with increasing depth into the fluid.3 
The buoyancy force is just a result of the hydrostatic pressure acting 

over the surface of a body. In a container of fluid, imagine a small sphere of 
fluid that could be denoted by some means such as dye. The spherical 
boundaries of this fluid would be acted upon by the hydrostatic pressure, 
which would be greater at the bottom of the sphere, as it is deeper there, than 
at the top of the sphere. The sphere does not move because the pressure 
difference supports the weight of the sphere. Now, if we could remove the 
fluid sphere and replace it with a sphere of lesser density, the same pressure 
forces would exist at its surface, yet the weight would be less and therefore the 
hydrostatic force would push the object upward. Intuitively, we would say 

'Note that z is negative into the fluid and therefore Eq. (2.24) does yield positive pressure 
underwater. 
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that the buoyancy force due to the fluid pressure is equal to the weight of the 
fluid displaced by the object. To examine this, let us look again at the force 
balance in the z direction, Eq. (2.21): 

-- a’ Az Ax Ay = pg Ax Ay Az = pg AV = dF, (2.25) 

which states that the net force in the z direction for the incremental area 
Ax Ay equals the weight of the incremental volume of fluid delimited by that 
area. There is no restriction on the size of the cube due to the linear variation 
of hydrostatic pressure. 

If we now integrate the pressure force over the surface of the object, we 
obtain 

Fbuoyancy = PgV (2.26) 

The buoyancy force is equal to the weight of the fluid displaced by the object, 
as discovered by Archimedes in about 250 B.C., and is in the positive z 
(vertical) direction (and it acts through the center of gravity of the displaced 
fluid). 

az 

Shear stresses. Shear stresses also act on the surface; however, they 
differ from the pressure in that they are not isotropic. Shear stresses are 
caused by forces acting tangentially to a surface; they are always present in a 
real flowing fluid and, as pressures, have the units of force per unit area. 

If we again examine our small volume (see Figure 2.4), we can see that 
there are three possible stresses for each of the six faces of the cube; two shear 
stresses and a normal stress, perpendicular to the face. Any other arbitrarily 
oriented stress can always be expressed in terms of these three. On the x face 
at x + Ax/2 which will be designated the positive x face, the stresses are a,, 
T~,,, and rXz. The notation convention for stresses is that the first subscript 

Figure 2.4 Shear and normal stresses 
X on a fluid cube. 
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refers to the axis to which the face is perpendicular and the second to the 
direction of the stress. Far a positive face, the stresses point in the positive 
axes directions. For the negative x face at x - &/2, the stresses are again om, 
7xy, and 7=, but they point in the direction of negative x, y, and z, 
re~pectively.~ Although these stresses have the same designation as those in 
the positive x face, in general they will differ in magnitude. In fact, it is the 
difference in magnitude that leads to a net force on the cube and a 
corresponding acceleration. 

There are nine stresses that are exerted on the cube faces. Three of these 
stresses include the pressure, as the normal stresses are wriften as 

IY,=-p+7, 

aw = -p + ,rw 

o z z  = -P + 722 

(2.27) 

where 

for both still and flowing fluids. It is possible, however, to show that some of 
the shear stresses are identical. To do this we use Newton's second law as 
adapted to moments and angular momentum. If we examine the moments 
about the z axis, we have 

M2 = zzo2 (2.28) 
where M, is the sum of the moments about the z axis, Z2 is the moment of 
inertia, and hz is the z component of the angular acceleration of the body. 
The moments about an axis through the center of the cube, parallel to the z 
axis, can be readily identified if a slice is taken through the fluid cube 
perpendicularly to the z axis. This is shown in Figure 2.5. Considering 
moments about the center of the element and positive in the clockwise 
direction, Eq. (2.28) is written, in terms of the stresses existing at the center of 

Y 

Figure 2.5 Shear stresses contributing 
to moments about the z-axis. Note that 
rw, r,, are functions of x and y. X 

4Can you identify the missing stresses on the - Ayy/2) face and orient them correctly? 
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the cube, 

(2.29) 

Reducing the equation leaves 

z,, AX Ay AZ - T,, Ax Ay AZ = &p[AX Ay AZ (Ax2 + Ay2)]Oz (2.30) 

For a nonzero difference, on the left-hand side, as the cube is taken to be 
smaller and smaller, the acceleration hZ must become greater, as the moment 
of inertia involves terms of length to the fifth power, whereas the stresses 
involve only the length to the third power. Therefore, in order that the 
angular acceleration of the fluid particle not unrealistically be infinite as the 
cube reduces in size, we conclude that z,, = z,, (i.e., the two shear stresses 
must be equal). Further, similar logic will show that T, = zZx, T,, = T,. 
Therefore, there are only six unknown stresses (axx, T,,, z,,, T,, a,,, and azz) on 
the element. These stresses depend on parameters such as fluid viscosity and 
fluid turbulence and will be discussed later. 

2.2.3 The Translational Equations of Motion 

For the x direction, Newton’s second law is, again, CF, = ma,, where a, 
is the particle acceleration in the x direction. By definition a, = du/dt, where 
u is the velocity in the x direction. This velocity, however, is a function of 
space and time, u = u(x ,  y, z ,  t ) ;  therefore, its total derivative is 

du du dudx d u d y  dudz (2.31) -=-+--+--+-- 
dt at ax dt ay dt az at 

du au au au au 
dt at ax ay az 

or, since dx/dt is u, and so forth, 

(2.32) -=- +u-+v-+w- 

This is the total acceleration and will be denoted as Du/Dt. The derivative is 
composed of two types of terms, the local acceleration, du/dt, which is the 
change of u observed at a point with time, and the convective acceleration 
terms 

au au au 
ax ay az 

u-+v-+w- 

which are the changes of u that result due to the motion of the particle. For 
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I.. 
Figure 2.6 Acceleration of flow through a convergent section. 

example, if we follow a water particle in a steady flow (i.e., a flow which is 
independent of time so that &/at = 0) into a transition section as shown in 
Figure 2.6, it is clear that the fluid accelerates. The important terms applica- 

au au 
ax az 

ble to the figure are the u - and the w - terms. 

The equation of motion in the x direction can now be formulated: 

Du 
CF..=m- 

Dt 

From Figure 2.4, the surface forces can be obtained on the six faces via the 
truncated Taylor series 

(0, + %$) Ay Az - (0, - -- 
ax 2 

Ax Az + ( 7zx + 2 $) Ax Ay (2.33) 

The capital X denotes any body force per unit mass acting in the x direction. 
Combining terms and dividing by the volume of the cube yields 

DU a0, aTyx aTzx 

Dt ax ay az 
p- = - + - + - + p x  (2.34) 

or 

(2.35) 

and, by exactly similar developments, the equations of motion are obtained 



18 A Review of Hydrodynamics and Vector Analysis Chap. 2 

for they and z directions: 

+- -+-+-  + Y  
Dt 
DV I ap I ar,, az, 

p a y  p ax ay a T z y )  az ( -=---  

-=- - -  

(2.36) 

(2.37) 

To apply the equations of motion for a fluid particle, it is necessary to 
know something about stresses in a fluid. The most convenient assumption, 
one that is reasonably valid for most problems in water wave mechanics, is 
that the shear stresses are zero, which results in the Euler equations. Express- 
ing the body force per unit mass as -g in the z direction and zero in the x and 
y directions, we have 

DU l a p  
Dt p a x  
_-  - --- (2.38a) 

the Euler equations (2.38b) 

(2.38~) 

In many real flow cases, the flow is turbulent and shear stresses are influenced 
by the turbulence and thus the previous stress terms must be retained. If the 
flow is laminar, that is there is no turbulence in the fluid, the stresses are 
governed by the Newtonian shear stress relationship and the accelerations 
are governed by 

(2.39a) 

+ Y  (2.39b) 

(2.39~) 

and p is the dynamic (molecular) viscosity of the fluid. Often p/p is replaced 
by v, defined as the kinematic viscosity. 

For turbulent flows, where the velocities and pressure fluctuate about 
mean values due to the presence of eddies, these equations are modified to 
describe the mean and the fluctuating quantities separately, in order to 
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facilitate their use. We will not, however, be using these turbulent forms ofthe 
equations directly. 

2.3 REVIEW OF VECTOR ANALYSIS 

Throughout the book, vector algebra will be used to facilitate proofs and 
minimize required algebra; therefore, the use of vectors and vector analysis is 
reviewed briefly below. 

In a three-dimensional Cartesian coordinate system, a reference system 
(x,  y, z )  as has been used before can be drawn (see Figure 2.7). For each 
coordinate direction, there is a unit vector, that is, a line segment of unit 
length oriented such that it is directed in the corresponding coordinate 
direction. These unit vectors are defined as (i, j, k) in the (x, y ,  z )  directions. 
Thc boldface type denotes vector quantities. Any vector with orientation and 
a length can be expressed in terms of unit vectors. For example, the vector a 
can be represented as 

a = a,i + ayj + a,k (2.40) 

where a,, up, and a, are the projections of a on the x, y ,  and z axes. 

2.3.1 The Dot Product 

The dot (or inner or scalar) product is defined as 

a * b =  la !  \bl cos8 (2.41) 

where the absolute value sign refers to the magnitude or length of the vectors 
and 8 refers to the angle between them. For the unit vectors, the following 
identities readily follow: 

i . i  = I  

i . j  = O  

i * k = O  
j . j  = I  

j . k = O  

k * k = l  

(2.42) 

Z 

k 
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P 

A- Figure 2.8 Projections of vector a. 

These rules are commutative, also, so that reversing the order of the opera- 
tion does not alter the results. For instance, 

(2.43) . .  i . j = j . i  

or a b = b a. Consider taking a dot product of the vector with itself. 

a .  a = (axi + ayj + a,k) - (axi + ayj + a,k) (2.44) 

= a; + a; + af 

A graphical interpretation of a - a can be obtained from Figure 2.8, where the 
magnitude of vector a is the length m. From the Pythagorean theorem, m2 
= OQ' + m. But is just a, and m2 = af + a;. Therefore, m2 = a: + a; + a:. 
Therefore, the magnitude of vector a can be written as 

la1 =D= Ja.a (2.45) 
The quantity a - b as shown before is a scalar quantity; that is, it has a 

magnitude, but no direction (therefore, it is not a vector). Another way to 
express a . b is 

a . b =  la1 Ibl cos8=a.xbx+a$y+azbz (2.46) 

Note that if a b is zero, but neither a or b is the zero vector, defined as 
(Oi + Oj + Ok), then cos 8 must be zero; the vectors are perpendicular to one 
another. 

An important use of the dot product is in determining the projection of 
a vector onto another vector. For example, the projection of vector a onto the 
x axis is a .  i. In general, the projection of a onto the b vector direction would 
bea-b/IbI .  

2.3.2 The Cross Product 

The cross product (or outer, or vector product) is a vector qualztity 
which is defined as a x b = 1 a I I b I sin 8, but with a direction perpendicular 
to the plane of a and b according to the right-hand rule. For the unit vectors, 

i x i = j x j = k x k = O ;  i x j = k ,  j x k = i ,  k x i = j  (2.47) 
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a x b = 

but this rule is not commutative. So, for example, j x i = -k. A convenient 
method for evaluating the cross product of two vectors is to use a determi- 
nant form: 

i j k  (2.48) 
a, ay a, = (a$, - a,by)i + (a,b, - axbz)j + (axby - a$,)k 
b, by b, 

2.3.3 The Vector Differential Operator and the 
Gradient 

Consider a scalar field in space; for example, this might be the tempera- 
ture T(x,  y, z )  in a room. Because of uneven heating, it is logical to expect 
that the temperature will vary both with height and horizontal distance into 

truncated three-dimensional Taylor series can be used to estimate the temper- 
ature at a small distance dr (= dxi + dyj+ dzk) away. 

T(x + Ax, y + Ay, z + Az) (2.49) 

the room. If the te>xb n *Ant . H ? ?  

The last three terms in this expression may be written as the dot product of 
two vectors: 

($ i + 5 j + k )  - (Axi + Ayj + Azk) (2.50) 

The first term is defined as the gradient of the temperature and the second is 
the differential vector Ar. 

The gradient or gradient vector is often written as grad Tor V T ,  and can 
be further broken down to 

(2.51) 

where the first term on the right-hand side is defined as the vector differential 
operator V, and the second, of course, is just the scalar temperature. 

The gradient always indicates the direction of maximum change of a 
scalar field' and can be used to indicate perpendicular, or normal, vectors to 

'The total differential dT = VT . dr = I VT I I dr I cos &The maximum value occurs when dr is in 
the direction of I VT I. 
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a surface. For example, if the temperature in a room was stably stratified, the 
temperature would be solely a function of elevation in the room, or T (x, y, z)  
= T(z). If we move horizontally across the room to a new point, the change in 
temperature would be zero, as we have moved along a surface of constant 
temperature. Therefore, 

where 

0, Ar = dxi + dyj + Ok aT aT -=-= 
ax ay 

or 
VT*Ar=O 

(2.52) 

(2.53) 

(2.54) 

which means, using the definition ofthe dot product, that V T  is perpendicu- 
lar to the surface of constant temperature. The unit normal vector will be 
defined here as the vector n, having a magnitude of 1 and directed perpendic- 
ular to the surface. For this example, 

(2.55) 

or 
n = Oi + Oj + lk  = k 

2.3.4 The Divergence 

If the vector differential operator is applied to a vector using a dot 
product rather than to a scalar, as in the gradient, we have the divergence 

(2.56) 

da, day aa, 
ax ay a2 

-_  - +-+- 

We have already seen this operator in the continuity equation, Eq. (2.10), 
which can be rewritten as 

where u is the velocity vector, u = iu + j v  + kw, 

(2.57) 

du av aw v . u = - + - + -  
ax ay az 

(2.58) 
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For an incompressible fluid, for which ( l / p )  (Dp/Dt) is equal to zero, the 
divergence of the velocity is also zero, and therefore the fluid is divergence- 
less. Another useful result may be obtained by taking the divergence of a 
gradient, 

V . V T =  

d2T a2T d2T =-+-+- 
ax2 ay2 az2 

(2.59) 

= V 2 T  

Del squared (V2) is known as the Laplacian operator, named after the famous 
French mathematician Laplace (1749-1827).6 

2.3.5 The Curl 

If the vector differential operator is applied to a vector using the cross 
product, then the cud of the vector results. 

x (a$ + ayj + a,k) (2.60) 

Carrying out the cross product, which can be done by evaluating the follow- 
ing determinant, yields 

(2.61) 

As we will see later, the curl of a velocity vector is a measure of the rotation in 
the velocity field. 

As an example of the curl operator, let us determine the divergence of 
the curl of a. 

%3apter 3 is dedicated to Laplace. 
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Figure 2.9 Integration paths between 
+ two points. 

0 

This is an identity for any vector that has continuous first and second 
derivatives. 

2.3.6 Line Integrals 

In Figure 2.9, two points are shown in the (x-y)  plane, Po and PI. Over 
this plane the vector a(x, y )  exists. Consider the integral from Po to PI of the 
projection of the vector a on the contour line C1. We will denote this integral 
as F 

(2.62) 

It is anticipated that should we have chosen contour C2, a different value of 
the integral would have resulted. The question is whether constraints can be 
prescribed on the nature of a such that it makes no difference whether we go 
from PO to P, on contour C ,  or C2. 

If Eq. (2.62) were rewritten as 

F = $?dF 

where dF is the exact differential o f F ,  then F would be equal to F(Pl) - F(P0); 
that is, it is only a function of the end points o f  the integration. Therefore, if 
we can require that a dl be of the form dF, independence of path should 
ensue. Now, 

a .  dl = a, dx + a, dz  for two dimensions, as dl = dxi + dzk 

and the total differential o f  F is 

(2.63) 

By equating a . dl with dF, we see that independence of path requires, in two 
dimensions, 

aF aF dF = - dX + - dz  = VF - dl 
ax az 

aF aF 
a,=- and a,=- or a = V F  

ax az 
(2.64) 
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If this is true for ax and a,, it follows that 

aa, aa, 
az ax 
__-- - 0  (2.65) 

as 

---- - 0  a2F a2F 
azax axaz 

Therefore, in summary, independence of path of the line integral requires 
that Eq. (2.65) be satisfied. For three dimensions it can be shown that this 
condition requires that the curl of a must be zero. 

Example 2.2 
What is the value of 

if V x a = 0 and where the 

composed of C,  and C2? Do this by parts. 

indicates a complete circuit around the closed contour P 
Solution. 

F = $" a - dl + a - dl = F ( P I )  - F(Po) + F(Po) - F(P,)  = 0 
PO 

Alternatively, note that by Stokes's theorem, the integral can be cast into another 
form: 

F = a - dl = s s (V x a ) .  n ds 

where ds is a surface element contained within the perimeter of C ,  + CZ, and n is an 
outward unit normal to ds. Therefore, if V x a is zero, F = 0. 

2.3.7 Velocity Potential 

Instead of discussing the vector a, let us consider u, the vector velocity, 

(2.66) 

given by 

u(x, y ,  z ,  t )  = ui  + vj + wk 

Now, let us define the value of the line integral of u as -4: 

- + = $ ; u . d l = $  ( u d x + v d y +  w d z )  (2.67) 

The quantity u s  dl is a measure of the fluid velocity in the direction of the 
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contour at each point. Therefore, -4 is related to the product of the velocity 
and length along the path between the two points Po and P I .  The minus sign is 
a matter of definitional convenience; quite often in the literature it is not 
present. 

For the value of 4 to be independent of path, that is, for the flow rate 
between Po and P I  to be the same no matter how the integration is carried out, 
the terms in the integral must be an exact differential d4, and therefore 

(2.68a) 

(2.68b) 

(2.68~) 

To ensure that this scalar function 4 exists, the curl of the velocity vector 
must be zero: 

The curl of the velocity vector is referred to as the vorticity a. 
The velocity vector u can therefore be conveniently represented as 

u = -u$ (2.70) 

That is, we can express the vector quantity by the gradient of a scalar function 
4 for a flow with no vorticity. Further u flows “downhill,” that is, in the 
direction of decreasing 4.’ If 4 (x, y ,  z, t )  is known over all space, then u, v, 
and w can be determined. Note that 4 has the units oflength squared divided 
by time. 

Let us examine more closely the line integral of the velocity component 
along the contour. If we consider the closed path from Po to P, and then back 
again, we know, from before, that the integral is zero. 

u . d l = O  (2.71) 

which means that if, for example, the path taken from Po to PI and back again 
were circular, no fluid would travel this circular path. Therefore, we expect no 
rotation of the fluid in circles if the curl of the velocity vector is zero. 

To examine this irrotationality concept more fully, consider the average 
rate of rotation of a pair of orthogonal axes drawn on the small water mass 

I 

’This is the reason for the minus sign in the defintion of 4. 
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Figure 2.10 

shown in Figure 2.10. Denoting the positive rotation in the counterclockwise 
direction, the average rate of rotation of the axes will be given by Eq. (2.72). 

(2.72) 

Now if u and w are known at (XO, ZO), the coordinates of the center of the fluid 
mass, then at the edges of the mass the velocities are approximated as 

and 

Now the angular velocity of the z axis can be expressed as 

au ~ ( x o ,  zo + 62/21 - ~ ( x o ,  ZO) - 4, = - 
6212 az 

and similarly for 8b :  

The average rate of rotation is therefore 

(2.73) 

Therefore, the j component of the curl of the velocity vector is equal to twice 
the rate of rotation of the fluid particles, or V x u = 28 = o, where o is the 
fluid vorticity. 

A mechanical analog to irrotational and rotational flows can be 
depicted by considering a carnival Ferns wheel. Under normal operating 
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Figure 2.11 (a) Irrotational motion of chairs on a Ferris wheel; (b) 
rotational motion of the chairs. 

conditions the chairs do not rotate; they always have the same orientation 
with respect to the earth (see Figure 2.11a). As far as the occupants are 
concerned, this is irrotational motion. If, on the other hand, the cars were 
fixed rigidly to the Ferris wheel, we would have, first, rotational motion 
(Figure 2.11b) and then perhaps a castastrophe. 

For an inviscid and incompressible fluid, where the Euler equations are 
valid, there are only normal stresses (pressures) acting on the surface of a 
fluid particle; since the shear stresses are zero, there are no stresses to impart 
a rotation on a fluid particle. Therefore, in an inviscid fluid, a nonrotating 
particle remains nonrotating. However, if an initial vorticity exists in the 
fluid, the vorticity remains constant. To see this, we write the Euler equations 
in vector form: 

Du 1 

Dt P 
_-  - - - v p  - gk (2.74) 

Taking the curl of this equation and substituting V x u = o and V x V p = 0 
(identically), we have 

DO - = o  
Dt 

(2.75) 

Therefore, there can be no change in the vorticity or the rotation of the fluid 
with time. This theory is due to Lord Kelvin (1869).8 

2.3.8 Stream Function 

For the velocity potential, we defined 4 as (minus) the line integral of 
the velocity vector projected onto the line element; let us now define the line 
integral composed of the velocity component perpendicular to the line 

*Chapter 5 is dedicated to Lord Kelvin. 
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element in two dimensions. 

v =  $“ti. Po ndl (2.76) 

where dl = I dl I. Consideration of the integrand above will demonstrate that 
ty represents the amount of fluid crossing the line CI between points Po and 
PI. The unit vector n is perpendicular to the path of integration CI. 

To determine the unit normal vector n, it is necessary to find a normal 
vector N such that 

N * d l = O  
N, dx + N, dz = 0 or 

This is always true if 

N, = -dz and N, = dx 

It would have been equally valid to take N, = dz and N, = -dx; however, this 
would have resulted in N directed to the right along the path of integration 
instead of the left. 

To find the unit normal n, it remains only to normalize N. 

N -dzi+dxk -dzi+dxk 
IN1 -&Z-z?= dl 

n=-- 

The integral can thus be written as 

v/ = (-u dz + w dx) (2.77) 

For independence of path, so that the flow between Po and PI will be 
measured the same way no matter which way we connect the points, the 
integrand must be an exact differential, dty. This requires that 

av. u = - -  av w = a x ’  
az 

and thus the condition for independence of path [Eq. (2.65)] is 

a w  au 
az ax 
- + - = O  

(2.78) 

(2.79) 

which is the two-dimensional form of the continuity equation. Therefore, for 
two-dimensional incompressible flow, a stream function exists and if we 
know its functional form, we know the velocity vector. 

In general, there can be no stream function for three-dimensional flows, 
with the exception of axisymmetric flows. However, the velocity potential 
exists in any three-dimensional flow that is irrotational. 
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Note that the flow rate (per unit width) between points Po and PI is 
measured by the difference between and y/(Po). If an arbitrary constant 
is added to both values of the stream function, the flow rate is not affected. 

2.3.9 Streamline 

A streamline is defined as a line that is everywhere tangent to the 
velocity vector, or, on a streamline, u - n = 0, where n is the normal to the 
streamline. From the earlier section, 

u - n =  -u d z +  w d x  = 0 or d x  dz - 
u w  

or dz w 
dx u 
_ - _  - (2.80) 

along a streamline. These are the equations for a streamline in two dimen- 
sions. Streamlines are a physical concept and therefore must also exist in all 
three-dimensional flows and all compressible flows. 

From the definition of the stream function in two-dimensional flows, 
ay/ /d l= 0 on a streamline, and therefore the stream function, when it exists, is 
a constant along a streamline. This leads to the result Vy/ dl = 0 along a 
streamline, and therefore the gradient of v/ is perpendicular to the streamlines 
and in the direction normal to the velocity vector. 

2.3.10 Relationship between Velocity Potential 
and Stream Function 

For a three-dimensional flow, the velocity field may be determined 
from a velocity potential if the fluid is irrotational. For some three- 
dimensional flows and all two-dimensional flows for which the fluid is 
incompressible, a stream function v/ exists. Each is a measure of the flow rate 
between two points: in either the normal or transverse direction. For two- 
dimensional incompressible fluid flow, which is irrotational, both the stream 
function and the velocity potential exist and must be related through the 
velocity components. 

The streamline, or line of constant stream function, and the lines of 
constant velocity potential are perpendicular, as can be seen from the fact 
that their gradients are perpendicular: 

n $ . V y / = O  
as 

(a,i a4 + z k )  a4 ( E i  + $ k )  = 

(-ui - wk) (+wi - uk) = (2.81) 

-uw + uw = 0 
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The primary advantage of either the stream function or the velocity 
potential is that they are scalar quantities from which the velocity vector field 
can be obtained. As one can easily imagine, it is far easier to work with scalar 
rather than with vector functions. 

Often, the stream function or the velocity potential is known and the 
other is desired. To obtain one from the other, it is necessary to relate the two. 
Recalling the definition of the velocity components 

u = - - = - d V  a4 - 
ax az 

a4 a+ 
az ax 

w = - - = -  

we have 

(2.82a) 

(2.82b) 

These relationships are called the Cauchy-Riemann conditions and enable 
the hydrodynamicist to utilize the powerful techoiques of complex variable 
analysis. See for example, Milne-Thomson (1949). 

Example 2.3 
For the following velocity potential, determine the corresponding stream function. 

2 nt 
T 

4(x, z ,  2 )  = (-3x + 5z) cos - 

This velocity potential represents a to-and-fro motion of the fluid with the streamlines 
slanted with respect to the origin as shown in Figure 2.12. The velocity components 
are 

Solution. From the Cauchy-Riemann conditions 

or, integrating, 

2nt 
T 

Y(X, Z, t )  = -3z cos - + C,(X, t )  
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7 

: Figure 2.12 

Note that because we integrated a partial differential, the unknown quantity that 
results is a function of both x and t. For the vertical velocity, 

ary 2 nt 
- = -5 cos - 
ax T 

or 

2nt 
T 

Y(X, Z, t )  = - 5 ~  cos - + G ~ ( z ,  t )  

Comparing these two equations, which must be the same stream function, it is 
apparent that 

2nt 
T 

W(X, Z ,  t )  = - ( 5 ~  + 3 Z) cos - + G(t) 

The quantity G(t)  is a constant with regard to the space variables x and z and can, in 
fact, vary with time.This time dependency, due to G(t),  has no bearing whatsoever on 
the flow field; hence G(t)  can be set equal to zero without affecting the flow field. 

2.4 CYLINDRICAL COORDINATES 

The most appropriate coordinate system to describe a particular problem 
usually is that for which constant values of a coordinate most nearly conform 
to the boundaries or response variables in the problem. Therefore, for the 
case ofcircular waves, which might be generated when a stone is dropped into 
a pond, it is not convenient to use Cartesian coordinates to describe the 
problem, but cylindrical coordinates. These coordinates are ( r ,  8, z) ,  which 
are shown in Figure 2.13. The transformation between coordinates depends 
on these equations, x = r cos 0, y = r sin 8, and z = z. For a velocity potential 
defined in terms of ( r ,  8,z), the velocity components are 

(2.83a) 

(2.83b) 
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i 
Figure 2.13 Relationship between 
Cartesian and cylindrical coordinate 
systems r and 8 lie in the x-y plane. 

(2.83~) 

As noted previously, the stream function exists only for those three- 
dimensional flows which are axisymmetric. The stream function for an 
axisymmetric flow in cylindrical coordinates is called the “Stokes” stream 
function. The derivation of this stream function is presented in numerous 
references, however this form is not used extensively in wave mechanics and 
therefore will not be discussed further here. 

2.5 THE BERNOULLI EQ 

The Bernoulli equation is simply an integrated form of Euler equations 
of motion and provides a relationship between the pressure field and kine- 
matics, and will be useful later. Retaining our assumptions of irrotational 
motion and an incompressible fluid, the governing equations of motion in 
the fluid for the x-z plane are the Euler equations, Eqs. (2.38). 

(2.84a) 

(2.84b) 

Substituting in the two-dimensional irrotationality condition [Eq. (2.69)], 

au aw 
az ax 

- 

the equations can be rewritten as 

au + a(u2/2) + a(w2/2) I ap 
at ax ax P ax 
- ~ -- 

(2.85) 

(2.86) 

(2.87) aw + a(u2/2) + a(w2/2) 1 ap 
at az az P az 
- ~ -- 
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Now, since a velocity potential exists for the fluid, we have 

a4. w =- -  a4 u = - -  
ax' az 

(2.88) 

Therefore, ifwe substitute these definitions into Eqs. (2.86) and (2.87), we get 

(2.89a) 

(2.89b) 

where it has been assumed that the density is uniform throughout the fluid. 
Integrating the x equation yields 

P -_  a4 + A (u2 + w2) + - = C ( Z ,  t )  
at 2 P 

(2.90) 

where, as indicated, the constant of integration C' (z, t )  varies only with z and 
t .  Integrating the z equation yields 

- - a4 + - 1 (u2 + w2) + P - = -gz + C(X, t )  

at 2 P 
(2.91) 

Examining these two equations, which have the same quantity on the left- 
hand sides, shows clearly that 

C ( z ,  t )  = -gz + C(X, t )  

Thus C cannot be a function of x, as neither C' nor (gz) depend on x. 
Therefore, C' (z, t )  = -gz + C(t). The resulting equation is 

P + L(u2 + w2) + - + gz = C( t )  1-Tt 2 P 
(2.92) 

The steady-state form of this equation, the integrated form of the equations 
of motion, is called the Bernoulli equation, which is valid throughout the 
fluid. In this book we will refer to Eq. (2.92) as the unsteady form of the 
Bernoulli equation or, for brevity, as simply the Bernoulli equation. The 
function C(t)  is referred to as the Bernoulli term and is a constant for steady 
flows. 

The Bernoulli equation can also be written as 

- - a4 + P - + -[(>' 1 a4 + (31 + gz = C(t) 
at p 2 ax 

(2.93) 
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which interrelates the fluid pressure, particle elevation, and velocity poten- 
tial. Between any two points in the fluid of known elevation and velocity 
potential, pressure differences can be obtained by this equation; for example, 
for points A and B at elevations zA and z ~ ,  the pressure at A is 

(2.94) 

Notice that the Bernoulli constant is the same at both locations and thus 
dropped out of the last equation. [Another method to eliminate the constant 
is to absorb it into the velocity potential. Starting with Eq. (2.93) for the 
Bernoulli equation, we can define a functionJt) such that 

Therefore, the Bernoulli equation can be written as 

- + -  (2.95) 
at P 

Now, if we define &(x, z, t) = $(x, z, t )  + At),' 

(2.96) 

Often we will use the & form of the velocity potential, or, equivalently, we 
will take the Bernoulli constant as zero.] For three-dimensional flows, Eq. 
(2.96) would be modified only by the addition of (1/2>(d$/~3y)~ on the left- 
hand side. 

In the following paragraphs a form of the Bernoulli equation will be 
derived for two-dimensional steady flow in which the density is uniform and 
the shear stresses are zero; however, in contrast to the previous case, the 
results apply to rotational flow fields (i.e., the velocity potential does not 
exist). In Figure 2.14 the velocity vector at a point on a streamline is shown, as 
is a coordinate system, s and n, in the streamline tangential and normal 
directions. 

By definition of a streamline, at A a tangential velocity exists, us, but 
there is no normal velocity to the streamline un. Referring to Eq. (2.84), the 
steady-state form of the equation of motion for a particle at A would be 

9The kinematics associated with @ (x, z ,  t )  are exactly the same as $(x,  z ,  t ) ,  as can be shown 
easily by the reader. 
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2 

I -g sin OL = forcelunit mass in s direction 

Figure 2.14 Definition sketch for derivation of steady-state two-dimensional 
Bernoulli equation for rotational flows. 

written as 

au, I ap . 
as p as 

us- = - - - - g sin a (2.97) 

where sin a accounts for the fact that the streamline coordinate system is 
inclined with respect to the horizontal plane. From the figure, sin a = dz/ds, 
and therefore the equation of motion is 

-+-+gz  = o  .(.: as 2 p 1 
where again we have assumed the density p to be a constant along the 
streamline. Integrating along the streamline, we have 

uf P - + - + gz = C(y) 
2 P  

(2.98) 

This is nearly the familiar form of the Bernoulli equation, except that the 
time-dependent term resulting from the local acceleration is not present due 
to the assumption of steady flow and also, the Bernoulli constant is a function 
of the streamline on which we integrated the equation. In contrast to the 
Bernoulli equation for an ideal flow, in this case we cannot apply the 
Bernoulli equation everywhere, only at points along the same streamline. 
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2.1 Consider the following transition section: 

+lorn& 

- i - t - - -  +--+ 3’m 6 m  - 

L L ’  
(a) The flow from left to right is constant at Q = 12n m3/s. What is the total 

acceleration of a water particle in the x direction at x = 5 m? Assume that 
the water is incompressible and that the x component of velocity is 
uniform across each cross section. 

(b) The flow of water from right to left is given by 

Q(t> = nt2 

Calculate the total acceleration at x = 5 m for t = 2.0 s. Make the same 
assumptions as in part (a). 

2.2 Consider the following transition section: 

y-sj A/-- I ----- , 

(a) If the flow of water from left to right is constant at Q = . 1 m’/s, what is the 
total acceleration of a water particle at x = 0.5 m? Assume that the water is 
incompressible and that the x component of velocity is uniform across 
each cross section. 

(b) The flow of water from right to left is expressed by 

Q<t> = t2/100 

Calculate the total acceleration at x = 0.5 m fort = 4.48 s. Make the same 
assumptions as in part (a). 
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2.3 The velocity potential for a particular two-dimensional flow field in which the 
density is uniform is 

2n 
T 

(b = (-3x + 5z) cos - t 

where the z axis is oriented vertically upward. 
(a) Is the flow irrotational? 
(b) Is the flow nondivergent? If so, derive the stream function and sketch any 

2.4 If the water (assumed inviscid) in the U-tube is displaced from its equilibrium 
position, it will oscillate about this position with its natural period. Assume 
that the displacement of the surface is 

two streamlines fort = T/8. 

where the amplitude A is 10 cm and the natural period T is 8 s. What will be the 
pressure at a distance 20 cm below the instantaneous water surface for tj = +lo, 
0, and -10 cm?Assume that g = 980 cm/s2 andp = 1 g/cm’. 

2.5 Suppose that we measure the mass density p at 
function of time and observe the following: 

fixed point (x, y, z )  a 

From this information alone, is it possible to determine whether the flow is 
nondivergent? 



Chap. 2 Problems 39 

2.6 Derive the following equation for an inviscid fluid and a nondivergent steady 
flow: 

1 ap a(uw) + a(vw) + a(w2) 
p a z  ax ay az 

-g---=- ~ - 

2.7 Expand the following expression so that gradients of products of scalar func- 
tions do  not appear in the result: 

v (+wf) 
where 4, ty, and f are scalar functions. 

2.8 The velocity components in a two-dimensional flow of an inviscid fluid are 

Kx 
x2  + z2 

u = -  

Kz 
x 2  + z2 

w = -  

(a) Is the flow nondivergent? 
(b) Is the flow irrotational? 
(c) Sketch the two streamlines passing through points A and R ,  where the 

coordinates of these points are: 

Point A: x = 1 ,  z = 1 
Point B: x = 1,.z = 2 

2.9 For a particular fluid flow, the velocity components u,  v ,  and w in the .x, y ,  and 
z directions, respectively, are 

u = X  + 8y + 6 f z  + t4  

v = 8~ - l y  + 6~ 

2at 
T 

w = 1 2 ~  + 6y + 1 2 ~  cos -- + 1’ 

(a) Are there any times for which the flow is nondivergent? If so, when? 
(b) Are there any times for which the flow is irrotational? If so, when? 
(c) Develop the expression for the pressure gradient in the vertical ( z )  direc- 

tion as a function of space and time. 
2.10 The stream function for an inviscid fluid flow is 

w = AX2Zt 

where x, z ,  t 3 0 .  
(a) Sketch the streamlines w = 0 and II/ = 6A fort  = 3 s. 
(b) Fort = 5 s, what are the coordinates ofthe point where the streamline slope 

dz/dx is -5 for the particular streamline w = IOOA? 
(c) What is the pressure gradient at x = 2, z = 5 and at time t = 3 s ?  

A = 1.0, p = 1.0. 
2.11 Develop expressions for sinh x and cosh x for small values of x .  using the 

Taylor series expansion. 
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2.12 The pressures p d ( f )  and pB( t )  act on the massless pistons containing the 
inviscid, incompressible fluid in the horizontal tube shown below. Develop an 
expression for the velocity of the fluid as a function of time 
p = I gm/cm3. 

p- 100 cm-7 

Note: 

p&) = CA sin at 

P&) = CB sin (at + a) 
where a = 0.5 rad/s 

c d  = C, = 10dyn/cm3 

2.13 An early experimenter of waves and other two-dimensional fluid motions 
closely approximating irrotational flows noted that at an impermeable hori- 
zontal boundary, the gradient of horizontal velocity in the vertical direction is 
always zero. Is this finding in accordance with hydrodynamic fundamentals? If 
so, prove your answer. 

t 
X 



Small-A mplitude Water 
Wave 

Dedication 
PIERRE SIMON LAPLACE 

Pierre Simon Laplace (1749-1827) is well known for the equation that 
bears his name. The Laplace equation is one of the most ubiquitous 
equations of mathematical physics (the Helmholtz, the diffusion, and 
the wave equation being others); it appears in electrostatics, hydrody- 
namics, groundwater flow, thermostatics, and other fields. 

As had Euler, Laplace worked in a great variety of areas, applying 
his knowledge of mathematics to physical problems. He has been 
called the Newton of France. 

He was born in Beaumont-en-Auge, Normandy, France, and 
educated at Capn (1765-1767). In 1768 he became Professor of Mathe- 
matics at the Ecole Militaire in Paris. Later he moved to the Ecole 
Normale, also in Paris. 

Napoleon appointed him Minister of the Interior in 1799, and he 
became a Count in 1806 and a Marquis in 1807, the same year that he 
assumed the presidency of the French Academy of Sciences. 

A large portion of Laplace’s research was devoted to astronomy. 
He wrote on the orbital motion of the planets and celestial mechanics 
and on the stability of the solar system. He also developed the hypothe- 
sis that the solar system coalesced out of a gaseous nebula. 

In other areas of physics, he developed the theory of tides which 
bears his name, worked with Lavoisier on specific heat of solids, 
studied capillary action, surface tension, and electric theory, and with 
Legendre, introduced partial differential equations into the study of 
probability. He also developed and applied numerous solutions (poten- 
tial functions) of the Laplace equation. 

41 
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3.1 INTRODUCTION 

Real water waves propagate in a viscous fluid over an irregular bottom of 
varying permeability. A remarkable fact, however, is that in most cases the 
main body of the fluid motion is nearly irrotational. This is because the 
viscous effects are usually concentrated in thin “boundary” layers near the 
surface and the bottom. Since water can also be considered reasonably 
incompressible, a velocity potential and a stream function should exist for 
waves. To simplify the mathematical analysis, numerous other assumptions 
must and will be made as the development of the theory proceeds. 

3.2 BOUNDARY VALUE PROBLEMS 

In formulating the small-amplitude water wave problem, it is useful to 
review, in very general terms, the structure of boundary value problems, of 
which the present problem of interest is an example. Numerous classical 

Boundary conditions (B.C.) specified 

t I 
Region of interest (in general, t5B’c‘ can be any shape) 

X 

\ 
B.C. specified 

(a) 

Kinematic free surface 
boundary condition 

Dynamic free surface 
boundary condition 

Lateral 
(LBO 

I Velocity components I I 

Bottom boundary condition 
(kinematic requirement) 

(b) 

Figure 3.1 (a) General structure of two-dimensional boundary value problems. 
(Note: The number of boundary conditions required depends on the order of the 
differential equation.) (b) Two-dimensional water waves specified as a boundary 
value problem. 
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problems of physics and most analytical problems in engineering may be 
posed as boundary value problems; however, in some developments, this 
may not be apparent. 

The formulation of a boundary value problem is simply the expression 
in mathematical terms of the physical situation such that a unique solution 
exists. This generally consists of first establishing a region of interest and 
specifying a differential equation that must be satisfied within the region (see 
Figure 3.la). Often, there are an infinite number of solutions to the differen- 
tial equation and the remaining task is selecting the one or more solutions 
that are relevant to the physical problem under investigation. This selection 
is effected through the boundary conditions, that is, rejecting those solutions 
that are not compatible with these conditions. 

In addition to the spatial (or geometric) boundary conditions, there are 
temporal boundary conditions which specify the state of the variable of 
interest at some point in time. This temporal condition is termed an “initial 
condition.” If we are interested in water waves, which are periodic in space, 
then we might specify, for example, that the waves are propagating in the 
positive x direction and that at t = 0, the wave crest is located at x = 0. 

In the following development of linear water wave theory, it will be 
helpful to relate each major step to the general structure of boundary value 
problems discussed previously. Figure 3.lb presents the region of interest, the 
governing differential equations, and indicates in a general manner the 
important boundary conditions. 

3.2.1 The Governing Differential Equation 

With the assumption of irrotational motion and an incompressible 
fluid, a velocity potential exists which should satisfy the continuity equation 

o . u = o  (3.la) 

or 

O * V i $ = O  (3.lb) 

As was shown in Chapter 2, the divergence of a gradient leads to the Laplace 
equation, which must hold throughout the fluid. 

The Laplace equation occurs frequently in many fields of physics and 
engineering and numerous solutions to this equation exist (see, e.g., the book 
by Bland, 1961), and therefore it is necessary to select only those which are 
applicable to the particular water wave motion of interest. 

In addition, for flows that are nondivergent and irrotational, the 
Laplace equation also applies to the stream function. The incompressibility 
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or, equivalently, the nondivergent condition for two dimensions guarantees 
the existence of a stream function, from which the velocities under the wave 
can be determined. Substituting these velocities into the irrotationality 
condition again yields the Laplace equation, except for the stream function 
this time, 

or 

(3.3a) 

(3.3b) 

This equation must hold throughout the fluid. If the motion had been 
rotational, yet fiictionless, the governing equation would be 

V2y/ = 0 (3.4) 
where o is the vorticity. 

A few comments on the velocity potential and the stream function may 
help in obtaining a better understanding for later applications. First, as 
mentioned earlier, the velocity potential can be defined for both two and 
three dimensions, whereas the definition of the stream function is such that it 
can only be defined for three dimensions if the flow is symmetric about an 
axis (in this case although the flow occurs in three dimensions, it is 
mathematically two-dimensional). It therefore follows that the stream func- 
tion is of greatest use in cases where the wave motion occurs in one plane. 
Second, the Laplace equation is linear; that is, it involves no products and 
thus has the interesting and valuable property of superposition; that is, if 
4, and 42 each satisfy the Laplace equation, then 43 = A 4 ,  + B42 also will 
solve the equation, where A and B are arbitrary constants. Therefore, we can 
add and subtract solutions to build up solutions applicable for different 
problems of interest. 

3.2.2 Boundary Conditions 

Kinematic trorrndat-y c a n d i t h  A t w e t h e r  it is fixed, 
such as the bottom, or free, such as the water surface, which is free to deform 
under the influence of forces, certain physical conditions must be satisfied by 
the fluid velocities. These conditions on the water particle kinematics are 
called kinematic boundary conditions. At any surface or fluid interface, it is 
clear that there must be no flow across the interface; otherwise, there would 
be no interface. This is most obvious in the case of an impermeable fixed 
surface such as a sheet pile seawall. 

The mathematical expression for the kinematic boundary condition 
may be derived from the equation which describes the surface that consti- 
tutes the boundary. Any fixed or moving surface can be expressed in terms of 
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a mathematical expression of the form F(x,  y ,  z ,  t )  = 0. For example, for a 
stationary sphere of fixed radius a ,  F (x ,  y ,  z ,  t )  = x2 + y 2  + z2 - a2 = 0. If the 
surface vanes with time, as would the water surface, then the total derivative 
of the surface with respect to time would be zero on the surface. In other 
words, if we move with the surface, it does not change. 

= o = - + u - + v - + w -  (3.5a) 
at ax av a F l  a Z  on F ( x . y , r , f ) = ~  

aF aF dF W x ,  Y ,  z, 0 
Dt 

or 

- u .  V F = u .  nlVFI (3.5b) 

where the unit vector normal to the surface has been introduced as 
n = VF/ IVFI .  

aF --- 
at 

Rearranging the kinematic boundary condition results: 

where 

This condition requires that the component of the fluid velocity normal 
to the surface be related to the local velocity of the surface. If the surface does 
not change with time, then u - n = 0; that is, the velocity component normal 
to the surface is zero. 

Example 3.1 

Fluid in a U-tube has been forced to oscillate sinusoidally due to an oscillating 
pressure on one leg of the tube (see Figure 3.2). Develop the kinematic boundary 
condition for the free surface in leg A .  

Solution. The still water level in the U-tube is located at z = O.The motion of the free 
surface can be described by z = q(t) = a cos t ,  where a is the amplitude ofthe vanation 
of q. 

If we examine closely the motion of a fluid particle at the surface (Figure 3.2b), 
as the surface drops, with velocity w, it follows that the particle has to move with the 
speed of the surface or else the particle leaves the surface. The same is true for a rising 
surface. Therefore, we would postulate on physical grounds that 
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Oscillating pressure 

z = o  

(a) 

Figure 3.2 (a) Oscillating flow in a U-tube; (b) details of free surface. 

where dqfdt = the rate of rise or fall of the surface. To ensure that this is formally 
correct, we follow the equation for the kinematic boundary condition, Eq. (3.6), where 
F(z,  t )  = z - qt) = 0. Therefore, 

where n = Oi + Oj + 1 k, directed vertically upward and u = ui + v j  + wk, and carrying 
out the scalar product, we find that 

w = -  arl 
at 

which is the same as obtained previously, when we realize that dqfdt = aqfat, as q is 
only a function of time. 

The Bottom Boundary Condition (BBC). In general, the lower bound- 
ary of our region of interest is described as z = -h(x) for a two-dimensional 
case where the origin is located at the still water level and h represents the 
depth. If the bottom is impermeable, we expect that u - n = 0, as the bottom 
does not move with time. (For some cases, such as earthquake motions, 
obviously the time dependency of the bottom must be included.) 

The surface equation for the bottom is F(x, z) = z + h(x)  = 0. There- 
fore, 

u . n = O  (3.7) 

where 

dh - i + l k  
V F  dx 

(3.8) 
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Carrying out the dot product and multiplying through by the square root, we 
have 

dh 
d x  

u - + w = 0 on z = -h(x)  (3.9a) 

or 

(3.9b) 

For a horizontal bottom, then, w = 0 on z = -h. For a sloping bottom, we 
have 

dh w = -u - 
d x  

on z = -h(x)  

w dh 
u d x  
- = - -  (3.10) 

Referring to Figure 3.3, it is clear that the kinematic condition states that the 
flow at the bottom is tangent to the bottom. In fact, we could treat the bottom 
as a streamline, as the flow is everywhere tangential to it. The bottom 
boundary condition, Eq. (3.7), also applies directly to flows in three dimen- 
sions in which h is h(x ,  y).  

Kinematic Free Surface Boundary Condition (KFSBC). The free sur- 
face of a wave can be described as F(x ,  y ,  z ,  t )  = z - q(x, y ,  t )  = 0, where 
q(x, y ,  t )  is the displacement of the free surface about the horizontal plane, 
z = 0. The kinematic boundary condition at the free surface is 

on z = q(x, y, t )  (3.112 alllat u.n= 
J ( W W 2  + (WW2 + 1 

i 

Figure 3.3 Illustration of bottom boundary condition for the two-dimensional 
case. 
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Carrying out the dot product yields 

(3.1 lb) 

(3.1 lc) 

This condition, the KFSBC, is a more complicated expression than that 
obtained for (l), the U-tube, where the flow was normal to the surface and 
(2) the bottom, where the flow was tangential. In fact, inspection ofEq. (3.11~) 
will verify that the KFSBC is a combination of the other two conditions, 
which are just special cases of this more general type of condition.’ 

The boundary condi- 
tions for fixed surfaces arexelatively easy to prescribe, as shown in the 
preceding section, and they apply on the known surface. A distinguishing 
feature of fixed (in space) surfaces is that they can support pressure varia- 
tions. However, surfaces that are “free,” such as the air-water interface, 
cannot support variations in pressure2 across the interface and hence must 
respond in order to maintain the pressure as uniform. A second boundary 
condition, termed a dynamic boundary condition, is thus required on any 
free surface or interface, to prescribe the pressure distribution pressures on 
this boundary. An interesting effect of the displacement of the free surface is 
that the position of the upper boundary is not known a priori in the water 
wave problem. This aspect causes considerable difficulty in the attempt to 
obtain accurate solutions that apply for large wave heights (Chapter 11). 

As the dynamic free surface boundary condition is a requirement that 
the pressure on the free surface be uniform along the wave form, the 
Bernoulli equation [Eq. (2.92)] with p q  = constant is applied on the free 
surface, z = q(x, t ) ,  

Dynamic Free Surface Boundary Condition. 

P -_  + 1 (u2 + w’) + 3 + g z  = C(t) 
at 2 P 

(3.12) 

where p q  is a constant and usually taken as gage pressure, ptl  = 0. 

As noted previously, an addi- 
tional condition must be imposed on those boundaries that can respond to 
spatial or temporal variations in pressure. In the case of wind blowing across 

Conditions at “Responsive” Boundaries. 

’The reader is urged to develop the general kinematic free surface boundary condition for a wave 
propagating in the x direction alone. 
‘Neglecting surface tension. 
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a water surface and generating waves, if the pressure relationship were 
known, the Bernoulli equation would serve to couple that wind field with the 
kinematics of the wave. The wave and wind field would be interdependent 
and the wave motion would be termed “coupled.” If the wave were driven by, 
but did not affect the applied surface pressure distribution, this would be a 
case of “forced wave motion and again the Bernoulli equation would serve 
to express the boundary condition. For the simpler case that is explored in 
some detail in this chapter, the pressure will be considered to be uniform and 
hence a case of “free” wave motion exists. Figure 3.4 depicts various degrees 
of coupling between the wind and wave fields. 

Surface pressure distribution 
affected by interaction of 

__Jt Wind wind and waves 

X 

Translating pressure field 

p = atmospheric everywhere 

Figure 3.4 Various degrees of air-water boundary interaction and coupling to 
atmospheric pressure field: (a) coupled wind and waves; (b) forced waves due to 
moving pressure field; (c) free waves-not affected by pressure variations at air- 
water interface. 



50 Small-Amplitude Water Wave Theory Formulation and Solution Chap. 3 

The boundary condition for free waves is termed the “dynamic free 
surface boundary condition” (DFSBC), which the Bernoulli equation 
expresses as Eq. (3.13) with a uniform surface pressurep,: 

- + 5 + I [( 37 + ( $I2] + gz = C(t), z = ~(x ,  t )  (3.13) 
at p 2 ax 

where p,, is a constant and usually taken as gage pressure, p,, = 0, 
If the wave lengths are very short (on the order of several centimeters), 

the surface is no longer “free.” Although the pressure is uniform above the 
water surface, as a result of the surface curvature, a nonuniform pressure will 
occur within the water immediately below the surface film. Denoting the 
coefficient of surface tension as o’, the tension per unit length T is simply 

T = 0‘ (3.14) 

Consider now a surface for which a curvature exists as shown in Figure 
3.5. Denoting p as the pressure under the free surface, a free-body force 
analysis in the vertical direction yields 

T [-sin a J ,  + sin C Y ~ ~ + ~ X ]  + (p -pa) Ax + terms of order Ax2 = 0 
in which the approximation dq/dx = sin a will be made. Expanding by 
Taylor’s series and allowing the size of the element to shrink to zero yields 

(3.15) 

Thus for cases in which surface tension forces are important, the 
dynamic free surface boundary condition is modified to 

- dq5 - + p 2 __ (+’d2q -+- 1 [( *I2 + (?I2] + gz = C(t), z = ~ ( x ,  t )  (3.16) 
at p p ax2 2 ax 

which will be of use in our later examination of capillary water waves. 

Lateral Boundary Conditions. At this stage boundary conditions 
have been discussed for the bottom and upper surfaces. In order to complete 
specification of the boundary value problem, conditions must also be speci- 

x + Ax 
Figure 3.5 Definition sketch for 
surface element. 
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fied on the remaining lateral boundaries. There are several situations that 
must be considered. 

If the waves are propagating in one direction (say the x direction), 
conditions are two-dimensional and then “no-flow” conditions are appropri- 
ate for the velocities in the y direction. The boundary conditions to be 
applied in the x direction depend on the problem under consideration. If the 
wave motion results from a prescribed disturbance of, say, an object at x = 0, 
which is the classical wavemaker problem, then at the object, the usual 
kinematic boundary condition is expressed by Figure 3.6a. 

Consider a vertical paddle acting as a wavemaker in a wave tank. If the 
displacement of the paddle may be described as x = S(z ,  t) ,  the kinematic 
boundary condition is 

where 

as l i - - k  

z 

t Outgoing waves only - 

(b) 

Figure 3.6 (a) Schematic of wavemaker in a wave tank; (b) radiation condition 
for wavemaker problem for region unbounded in x direction. 
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or, carrying out the dot product, 

(3.17) 

which, of course, requires that the fluid particles at the moving wall follow 
the wall. 

Two different conditions occur at the other possible lateral boundaries: 
at a fixed beach as shown at the right side of Figure 3.6a, where a kinematic 
condition would be applied, or as in Figure 3.6b, where a “radiation” 
boundary condition is applied which requires that only outgoing waves occur 
at infinity. This precludes incoming waves which would not be physically 
meaningful in a wavemaker problem. 

For waves that are periodic in space and time, the boundary condition 
is expressed as a periodicity condition, 

( 3.18a) 

(3.18 b) 
+(x, 0 = +(x + L,  t )  

+<x, 0 = +(x, t + r )  

where L is the wave length and T is the wave period. 

3.3 SUMMARY OF THE TWO-DIMENSIONAL PERIODIC 
WATER WAVE BOUNDARY VALUE PROBLEM 

The governing second-order differential equation for the fluid motion under 
a periodic two-dimensional water wave is the Laplace equation, which holds 
throughout the fluid domain consisting of one wave, shown in Figure 3.7. 

v2$J = 0, 0 < x < L, - h < z < V  (3.19) 

I V Z $ =  V Z * = O  I , -  [ Periodic lateral boundary 
. .._>:.:̂ .. I n 7  DO, 

[ condition (PLBC) 

PLBC 1 

Figure 3.7 Boundary value problem specification for periodic water waves. 
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At the bottom, which is assumed to be horizontal, a no-flow condition applies 
(BBC): 

w = O  o n z = - h  (3.20a) 

or 

a4 - 0  o n z = - h  
az 

(3.20b) 

At the free surface, two conditions must be satisfied. The KFSBC, Eq. (3.11c), 

(3.1 lc) 

The DFSBC, Eq. (3.13), withp, = 0, 

- !!$ + 1 [ (gy + ($71 + gq = C(t) on z = rt(x, t )  (3.13) 
at 2 

Finally, the periodic lateral boundary conditions apply in both time and 
space, Eqs. (3.18). 

( 3.1 Sa) 

(3.18b) 

3.4 SOLUTION TO LINEARIZED WATER WAVE 
BOUNDARY VALUE PROBLEM FOR A HORIZONTAL 
BOTTOM 

In this section a solution is developed for the boundary value problem 
representing waves that are periodic in space and time propagating over a 
horizontal bottom. This requires solution of the Laplace equation with the 
boundary conditions as expressed by Eqs. (3.19), (3.20b), (3.11c), (3.13), and 
(3.18). 

3.4.1 Separation of Variables 

A convenient method for solving some linear partial differential equa- 
tions is called separation of variables. The assumption behind its use is that 
the solution can be expressed as a product of terms, each of which is a 
function of only one of the independent variables. For our case, 

$(x, z, t )  = X(X) .  Z(Z). T(t)  (3.21) 

where X(x) is some function that depends only on x, the horizontal coordi- 
nate, Z(z)  depends only on z, and T(t)  varies only with time. Since we know 
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that $I must be periodic in time by the lateral boundary conditions, we can 
specify T ( t )  = sin at. To find a, the angular frequency of the wave, we utilize 
the periodic boundary condition, Eq. (3.18b). 

sin at = sin oft + T )  

or 
sin at = sin at cos aT + cos at sin aT 

which is true for aT = 2a or a = 2njT. Equally as likely, we could have chosen 
cos at or some combination of the two: A cos at + B sin at. Since the 
equations to be solved will be linear and superposition is valid, we can defer 
generalizing the solution in time until after the solution components have 
been obtained and discussed. The velocity potential now takes the form 

&x, z, t )  = X ( x ) .  Z(z) .  sin at (3.22) 

Substituting into the Laplace equation, we have 

sin at = 0 d2Z(z) -. d2x(x) z ( z )  . sin at + ~ ( x )  -. 
dx2 dz2 

Dividing through by 4 gives us 

(3.23) 

Clearly, the first term of this equation depends on x alone, while the second 
term depends only on z. If we consider a variation in z in Eq. (3.23) holding x 
constant, the second term could conceivably vary, whereas the first term 
could not.This would give a nonzero sum in Eq. (3.23) and thus the equation 
would not be satisfied. The only way that the equation would hold is if each 
term is equal to the same constant except for a sign difference, that is, 

d2X(x) jdx2 = -k2 
X(X) 

d2Z(z)/dz2 

Z ( Z )  
= +k2 

(3.24a) 

(3.24b) 

The fact that we have assigned a minus constant to the x term is not of 
importance, as we will permit the separation constant k to have an imaginary 
value in this problem and in general the separation constant can be complex. 

Equations (3.24) are now ordinary differential equations and may be 
solved separately. Three possible cases may now be examined depending on 
the nature of k; these are for k real, k = 0, and k a pure imaginary number. 
Table 3.1 lists the separate cases. (Note that if k consisted ofboth a real and an 
imaginary part, this could imply a change of wave height with distance, 
which may be valid for cases of waves propagating with damping or wave 
growth by wind.) 
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TABLE 3.1 Possible Solutions to the Laplace Equation, Based on Separation 
of Variables 

Character of k, the Ordinary Differential 
Separation Constant Equations Solutions 

Real 

k2 > 0 

e+ k2X = 0 
dx2 

X(x) = A cos kx + B sin kx 

_ _  k 2 Z = 0  
dz2 

Z(z) = Cek' + De-'" 

k = O  -= 0 
dx2 
d2Z -=o  
dz2 

X(X) =AX + B 

Z(Z) = CZ + D 

I k I = magnitude of k e+ l k I 2 Z = 0  Z(z)=Ccos I k l z + D s i n  l k l z  
dz2 

3.4.2 Application of Boundary Conditions 

The boundary conditions serve to select, from the trial solutions in 
Table 3.1, those which are applicable to the physical situation of interest. In 
addition, the use of the boundary conditions allows determination of some of 
the unknown constants (e.g., A ,  B, C, and D). 

Lateral periodicity condition. All solutions in Table 3.1 satisfy the 
Laplace equation; however, some of them are not periodic in x; in fact, the 
solution is spatially periodic only if k is real3 and nonzero. Therefore, we have 
as a solution to the Laplace equation the following velocity potential: 

$(x, z, t )  = (A cos kx + B sin kx) (Cekz + D&) sin ot (3.25) 

To satisfy the periodicity requirement (3.18a) explicitly, 

A cos kx + B sin kx = A  cos k(x + L) + B sin k(x + L )  

= A(cos kx cos kL - sin kx sin kL) 
+ B(sin kx cos kL + cos kx sin kL) 

which is satisfied for cos kL = 1 and sin kL = 0; which means that kL = 27c or 
k (called the wave number) = 27c/L. 

Using the superposition principle, we can divide $ into several parts. 
Let us keep, for present purposes, only $ = A cos kx(Cekz + sin at. Lest 

'Fork = 0, A is zero. This ultimately yields c$ = B sin ct. 
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this be thought of as sleight of hand, the B sin kx term will be added back in 
later by superposition. 

Bottom boundary condition for horizontal bottom. Substituting in the 
bottom boundary condition yields 

a+ 
az 

w = - - = -A cos kx(kCek" - kDe-&') sin at = 0 on z = -h (3.26) 

or 
-Ak cos kx(Ce-kh - Dekh) sin at = 0 

For this equation to be true for any x and t ,  the terms within the parentheses 
must be identically zero, which yields 

C = DeZkh 

The velocity potential now reads 

c$ = A cos kX(DeZkh e" + De-k') sin at 

or, factoring out Dekh, 

+ = ~ ~ ~ k h  cos &(ek(h+4 + e-k(h+z) ) sin at 

or 
+ = G cos kx cosh k(h + z )  sin at (3.27) 

where G = 2ADekh, a new constant. 

Dynamic free surface boundary condition. As stated previously, the 
Bernoulli equation can be used to specify a constant pressure on the surface 
of the water.Yet the Bernoulli equation must be satisfied on z = q(x, t ) ,  which 
is a priori unknown. A convenient method used to evaluate the condition, 
then, is to evaluate it on z = q(x, t )  by expanding the value of the condition at 
z = 0 (a known location) by the truncated Taylor series. 

(Bernoulli equation),,, = (Bernoulli equation),,o 
(3.28) d + q - (Bernoulli equation),,o +. . . 

az 
or 

a+ u 2 +  w2 
gz--+- 

at 

wherep=Oonz=q.  
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Now for infinitesimally small waves, r] is small, and therefore it is 
assumed that velocities and pressures are small; thus any products of these 
variables are very small: r ]  << 1, but q2 << r] ,  or ur] << r]. If we neglect these 
small terms, the Bernoulli equation is written as 

This process is called linearization. We have retained only the terms that are 
linear in our  variable^.^ The resulting linear dynamic free surface boundary 
condition relates the instantaneous displacement of the free surface to the 
time rate of change of the velocity potential, 

If we substitute the velocity potential, as given by Eq. (3.27), 

C(t) 1 cos kx cos ot + - - - [Go cosh kh 

(3.29) 

(3.30) 

L g l  g 
Since by our definition r ]  will have a zero spatial and temporal mean, 
C(t) = 0.5The terms within the brackets are constant; therefore, r ]  is given as 
a constant times periodic terms in space and time plus a function of time. We 
can rewrite r ]  as 

H 
2 

r] = - cos kx cos ot (3.31) 

The last substitution came about by comparing the analytical representation 
of r ]  to the physical model, as shown in Figure 3.7. G can now be obtained 
from 

f& 
2a cosh kh 

G =  

The velocity potential is now 

(3.32) 

The velocity potential is now prescribed in terms of H, o, h, and k. The 

4Linear in the sense that variables are only raised to the first power. 
'Had we not used p(q) = 0, how would C(t) be changed? 
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first three of these would be available from the data or alternatively the wave 
length might be known and o unknown. 

Kinematic free surface boundary condition. The remaining free sur- 
face boundary condition will be utilized to establish the relationship between 
nand k. Using theTaylor series expansion to relate the boundary condition at 
the unknown elevation, z = q(x, t )  to z = 0, we have 

Again retaining only the terms that are linear in our small parameters, q, u, 
and w, and recalling that q is not a function of z, the linearized kinematic free 
surface boundary condition results: 

or 

Substituting for 4 and q gives us 

H gk sinh k(h + z) 
2 o cosh kh 

cos kx sin at I z=o 

= - H  ocos kx sin ot 
2 

or 

(3.3 3a) 

(3.33 b) 

(3.34) 

Rewriting this equation as d h / g k h  = tanh kh and plotting each term versus 
kh for a particular value of d h / g  yields Figure 3.8. The solution is deter- 
mined by the intersection of the two curves. Therefore, the equation has only 
one solution or equivalently one value of k for given values of o and h.  

Noting that by definition a propagating wave will travel a distance of 
one wave length L,  in one wave period T ,  and recalling that a = 2z /T and 
k = 2n/L, it is clear that the speed of wave propagation C can be expressed 
from Eq. (3.34) as (FY = g 2 tanh kh 

L 
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2.0 

1 .o 

0 
0 1 .o 2.0 3.0 

kh 

1 .o r r  
1 .o 2.0 3.0 

0- 
0 

Figure 3.8 Illustrating single root to dispersion equation. 

or 

2 L2 g C =-=-tanhkh 
T2 k 

(3.35) 

A similar algebraic manipulation of Eq. (3.34) will yield a relationship for the 
wave length, 

g 2nh L = -T2 tanh - 
2n L 

(3.36) 

In deep water, kh is large and tanh 2nhlL = 1.0; therefore, L = Lo = gT2/2n, 
where the zero subscript is used to denote deep water values. In general, then, 

L =Lo  tanh kh (3.37) 

Thus the wave length continually decreases with decreasing depth €or a 
constant wave period. 

Equations (3.34), (3.35), and (3.37), which are really the same equation 
expressed in slightly different variables, are referred to as the “dispersion” 
equation, because they describe the manner in which a field of propagating 
waves consisting of many frequencies would separate or “disperse” due to the 
different celerities of the various frequency components. 

The wave speed, or celerity, C, has been defined as C = LIT. Therefore, 

(3.38a) L O  

T 
C = - tanh kh 
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or 

C = Co tanh kh (3.38b) 

since, as will be shown later, the wave period does not change with depth. 
Waves of constant period slow down as they enter shallow water. Figure 3.9 
presents, as a function of h/Lo,  the ratio C/Co (= L/Lo = ko/k)  and a number 
of other variables commonly occuring in water wave calculations. This figure 
provides a convenient graphical means to determine intermediate and shal- 
low water values of these variables. 

3.4.3 Summary of Standing Waves 

One solution of the boundary value problem for small-amplitude 
waves has been found to be 

c p - -  H g cash k(h + z) cos kx sin 
2 a cosh kh 

= cos kx cos at 
g at r=O 2 

(3.39) 

where d = gk tanh kh. 
The wave form is shown in Figure 3.10. At at = n/2, the wave form is 

zero for all x, at at = 0, it has a cosine shape and at other times, the same 
cosine shape with different magnitudes. This wave form is obviously a 
“standing wave,” as it does not propagate in any direction. At positions 
kx = n/2, and 3n/2, and so on, nodes exist; that is, there is no motion of the 
free surface at these points. Standing waves often occur when incoming 
waves are completely reflected by vertical walls. At which phase position 
would the wall be located? See Figure 4.6 for a hint. 

Figure 3.10 Water surface displacement associated with a standing water wave. 
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3.4.4 Progressive Waves 

Consider another standing wave, 

(3.40) 

This velocity potential is also a solution to the Laplace equation and all the 
boundary conditions, as may be verified readily. It is, in fact, one of the 
solutions that we discarded. It differs from the previous solution in that the x 
and t terms are 90" out of phase. The associated water surface displacement is 

q(x,t)=-- = - -  sin k~ sin at 
g 7 at z=o 2 

(3.41) 

as determined from the linearized DFSBC. Remembering that the Laplace 
equation is linear and superposition is valid, we can add or subtract solutions 
to the linearized boundary value problem to generate new solutions. If we 
subtract the present velocity potential in Eq. (3.40) from the previous 
solution we had, Eq. (3.32), we obtain 

This new velocity potential has a water surface elevation, given as 

H 
= - cos (kx - at) 

g at z=o 2 

(3.42) 

(3.43) 

Had we just subtracted the two q(x, t )  corresponding to the two velocity 
potentials, we would have had 

H H .  H 
2 2 2 

q(x, t )  = - cos kx cos at + - sin kx sin at = - cos (kx - at) 

which is the same result. This should not have been a surprise, as the total 
boundary value problem has been linearized and superposition is valid for all 
variables in the problem. 

Examining the equation for the water surface profile, it is clear that this 
wave form moves with time. To determine the direction of movement, let us 
examine the same point on the wave form at two different time values, 
t l  and t2. The x location of the point also changes with lime. In Figure 3.11, 
the locations of the point at time t I and t Z  are shown. The speed at which the 
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X 

Figure 3.11 Characteristics of a propagating wave form. 

wave propagated from one point to the other is C, given as 
x2 -XI C=- 
t 2  - tl 

We further point out that the same point on the wave crest implies that we are 
examining the wave at the same phase, that is, at constant values of the 
argument of the trigonometric function ofx and t .  Therefore, we expect that 

or, in fact, 

or 
X I  -x2  x2-x I  -C=-=- a 2nfT -=-- 

k 2nfL t l  - t 2  t 2 -  t l  

as before. Therefore, if t 2  > t l ,  x2 > x i ,  the wave form propagates from left to 
right. Had the argument of the trigonometric function been (kx + at), the 
waves would propagate from right to left (i.e., in the negative x direction). 

Simplifications for shallow and deep water. The hyperbolic functions 
have convenient shallow and deep water asymptotes, and often it is helpful to 
use them to obtain simplified forms of the equations describing wave 
motion. For example, the function cosh kh, which appears in the denomina- 
tor for the velocity potential, is defined as 

ekh + e-kh 
cash kh = 

2 
For a small argument, the exponential function e" can be expanded to z = kh 
in a Taylor series about zero as 
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or 

e k h = l + k h + -  (kh)*+ . . * 

2 

Of course, ckh would then equal 

. .  

Therefore, for small kh, 

For large kh, cosh kh = ekh/2 as e-kh becomes quite small. Table 3.2 presents 
the asymptotes. 

TABLE 3.2 Asymptotic Forms of Hyperbolic Functions 

Function Large kh Small kh 

cosh kh 
sinh kh 
tanh kh 

$ h / 2  1 
PI2 kh 

kh 1 

It is worthwhile to distinguish the regions within which these asymp- 
totic approximations become valid. Figure 3.12 is a plot of hyperbolic 
functions together with the asymptotes,& = kh, f i  = 1.O,f3 = ekh/2. The per- 
centage values presented in Figure 3.12 represent, for particular ranges of kh, 
the errors incurred by using the asymptotes rather than the actual value of the 
function. The largest error is %o. The lower scale on the figure is the relative 
depth. Note that due to this dimensionless representation a 200-m-long wave 
in 1000 m of water has the same relative depth as a 0.2-m wave in 1 m of 
water. Limits for three regions are denoted in the figure: kh < n/10, 
n/10 < kh < n, and kh > n. These regions are defined as the shallow water, 
intermediate depth, and the deep water regions, respectively. It may be 
justified to modify the limits of these regions for particular applications. 

The dispersion relationship in shallow and deep water. 
sion relationship for shallow water reduces in the following manner: 

The disper- 

d = gk tanh kh = gk’h 



tanh kh 

- sinh kh 

A h  

0 T/lO 1 2 
kh 

3 7 r  

Intermediate depth 

(long waves) (short waves) 
Shallow water waves waves Deep water waves 

Figure 3.12 Relative depth and asymptotes to hyperbolic functions. 
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or 

and 

C=@ (3.44) 

The wave speed in shallow water is determined solely by the water depth. 
Recall that the definition of shallow water is based on the relative depth. For 
the ocean, where h might be - 1 km, a wave with a length of 20 km is in 
shallow water. For example, tsunamis, which are waves caused by earth- 
quake motions of the ocean boundaries, have lengths much longer than this. 
The speed in the ocean basins for long waves would be about 100m/s 
(225 mph). 

For deep water, kh > n, 
d = gk tanh kh = gk 

L=Lo 

where 

and 

5.12T2 (English system of units, ft) 
1.56T2 (SI units, meters) 

(3.45) 

L ~ = . E  ~ 2 =  
2 R  

5.12T (English system of units, ft/s) 
1.56T (SI units, m/s) 

Co=-T= g 
2n 

3.4.5 Waves with Uniform Current UO 

As an example of the procedure just followed for the solution for 
progressive and standing waves, it is instructive to repeat the process for a 
different case: water waves propagating on a current. For example, for waves 
in rivers or on ocean currents, a first approximation to the waves and 
currents is to assume that the current is uniform over depth and horizontal 
distance and flowing in the same direction as the waves. 

An assumed form of the velocity potential will be chosen to represent 
the uniform current Uo and a progressive wave, which satisfies the Laplace 
equation. 

4 = -UG + A CoSh k(h + Z )  cos (kx - at) (3.46) 

The form of this solution guarantees periodicity of the wave in space and 
time and satisfies the no-flow bottom boundary condition. It remains neces- 
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sary to satisfy the linearized form of the KFSBC and the DFSBC. Yet we 
cannot just apply the forms that we arrived at earlier, as errors would be 
incurred because the velocity Uo is no longer necessarily small; we must 
rederive the linear boundary conditions. 

The dynamic free surface boundary condition. Again, we will expand 
the Bernoulli equation about the free surface on which a zero gage pressure is 
prescribed. 

(3.47) 

+ q -  -(u’+w2)+gz--  + * .  . =C(t )  
az a i‘ 2 ::Izd 

Now the horizontal velocity is 

u = - - = u  ” + A k  cosh k(h + z)  sin (kx - at)  
ax 

Therefore, the u2 term is 

u2 = Ui  + U k U o  cosh k(h + z)  sin (kx - at)  

+ A2k2 cosh2 k(h + z )  sin’ (la - at )  

For infinitesimal waves, it is expected that the wave-induced horizontal 
velocity component would be small (i.e., Ak small), and therefore (Ak)’ 
would be much smaller. We will then neglect the last term in the equation 
above. 

The linearized Bernoulli equation [i.e., dropping all terms of order 
(Ak)’], evaluated on z = 0, is now 

+[ v2, + UkUo cosh kh sin (kx - at)]  

- A a  cosh kh sin (kx - at )  + gq = C(t) 

or 

cosh kh sin (kx - at )  + C(t) 
2g g 

(3.48) 

To determine the Bernoulli term C(t), we average both sides of Eq. (3.48) 
over space. Since the space average of q(x, t )  is taken to be zero, it is clear that 
C(t) = constant = G / 2 g .  Also, if we define a water surface displacement, 
q(x, t )  = H / 2  sin (kx - at), then 

A =  gH (3.49) 
20(1 - Uo/C) cash kh 
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The kinematic free surface boundary condition. The remaining 
boundary condition to be satisfied is the linearized form of the KFSBC. 

7 z=rl all a4arl a 4  
at ax ax az 

Expanding about the still water level, we have 

or, retaining only the linear terms, 

(3.50) 

Substituting for q and 4 yields the following dispersion equation for the 
case of a uniform current Uo: 

gk tanh kh d =  
(1 - uo/c)2 

or, another form can be developed by using the relationship Q = kC: 

02 1 -- =gktanhkh ( ?)' (/Okj2 = gk tanh kh d(1 - 
a /  - 

or 

Q = Uok + Jm 

(3.51) 

(3.52) 

The second term on the right-hand side is the angular frequency formula 
obtained without a current. 

In terms of the celerity, the dispersion relationship can be written as 

(C - U0)* = g - tanh kh (3.53) 
k 

It is worthwhile noting that it is possible to solve the preceding problem 
of a uniform current simply by adopting a reference frame which moves with 
the current Uo. With reference to our new coordinate system, there is no 
current and the methods, equations, and solutions obtained are therefore 
identical to those obtained originally for the case of no current. 

When relating this moving frame solution for a stationary reference 
system, it is simply necessary to recognize that (1) the wavelength is the same 
in both systems; (2) the period T relative to a stationary reference system is 
related to the period T' relative to the reference system moving with the 
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current Uo by 

(3.54) 

where C' is the speed relative to the moving observer; and (3) the total water 
particle velocity is Uo + u,, where u, is the wave-induced component. It is 
noted that in the case of arbitrary depth, when T and h are given, it is 
necessary to solve for the wave length from Eq. (3.54) by iteration.6 

For shallow water, we have, from Eq. (3.53), 

L 
T 

c=-= uo+ &% (3.55) 

That is, since the celerity of the wave is independent of wave length, it is 
simply increased by the advecting current Uo. For deep water, the 
corresponding result is determined by solving Eq. (3.53) for C using the 
quadratic solution and replacing k with o/C, that is, 

(3.56) 

For small currents with respect to C (i.e., Uo < g/a), 

g c 1: - + 2u0 
0 

Capillary waves. As indicated in Eq. (3.16), the surface tension at the 
water surface causes a modification to the dynamic free surface boundary 
condition. To explore the effects of surface tension, we proceed as before by 
choosing a velocity potential of the form 

6 = A cosh k(h + z )  sin (kx - ol) (3.57) 

which is appropriate for a progressive water wave, satisfies the Laplace 
equation, and all boundary conditions except those at the upper surface. The 
surface displacement associated with Eq. (3.57) will be of the form 

H 
2 

(3.58) 

Substituting Eqs. (3.57) and (3.58) into the linearized form of Eq. (3.16), and 
employing the linearized form of the kinematic free surface boundary 
condition, Eq. (3.33a), the dispersion equation is found to be 

q = - cos (kx - a) 

(3.59) 

6This technique has been applied to nearly breaking waves by Dalrymple and Dean (1975). 
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and it can be seen that the effect of surface tension is to increase the celerity 
for all wave frequencies. The effect of surface tension can be examined most 
readily by considering the case of deep water waves. 

(3.60) 

That is, the contributions due to the speed of short waves (large wave 
numbers) is small due to the effect of gravity and large due to the effect of 
surface tension. There is a minimum speed C, at which waves can propagate, 
found in the usual way: 

_-  - 0  ac 
ak 

which leads to 

k, = v$ 
(3.61) 

(3.62) 

(3.63) 

That is, the contributions from gravity and surface tension to C i  are equal. 
For a reasonable value of surface tension, a’ = 7.4 x lo-* N/m, C, N 23.2 cm/s, 
which occurs at a wave period of approximately 0.074 s. Figure 3.13 presents 

2 

ty contribution 

0 1 2 3 4 
k - 

k m  

Figure 3.13 Capillary and gravitational components of the square of wave celer- 
ity in deep water. 
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the relationship 

(3.64) 

3.4.6 The Stream Function for Small-Amplitude 
Waves 

For convenience, the velocity potential has been used to develop the 
small-amplitude wave theory, yet often it is convenient to use the stream 
function representation. Therefore, we can use the Cauchy-Riemann equa- 
tions, Eqs. (2.82), to develop them from the velocity potentials. 

Progressive waves. 

cos (kx - ot) H g sinh k(h + z )  
2 a cosh kh 

v/(x, 2, t )  = - - - 

(3.65) 

(3.66) 

It is often convenient for a progressive wave that propagates without 
change of form to translate the coordinate system horizontally with the speed 
of the wave, that is, with the celerity C, as this then gives a steady flow 
condition. 

H g sinh k(h + z )  cos kx 
2 o cosh kh 

v / = c z - - -  

Standing waves. From before, 

sin kx sin at H g sinh k(h + z )  
2 a cosh kh v / = - - -  

(3.67) 

(3.68) 

(3.69) 

The streamlines and velocity potential for both cases are shown in Figure 
3.14. The streamlines and potential lines are lines of constant v/ and 4. 

3.5 APPENDIX: APPROXIMATE SOLUTIONS TO THE 
DISPERSION EQUATION 

The solution to the dispersion relationship, Eq. (3.34), fork is not difficult to 
obtain for given a and h. However, since the relationship is a transcendental 
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_ _ _ _  Streamlines 
Velocity potential 

Progressive wave, Progressive wave, Standing wave, 
stationary reference reference frame moving stationary reference 

frame with speed of  wave frame 

Figure 3.14 Approximate streamlines and lines of constant velocity potential for vari- 
ous types of wave systems and reference frames. 

equation, in that it is not algebraic, graphical (see Figure 3.8) and iterative 
techniques are used (see Problem 3.15). 

Eckart (1951) developed an approximate wave theory with a corre- 
sponding dispersion relationship, 

This can be solved directly for k and generally is in error by only a few 
percent. This equation therefore can be used as a first approximation to k for 
an iterative technique or can be used to determine k directly if accuracy is not 
a paramount consideration. 

Recently, Hunt (1979) proposed an approximate solution that can be 
solved directly for kh: 

( k h ) 2 = y 2 +  Y 

1 + C dnyn 
n=l 

where y = d h / g  = koh and d l  = 0.666. . . , d2 = 0.355. . . , dj = 0.1608465608, d4 
= 0.0632098765, ds = 0.0217540484, and d6 = 0.0065407983. The last digits in 
dl and d2 are repeated seven more times. This formula can be conveniently 
used on a programmable calculator. 

The wave celerity was also obtained 

C2 
- = [y + (1 + 0.6522~ + 0 . 4 6 2 2 ~ ~  + 0 . 0 8 6 4 ~ ~  + 0.0675~~)-~]-'  
gh 

which is accurate to 0.1% for 0 < y < co. 
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PROBLEMS 

3.1 The linearization of the kinematic and dynamic free surface boundary condi- 
tions involved neglecting nonlinear terms. Show, for both the conditions, that 
this linearization implies that 

q.. 1 
L 

3.2 Near the bow of a moving submarine, the hull can be represented as a moving 
parabola, 

D(z -A)’  = -(x - Ut) 

where U is the speed of the submarine, A represents the depth of the centerline 
of the submarine below the free surface, and D is a constant. 
(a) Plot the hull shape at t = 0 and t = 1 s if the submarine is moving at 2 m/s. 
(b) Determine the kinematic boundary condition at the hull. 

3.3 The equation for the stationary boundary c(x) of an incompressible fluid is 

( (x )  = Ae-K” 

2 

t 

The horizontal velocity component may be regarded to be approximately 
uniform in the z direction. If u(x=O) = 40cm/s, A = 30cm, and 
K = 0.02 cm-’, calculate w at the upper boundary for x = 50 cm. 
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3.4 The equation for the upper moving boundary L(x, t) of an incompressible 
fluid is 

c,,(x, t )  = 

The lower boundary Cr is expressed by 

Cdx, t )  = 0 

A =30cm 

k = 0.02 cm-' 

M = 0.1 s-' 

(a) Sketch the boundaries for t = 0. 
(b) Discuss the motional characteristics of the upper boundary (i.e., speed and 

(c) The horizontal velocity component (u )  may be regarded to be approxi- 
direction). 

mately uniform in the z direction. If 

u(x = 0, t = 10 s) = 40 cm/s 

calculate w at the upper boundary for x = 50 cm and t = 10 s. 

3.5 Using separation of variables, solve in cylindrical coordinates the problem of 
steady flow past a cylinder. Given Laplace's equation 

1 1 4rr + - +r + - 4- = 0 
r r2 

in which the subscripts denote partial differentiation with respect to the 
subscripted variable. The boundary conditions are 

in two dimensions 

4 = Ur cos 8 at r large 

and 

4, I r-a = O 

3.6 A two-dimensional horizontal flow is described by 

&x, Y )  = w2 - Y 2 )  
Find the point ofmaximum pressure i fp  = 0 at (x,  y )  = (1, 1). 

A wave field is observed by satellite. The wave lengths are determined to be 
312 m in deep water and 200 m over the continental shelf. What is the shelf 
depth? 

Formulate the boundary value problem for the situation below, which 
represents a model to study the effects of waves on a harbor with a narrow 
entrance. The stroke S ofthe wavemaker is considered to be small compared to 
the depth h. 

3.7 

3.8 
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Flaptype wavemaker 
(simple harmonic 

motion) 

f h 3  

Elevation view 

3.9 Set up, but do not solve, the complete two-dimensional ( x ,  z ,  t )  boundary value 
problem as illustrated, which was designed to simulate earthquake motions of 
the continental shelf. The sloping bottom oscillates with a period T and has an 
amplitude a. State all assumptions. 

\- 

Neglect corner effects 



76 Small-Amplitude Water Wave Theory Formulation and Solution Chap. 3 

3.10 A horizontal cylindrical wavemaker is oscillating vertically in the free surface. 
Examining the two-dimensional problem shown below, develop the kinematic 
boundary condition for the fluid at the cylinder wall. Discuss the results. 

t = O  T I = -  
4 

3T t = -  
4 

where T is period of oscillation. 
3.11 The stream function for a progressive small-amplitude wave is 

H g sinh k(h + z )  cos (h - at) w = - - -  2 u cosh kh 

Draw the streamlines for t = 0, when T = 5 s, h = 10 m, and H = 2.0 m. 
3.12 You are on a ship (100 m in length) on the deep ocean traveling north. The 

(regular) waves are propagating north also and you note two items of informa- 
tion: (1) when the ship bow is positioned at a crest, the stern is at a trough, and 
(2) a different crest is positioned at the bow every 20 s. 
(a) Do you have enough information to determine the ship speed? 
(b) Ifthe answer to part (a) is “no,” what additional item(s) ofinformation are 

(c) If the answer to part (a) is “yes,” what is the ship speed? 
3.13 A tsunami is detected at 12:OO h on the edge of the continental shelf by a 

warning system. At what time can the tsunami be expected to reach the 
shoreline? 

required? 

Warning system sensor -- 
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3.14 A rigid sinusoidal form is located as shown in the sketch. The form is forced to 
move in the +x direction at speed V. 
(a) Derive an expression for the velocity potential for the water motion 

induced by the moving form. 
(b) Evaluate p c  - p ,  for the following cases: 

(1) V2 < g tanh kh 
k 

(2) V2 = g tanh kh 
k 

(3) V2 > tanh kh 
k 

where p c  and p ,  denote the pressure just below the form at the crest and 
trough, respectively. 

(c) Discuss the special significance of b(2). 

l h  
3.15 Develop an iterative technique to solve the dispersion relationship for k given 

u and h. Note: It is somewhat easier to first solve for kh. (Hint: A Newton- 
Raphson technique could be used.) 

3.16 Determine the celerity of a deep water wave on a current equal to 50 cm/s and 
T = 5 s. What is the wave period seen by an observer moving with the current? 

3.17 Develop the boundary value problem for small-amplitude waves in terms of 
the pressure, assuming that Euler's equations are valid and the flow is incom- 
pressible. 



ve 
ertie 

Dedication 

SIR GEORGE BIDDELL AIRY 

Sir George Biddell Airy (1801-1892) was an astronomer who worked in a 
variety of areas of science, as did his contemporary and personal 
acquaintance, Laplace. His major work with respect to this book is his 
development of small-amplitude water wave theory published in an 
article in the Encyclopedia Metropolitan. 

Airy ‘was born in Alnwich, Northumberland, England, and 
attended Trinity College, Cambridge, from 1819 to 1823. In 1826 he was 
appointed the Lucasian Chair of Mathematics at Cambridge (once held 
by Isaac Newton). At that time he worked in optics and drew a great deal 
of attention to the problem of astigmatism, a vision deficiency from 
which he suffered. 

In 1828 he was named the Plumian Professor of Astronomy and 
Director of the Cambridge Observatory, He became the Astronomer 
Royal in 1835, a position he held for 46 years. During that time, he and 
the observatory staff reduced all measurements made by the observa- 
tory between 1750 and 1830. 

His research (over 377 papers) encompassed magnetism, tides, 
geography, gravitation, partial differential equations, and sound. In 1867 
his paper on suspension bridges received the Telford Medal of the 
Institution of Civil Engineers. 

His Numerical Theory of Tides was published in 1886 despite the 
presence of several inexplicable errors. He attempted (unsuccessfully) 
to resolve these until 1888. He died in 1892. 

7 8  
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4.1 INTRODUCTION 

The solutions developed in Chapter 3 for standing and progressive small- 
amplitude water waves provide the basis for applications to numerous 
problems of engineering interest. For example, the water particle kinematics 
and the pressure field within the waves are directly related to the calculation 
of forces on bodies. The transformation of waves as they propagate toward 
shore is also important, as in many cases coastal engineering design involves 
the forecasting of offshore wave climates or the use of offshore data, for 
example, those obtained from ships. It is obviously necessary to be able to 
determine any modifications that occur to these waves as they encounter 
shallower water and approach the shore. 

4.2 WATER PARTICLE KINEMATICS FOR PROGRESSIVE 
WAVES 

Consider a progressive wave with water surface displacement given by 

The associated velocity potential is 

By introducing the dispersion relationship, d = gk tanh kh, this can be 
written as 

4.2.1 Particle Velocity Components 

The horizontal velocity under the wave is given by definition, Eq. 
(2.68), as 

or 

(4.3a) 

(4.3b) 
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The local horizontal acceleration is then 

du H cosh k(h + z) 
-= -  sin (kx - at) 
at 2 sinh kh 

and the vertical velocity and local acceleration are 

a4 H sinh k(h + z) sin (kx - at) w = - - - -  _ -  a 
dz 2 sinh kh 

dw H sinh k(h + z) 
at 2 sinh kh 
_ -  --- cos (kx - at) 

(4.4) 

(4.5) 

Examining the horizontal and vertical velocity components as a func- 
tion of position, it is clear that they are 90" out of phase; the extreme values of 
the horizontal velocity appear at the phase positions (kx - at) = 0, n, . . . 
(under the crest and trough positions), while the extreme vertical velocities 
appear at 7r/2,3n/2,. . . (where the water surface displacement is zero). 

The vertical variation of the velocity components is best viewed by 
starting at the bottom where k(h + z )  = 0. Here the hyperbolic terms involv- 
ing z in both the u and w velocities are at their minima, 1 and 0, respectively. 
As we progress upward in the fluid, the magnitudes of the velocity com- 
ponents increase. In Figure 4.1, the velocity components are plotted for four 
phase positions. The accelerations are such that the maximum vertical 
accelerations occur as the horizontal velocities are extremes and the same is 
true for the vertical velocities and the horizontal accelerations. 

4.2.2 Particle Displacements 

A water particle with a mean position of, say, (xi, zI)  will be displaced 
by the wave-induced pressures and the instantaneous water particle position 
will be denoted as (xl + c, z I  + 5), as shown in Figure 4.2. The displacement 
components (C, 5) of the water particle can be found by integrating the 
velocity with respect to time. 

In keeping with our small-amplitude wave considerations, C and will be 
small quantities and therefore we can replace u(xI  + C, z1 + r> with U ( X I ,  ZI). '  

au 
ax 

'This involves neglecting terms such as - T,, as can be seen from a Taylor series expansion. 
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z 

t Direction of progressive 
wave propagation 

X 

Figure 4.1 Water particle velocities in a progressive wave. 

Integrating the equations above then yields 

sin (kxl - at) c=- - -  H gk cash k(h + z I )  

2 OZ cosh kh (4.9) 

or 

sin (kxl - at) H cash k(h + 21) c = - -  
2 sinh kh 

using the dispersion relationship. The vertical displacement is determined 
similarly: 

cos (kx1- at) H sinh k(h + 21) 

2 sinh kh 
<=-  (4.10) 

Figure 4.2 Elliptical form of water particle trajectory. 
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The displacements I; and can be rewritten as 

C(xl, zI ,  t) = -A sin (kxl - at) 

{(XI, 21, t )  = B cos (kx1 - at) 

Squaring and adding yields the water particle trajectory as 

Chap. 4 

(4.11) 

(4.12) 

(4.13) 

which is the equation of an ellipse with semiaxes A and B in the x-z direction, 
respectively (Figure 4.2) .  We should note also that A is always greater than or 
equal to B. In fact, at the locations of the mean water level, the water particles 
with mean elevation z = 0, follow a closed trajectory with vertical displace- 
ment H / 2 ;  that is, these particles comprise the surface. There are no water 
particles with mean locations higher than z = 0. 

In shallow wuter ( h / L  < 1/20), using the shallow water approximations, 
the major semiaxis reduces to 

A =- - HL - H T g  (4.14) 
2 sinh kh 2 kh 4nh 4n 

where the equality for shallow water, L = CT = & T,  has been introduced. 
The minor semiaxis B can be determined similarly. 

B = -  H sinh k(h + zI) ="( 1 +:) (4.15) 

Note that A is not a function of elevation. The horizontal excursion of a water 
particle is a constant distance for all particles under the wave. The total 
vertical excursion increases linearly with elevation, being zero, of course, at 
the bottom and being H at the mean water surface, z = 0. 

For deep water waves (h/L 3 t )  it can be shown that the semiaxes 
simpIifL to 

H cash k(h + z I )  H 1 

2 sinh kh 2 

(4.16) 

B = !! ekz!  = A (4.17) 

The trajectories are circles which decay exponentially with depth. For a depth 
of z = -L/2,  the values of A and B have been reduced by the amount e-", or 
the radii of the circles are only 4% of the surface values, essentially negligible. 
Figure 4.3 displays the shapes of the water particle trajectories for different 
relative depths. 

2 
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Figure 4.3 Water particle trajectories in progressive water waves of different 
relative depths. 

4.3 PRESSURE FIELD UNDER A PROGRESSIVE WAVE 

The pressure field associated with a progressive wave is determined from the 
unsteady Bernoulli equation developed for an ideal fluid and the velocity 
potential appropriate to this case, Eq. (2.92): 

a+ 
P at 
i! + gz + t (2.42 + w2) - - = C(t) (4.18) 

Equating the relationship above at any depth z, and at the free surface q, 
where the pressure is taken as zero, and linearizing yields 

Recalling from Chapter 3 that the linearized DFSBC reduces to 

q = - -  

it is seen that the pressure can be expressed as 

L - g z + -  a+ 
P at 

(4.19) 

(4.20) 

(4.21) 

where the small velocity squared terms have been neglected. 

we have 
For a progressive wave described by the velocity potential in Eq. (4.1), 

(4.22) 

or 
(4.23) 
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cosh k(h + z )  
cosh kh K A 4  = (4.24) 

The first term on the right-hand side of the pressure equation (4.23) is, of 
course, the hydrostatic term, which would exist without the presence of the 
waves. The second term is called the dynamic pressure. The term K,(z) is 
referred to as the “pressure response factor” and below the mean water 
surface is always less than unity. 

The dynamic pressure is a result oftwo contributions; the first and most 
obvious contributor is the surcharge of pressure due to the presence of the 
free surface displacement. If the pressure response factor were unity, the 
pressure contribution from the free surface displacement would be purely 
hydrostatic. However, associated with the wave motion is the vertical accel- 
eration, which is 180” out of phase with the free surface displacement. This 
contribution modifies the pressure from the purely hydrostatic case. The 
reader may wish to verify that Eq. (4.22) can be obtained by integrating the 
linearized vertical equation of motion, Eq. (2.38c), from any depth z up to the 
free surface q. In Figure 4.4, the effect of the dynamic pressure in modifying 
the hydrostatic pressure is shown. 

The pressure response factor has a maximum of unity at t = 0, and a 
minimum of l/cosh kh at the bottom. To determine the pressure above the 
mean water level we again must use the Taylor series for a small positive 
distance z I  (0 < z1 < q): 

(4.25) 

= pgq -pgzl 

= Pg(q - 21) (4.26) 

Thus to this approximation the pressure is hydrostatic under the wave crest 

to the first order 

z 
___I) 

X 

Figure 4.4 Hydrostatic and dynamic pressure components at various phase 
positions in a progressive water wave. 
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down to z = 0. Below that depth, however, it deviates from the hydrostatic 
law. Note also that Eq. (4.26) predicts a zero pressure at the instantaneous free 
surface, zI  = q. Figure 4.5 shows the isolines of pressure under a wave for 

One method of measuring waves in either the laboratory or field is by 
sensing the pressure fluctuations and then calculating the associated water 
surface displacements by Eq. (4.23). From Eq. (4.23), a bottom-mounted 
pressure gage would record a steady hydrostatic pressure plus the oscillating 
dynamic pressure, which for a particular wave period is proportional to the 
free surface displacement q, the variable of interest. If the dynamic pressure 
p D  is isolated by subtracting out the mean hydrostatic pressure, then q is 

h / L  = 0.2. 

(4.27) 

where Kp (-h)  is a function of the angular frequency of the waves. Thus the 
dispersion relationship must be used to determine kh from the frequency of 
the observed waves. If a mean current is present, the wave number must be 
computed via Eq. (3.52); otherwise, significant errors can occur. 

Even though we have derived the pressure response factor for only one 
frequency component, it is interesting to note that for cases in which the 
linear assumption is reasonably valid, Eq. (4.27) can be used to determine the 
composite wave system containing many (or an infinite) number of com- 
ponents from a measured pressure time series. 

Because of the dependency of the pressure response factor on the wave 
frequency, short-period waves have a very small K p  (at the bottom), while for 
long-period waves Kp approaches unity. In other words, very short period 
waves may not even be recorded by the pressure gage. The reader may wish to 

1 and K p  ( -h)  = ~ 

PgKA-h) cosh kh 
P D  v =  

c . 
Z 

t 

Figure 4.5 Isolines ofpD/[y(H/2) ]  for progressive wave of h/L  = 0.20. 
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show that the shallow and deep water asymptotes for the pressure response 
factor are unity and ekz, respectively. 

4.4 WATER PARTICLE KINEMATICS FOR STANDING 
WAVES 

The original velocity potential we derived represented a pure standing wave, 

with 

HS 
2 

?I = - cos kx cos at 

d = gk tanh kh 

(4.28) 

(4.29) 

(4.30) 

where H ,  denotes the height of the standing wave and is twice the height of 
each of the two progressive waves forming the standing wave. 

The velocity potential for a standing wave can be rederived by subtract- 
ing the velocity potential for two progressive waves of the same period with 
heights Hp propagating in opposite directions. 

4 = - Hp E ‘0s’ k(h + Z )  sin (k - at) 
2 a cosh kh 

(4.31) 

Sin (kx k at) can be rewritten as sin kx cos at f cos kx sin at, (from 
trigonometry) and thus the velocity potential is rewritten as 

(4.32) 

Comparing the two velocity potentials, it is clear that Hp = HJ2. Therefore, a 
standing wave of height H, is composed of two progressive waves propagat- 
ing in opposite directions, each with height equal to one-half that of the 
standing wave. 

4.4.1 Velocity Components 

The velocities under a standing wave are readily found to be 

(4.33) 
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where for convenience the subscripts has been dropped. Using the dispersion 
relationship, 

(4.35a) 

(4.3 5 b) 

u = - a  H cash k(h + z) sin h sin at 

w = - - a  H sinh k(h + z )  cos h sin at 

2 sinh kh 

2 sinh kh 
As with the velocities under a progressive wave, these velocities 

increase with elevation above the bottom. The extreme values of u and w in 
space occur under the nodes and antinodes of the water surface profile as 
shown in Figure 4.6, where u and w are zero under the antinodes and nodes, 
respectively. It is of interest that the horizontal and vertical components of 
velocity under a standing wave are in phase; that is, the time-varying term 
“sin at” modifies both velocity components and, at certain times, the veloc- 
ity is zero everywhere in the standing wave system. It is therefore evident that 
at some times all the energy is potential and, by reference to Eqs. (4.33, at 
other times all the energy is kinetic. 

If a progressive wave were normally incident on a vertical wall, it would 
be reflected backward without a change in height, thus giving a standing wave 
in front of the wall. The lateral boundary condition at the vertical wall would 
be one of no flow through the wall, or u = -a+/& = 0 at x = xWall, where xwall is 
the Iocation of the wall. Inspection of the equation for the horizontal velocity, 
Eq. (4.33), shows that at locations kx = na (where n is an integer), the no-flow 
boundary condition is satisfied. Therefore, a standing wave could exist 
within a basin with two walls situated at two antinodes of a standing wave. 
This is, in fact, the simplest model of uniform depth lakes, estuaries, and 
harbors where standing waves, called seiches, can be generated by winds, 
earthquakes, or other Dhenomena. We examine these 
Chapter 5. 

The local accelerations under a standing wave are 

au H cosh k(h + z )  
at 2 sinh kh 

- sin kx cos at 

Antinode 

waves further in 

(4.36) 

Figure 4.6 Distribution ofwater particle velocities in a standing water wave. 
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cos kx cos at dw H sinh k(h + z) 
dt 2 sinh kh 

(9 -= - -  (4.37) 

Under the wave antinodes, the vertical accelerations are maxima, while the 
horizontal accelerations are zero, and under the nodes, the opposite is true. 

4.4.2 Particle Displacements 

The displacements of a water particle (c, 5) from its mean position 
(XI,  Z I )  under a standing wave are defined in a linearized fashion as before. 

c =  J u ( x ~  + [, Z I  + 5)  dt m J U ( X ~ ,  21) dt (4.38) 

<=  Jw(x~ + c, Z I  + 5> dt G J w ( x I ,  z I )  dt (4.39) 

or 

(4.40) H cash k(h + z ! )  . c = - -  

'=, sinhkh 

sin kxl cos at = -A cos at 
2 sinh kh 

sinh k(h + 'I) cos kxl cos at = B cos at (4.41) 

The displacement vector is r = Q + &; its magnitude I r I is 

Irl = J X T i P  cos ut (4.42) 

or 

cosh2 k(h + zI) sin'kxl + sinh2 k(h + zl) cos2kx1 (4.43) 

For infinitesimally small motions, the displacement vector is a straight line,' 
the amplitude and inclination being dependent on position (xI, zl). The 
water particle under the standing wave moves back and forth along the line 
with time. Substituting the trigonometric identities, 

H cos at 
2 sinh kh 

IrWl =-. J 

Cosh2 k(h + z,)  = [cash 2k(h + zI) + 11 
sin2kxl = t (1 - cos 2kxl) 

sinh2k(h + zI) = $ [cosh 2k(h + zI) - 11 

COS' kxl= i(1 + cos 2 k ~ l )  

yields from Eq. (4.43), 

'From Equations (4.40) and (4.41), we obtain 6 = - ( B / A ) l  which may be compared 
with Eq. (4.13), the equation for the trajectories of a progressive wave. 
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Note that at the bottom under the antinodes Ir I is zero.The maximum value 
of ( r  1 occurs under the nodes, where cos 2kxl = -1. 

The motion of the water particles under a standing wave can thus be 
described as a simple harmonic motion along a straight line. The slope of the 
displacement vector 6' is given by 

(4.44) 

which is not a function of time. Clearly, at the bottom, the trajectories are 
horizontal (6' = 0), as is to be expected by the bottom boundary condition. 
Figure 4.6 portrays the water particle trajectories at several phase positions 
under a standing wave. 

4.5 PRESSURE FIELD UNDER A STANDING WAVE 

To find the pressure at any depth under a standing wave, the unsteady 
Bernoulli equation is used as in the case for progressive waves. 

-+--- a4 + PZ = C(t)  (4.45) p u 2 + w 2  

the free surface and at some 

0- P 2  at 
Linearizing and evaluating as before between 
depth ( z )  in the fluid, the gage pressure is 

a4 
at 

p = -pgz + p -  

or 
H 

where the pressure response factor Kp ( z )  is the same as determined for 
progressive waves. Note that under the nodes, the pressure is solely hydro- 
static. Again, the dynamic pressure is in phase with the water surface 
elevation, and as before it is a combined result of the local water surface 
displacement and the vertical accelerations of the overlying water particles. 

The force exerted on a wall at an antinode can be calculated by 
integrating the pressure over depth per unit width of wall 

from Eqs. (4.26) and (4.46) and where qw = ( H / 2 )  cos at, the water surface 
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displacement at the wall. It should be stressed that this formulation is not 
entirely consistent, as the second integral on the right-hand side representing 
the force contribution of the wave crest region is of second order; yet second- 
order terms in the form of the square of the velocity components have 
already been dropped from the first tern of the right-hand side. Integrating, 
we get 

To first order, 

tanh kh 
UlW 

F=p-++gh---- sh2 
2 kh 

(4.47) 

(4.48) 

The force on the wall consists of the hydrostatic contribution, plus an 
oscillatory term due to the dynamic pressure. The maximum force occurs 
when qW = H/2,  

H tanh kh + pgh - - (4h2 + (H)2)  
8 2 kh 

Fmax = pg (4.49) 

4.6 PARTIAL STANDING WAVES 

For the case just considered of pure standing waves, two waves of the same 
period and height, but propagating in opposite directions, were superim- 
posed, as one expects from the perfect reflection of an incident wave from a 
vertical wall. Quite often in nature, however, when waves are reflected from 
obstacles, not all of the wave energy is reflected; some is absorbed by the 
obstacle and some is transmitted past the obstacle. For example, waves are 
reflected from breakwaters and beaches; in each case wave energy is not 
perfectly reflected. To examine this case, let us assume that the incident wave 
has a height H i ,  but that the reflected wave has a smaller height H ,  and 
different phase than the incident wave. The wave periods of the incident and 
reflected waves will be the same. The total wave profile seaward of the 
obstacle is then 

H 
2 2 

qr =!5 cos (kx - o*) + -1: cos (kx 4- ot + E )  (4.50a) 

where E is the phase lag induced by the reflection process. If the water surface 
displacements are plotted, they appear as in Figure 4.7. Due to the imperfect 
reflection, there are no true nodes in the wave profile. 

Quite often in measuring wave heights in a wave tank, reflections occur 
and it is necessary to be able to separate out the incident and reflected wave 
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heights. To do this, we rewrite q,, using trigonometric identities. 

q, = - (cos kx cos at + sin kx sin at) H ,  
2 

+ z ( c o s  ( k ~  + €1 cos at - sin ( k ~  + €1 sin at) 
2 

Grouping similar time terms, 

1 H 
2 

cos kx + -2 cos (kx + E )  cos at 

I H .  
2 

sin kx - 2 sin (kx + E) sin ot 

or, for convenience, denoting the bracketed terms by Z(x) and F(x) ,  
ql = Z(x) cos at + F(x)  sin at (4.50b) 

Thus ql is a sum of standing waves. To find the extreme values of qr for any x, 
that is, the envelope of the wave heights, denoted by the dotted lines in the 
figure, it is necessary to find the maximas and minimas of ql with respect to 
time. Proceeding as usual by taking the first derivative and setting it equal to 
zero to find the extremes yields 

-- "r - -~(x)a sin at + ~(x)a cos at = o (4.51) 
at 

or 

Upper envelope 
,ar = 0" / 

' Lower envelope 

Figure 4.7 Instantaneous water surface displacements and envelope in a partial 
standing wave system. 
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ft w' 
F ( x )  

(Ut) ," Figure 4.8 Relationships among (at),, E I ( x )  F(x),  and I (x) .  

Therefore, to find the maxima and minima of ql, ( ~ t ) ~  is substituted into Eq. 
(4.50a). Examining Figure 4.8, it is clear that 

F(x)  
JZ"x) + P ( X )  

sin ( ~ t ) ~  = 

Substituting into Equation (4.50b),3 we have 

(4.52) 

Substituting for Z(x) and F(x)  from Eq. (4.50b), it is seen readily that the 
extreme values of ql for any location x are 

+- [ q t ( x ) ] m  = -f(Hi>' - + (".)* - cos (2 kx + E) (4.53) 
2 2 2 

[qI(x)lm obviously varies periodically with x. At the phase positions 
(2kxl + E) = 2nn (n = 0,1,. . .), [qI(x)lm becomes a maximum of the envelope 

(ql)max = ;(Hi + Hr), the quasi-antinodes (4.54) 

whereas at the phase positions, (2kx2 + E )  = (2n + 1)n ( n  = 0,1,. . . ), the value 
of [ql(x)lm becomes a minimum of the envelope: 

(ql)min = i(H, - Hr),  the quasi-nodes (4.55) 

The distance between the quasi-antinode and node can be found by subtract- 
ing the phases 

(2kx2 + E) - (2kxl + E) = (2n + 1)n - 2nn 

or 

2k(x2 - XI) = n 
L x2-xI =-  
4 

'This exercise shows simply that the maximum and minimum of (A sin at + B cos at) are 
k J A V .  
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For a laboratory experiment, where reflection from a beach or an obstacle is 
present, if the amplitude of the quasi-antinodes and nodes are measured by 
slowly moving a wave gage along the wave tank, the incident and reflected 
wave heights are found simply from Eqs. (4.54) and (4.55) as 

Hi = (Vr)rnax + (VOrnin (4.56) 

Hr = (Vt l rnax - (VOrnin (4.57) 

The reflection coefficient of the obstacle is defined as 

H ,  
Hi 

Kr  = - (4.58) 

Figure 4.9 presents such data for the case of extremely small waves and nearly 
perfect reflection. To find the phase E ,  it is necessary to find the distance from 
origin to the nearest maximum or minimum xI,  and to solve one of the 
following equations: 

2nn, n =o,  1,2 )... for the maximum 
(2n + l)n, n = 0, 1, 2,.  . . for the minimum 

2kX1+€= 

The reader should verify that the dynamic and hydrostatic pressure 
under a partial standing wave system can be expressed as 

P(X, =, 0 = -Pgz + pgK,(z)Zl 
where ~ ( x ,  t )  and Kp(z)  are given by Eqs. (4.50a) and (4.24), respectively. 

4.7 ENERGY AND ENERGY PROPAGATION IN 
PROGRESSIVE WAVES 

The total energy contained in a wave consists of two kinds: the potential 
energy, resulting from the displacement of the free surface and the kinetic 
energy, due to the fact that the water particles throughout the fluid are 
moving. This total energy and its transmission are of importance in deter- 
mining how waves change in propagating toward shore, the power required 
to generate waves, and the available power for wave energy extraction 
devices, for example. 

P1 + 92. x < 0 

Position of wave gage for x < 0 

x = -6‘ -7’ - 8’ -9’ -10’ - 1  1’ -12’ 

Figure 4.9 Water surface displacement as measured from a slowly moving car- 
riage for the case of nearly perfect reflection. (From Dean and Ursell, 1959.) 
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4.7.1 Potential Energy 

Potential energy as it occurs in water waves is the result of displacing a 
mass from a position of equilibrium against a gravitational field. When water 
is at rest with a uniform free surface elevation, it can be shown readily that 
the potential energy is a minimum. However, a displacement of an assem- 
blage of particles resulting in the displacement of the free surface will require 
that work be done on the system and results in an increase in potential energy. 

We will derive the potential energy associated with a sinusoidal wave by 
two different methods. First consider the wave shown in Figure 4.10; we will 
determine the average potential energy per unit surface area associated with 
the wave as the difference between the potential energy with and without the 
wave present. The potential energy of a small column of fluid shown in Figure 
4.10 with mass dm relative to the bottom is 

d(PE) = dmgZ (4.59) 

in which z is the height to the center of gravity of the mass, and can be written 
as 

- h + q  z=- 
2 

(4.60) 

and the differential mass per unit width is 

dm = p (h  + q) dx 

The potential energy averaged over one wave length for a progressive wave of 
height H is then 

= @ Sr+L [' (h2 + 2qh + $)I dx 
L x  2 

(4.62) 

Figure 4.10 Definition sketch for determination of potential energy. 
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water formerly in the trough to the crest location through a vertical distance 
2.  zcg, where zcg is shown in Figure 4.11. Note that this area is H L / ~ R  and the 
vertical distance from the mean waterline to the centers of gravity is lrH/16. 

4.7.2 Kinetic Energy 

The kinetic energy is due to the moving water particles; the kinetic 
energy associated with a small parcel of fluid with mass dm is 

u2 + w2 u2 + w2 d(KE) = dm - p d x d z y  - (4.70) 
L L 

To find the average kinetic energy per unit surface area, d(KE) must be 
integrated over depth and averaged over a wave length. 

(4.71) 

From the known solution for the velocities under a progressive wave, Eqs. 
(4.3a) and (4.5), the integral can be written as 

+ sinh’ k(h + z )  sin2 (kx - at)] dz dx 
Using trigonometric identities Cjust as was done for the trajectories under a 

Figure 4.11 Potential energy determined as the result of raising water mass in 
trough area to crest area. 
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standing wave), this can be recast as 

(4.73) 
J-;=o ; 

- [cash 2k(h + Z )  + cos 2(kx - at)] dz dx 

Carrying out the integration and simplifying yields 

KE = pgH2 (4.74) 

This is equal to the magnitude of the potential energy, which is characteristic 
of conservative (nondissipative) systems in general. The total average energy 
per unit surface area of the wave is then the sum of the potential and kinetic 
energy. Denoting E as the total average energy per unit surface area 

- -  
E = KE + PE = $pgH2 (4.75) 

The total energy per wave per unit width is then simply 

EL = A pgH2L (4.76) 

It is worthwhile emphasizing that neither the average (over a wave 
length) potential nor kinetic energy per unit area depends on water depth or 
wave length, but each is simply proportional to the square ofthe wave height. 

4.7.3 Energy Flux 

Small-amplitude water waves do not transmit mass as they propagate 
across a fluid, as the trajectories of the water particles are c10sed.~ However, 
water waves do transmit energy. For example, consider the waves generated 
by a stone impacting on an initially quiescent water surface. A portion of the 
kinetic energy of the stone is transformed into wave energy. As these waves 
travel to and perhaps break on the shoreline, it is clear that there has been a 
transfer of energy away from the generation area. The rate at which the energy 
is transferred is called the energyJlux 3, and for linear theory it is the rate at 
which work is being done by the fluid on one side of a vertical section on the 
fluid on the other side. For the vertical section AA’, shown in Figure 4.10, the 
instantaneous rate at which work is being done by the dynamic pressure 
IpD = (p + pgz)] per unit width in the direction of wave propagation is 

(4.77) 

4For finite-amplitude waves, there is a mass flux; see Chapter 10. 
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The average energy flux is obtained as before by averaging over a wave period 

(4.78) 

from Eqs. (4.22) and (4.3b) forp and u ,  or 

using the dispersion relationship. 

to integrate up to the mean free surface. 
To retain terms to the second order in wave height, it is only necessary 

(4.80) 

- pgo H 2(2kh+sinh2kh) 
3=-(-) sinh 2kh 

4k 2 

- 
3 = ECn (4.81) 

where Cn is the speed at which the energy is transmitted; this velocity is 
called the group velocity C,, for reasons to be explained shortly. 

C, = nC (4.82a) 

or 

(4.82b) 

The factor n has as deep and shallow water asymptotes the values of and 1, 
respectively. Therefore, in deep water, the energy is transmitted at only half 
the speed of the wave profile, and in shallow water, the profile and energy 
travel at the same speed. 

Origin of the term "group velocity." We have just derived the group 
velocity in terms of the rate at which energy is being transferred by a train of 
propagating waves. A more descriptive explanation of the term group veloc- 
ity results from examining the propagation of a group of waves. 

If there are two trains of waves of the same height propagating in the 
same direction with slightly different frequencies and wave numbers, they 
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Figure 4.12 Characteristics of a “group” of waves. 

are superimposed as 

q = q l + q 2  

H H 
2 2 

= - cos (k ,x  - all) + - cos (k2X - ad) 

where’ 

Aa Ak 
2 2 

4 = o + -, k2 = k + - 

(4.83) 

(4.84) 

(4.85) 

Using trigonometric identities, the profiles can be combined in the following 
manner: 

1 + k2)x - (at + a2)t]] cos [ i [ ( k ,  - k2)x - (al - a$] 

= H cos (kx - at) cos - Ak x - - t [: ( :: 11 (4.86) 

The resulting profile, consisting of wave forms moving with velocity 
C = a/k,  is modulated by an “envelope” that propagates with speed Aa/Ak, 
which is referred to as the group velocity C,. The superimposed profile is 
shown in Figure 4.12. If we recall that the wave energy is proportional to the 
wave height, it is clear that no energy can propagate past a node as the wave 
height (and therefore dynamic pressure) is zero there. Therefore, the energy 
must travel with the speed of the group of waves. This velocity is seen to be, 
from Eq. (4.86), 

Aa 
Ak 

C,=- (4.87) 

’This derivation is strictly true for small Ak and Aa, in order that the relationships given in Eq. 
(4.85) satisfy the dispersion relation. 
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In the limit as Ak -. 0, we obtain a group velocity for a wave group of infinite 
length L, (hence, a wave train of constant height), C, = da/dk. This deriva- 
tive can be evaluated from the dispersion relationship 

(4.88) C? = gk tanh kh 

do 
dk 

c - -= 

20 - = g tanh kh + gkh sech' kh 

da (g  tanh kh + gkh sech' kh)a 
g - d k  2 gk tanh kh 

sinh 2kh 
="( 2 1 + 

Therefore, C, = nC, where again 

(4.89) 

(4.90) 

4.8 TRANSFORMATION OF WAVES ENTERING SHALLOW 
WATER 

Several changes occur as a train of waves propagates into shallow water. One 
of the most obvious is the change in height as the wave shoals. If energy losses 
(or additions) are negligible, from observation, it is evident that the waves 
near the point of breaking at a beach are somewhat higher than those farther 
offshore. Other changes, such as the previously discussed decrease in wave 
length with shallower depths and the changes in wave direction (Figure 4.13), 
are not readily apparent from the beach, but often are clearly observable 
from the air. 

4.8.1 The Conservation of Waves Equation 

In all previous derivations it has been assumed that the waves are 
propagating in the x direction; yet if we are discussing a coastline, it is often 
convenient to locate the coordinate system such that the x direction is in the 
onshore direction and the y direction is in the longshore direction. It is rare 
that waves propagate solely in the x direction once the coordinate system is 
prescribed. 

In general, a wave crest corresponds to a line of constant wave phase. 
For example, if a wave train is represented as q = H/2 cos R, where R 
corresponds to the scalar phase function [recall that for waves propagating in 
the x direction, R = (kx - at)]. Therefore, crests occur for R = 2nn, where n 
is defined here as an integer. From vector analysis, the normal unit vector n 
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Figure 4.13 Refraction of waves around a small Caribbean island. (Photo cour- 
tesy of the L.S.U. Coastal Studies Institute.) 

to a scalar function is related to the normal vector N, which is found by taking 
the gradient of the function, Eq. (2.55), 

N = V Q  (4.91) 

where 

N = nlVQ1 (4.92) 

and where, for purposes here, the gradient operator is only the horizontal 
operator 

(4.93) 

as R is not a function of elevation z .  The vector N points in the direction of 
the greatest change of Q, which is the wave propagation direction.6 

We will define the wave number k as 

(4.94) 

6 V ~  = ( H / 2 )  sin vVv; thus Vq is in the same direction as Vy. Vq is the wave direction. 
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Figure 4.14 Resolution of wave 
number k into orthogonal components. ~ 

Note that for waves in the x direction that 

k = ki + Oj (4.95a) 

and 

lkl = k (4.95b) 

where k is the previously defined wave number. It becomes clear now that the 
wave number vector is nothing more than the wave number oriented in the 
wave direction. For waves propagating in an arbitrary direction in x-y space, 
we have 

k = k,i + kyj (4.96) 

and 

Ikl = k = 4- (4.97) 

If an angle of incidence 8 is defined as the angle made between the beach 
normal (the x direction) and the wave direction, then 

k, = ]kl cos 8 

k,  = Ikl sin 6 (4.98) 

The phase function’ is, therefore, Q(x, y ,  t) = kx cos 8 + ky sin 8 - ot = 
k . x - ot. If the angle of incidence is zero, it is obvious that Q reverts back to 
the simple form [Eq. (4.95a)l. 

The horizontal line along which waves travel is called a wave ray. It is 
defined (in a manner similar to a streamline) as a line along which the wave 
number vector is always tangent. As energy travels in the direction of the 

7This form ofthe phase function can be obtained in an alternative manner. For waves of length L 
propagating at an angle to the x axis, the projection of the wave on the x axis has a wave length of 
L,. From geometry, L, = L/cos 0 and therefore k,x = (2n/L,)x = k cos Ox. The y contribution 
follows similarly. 
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wave, the wave energy associated with the wave travels along the wave ray 
also. 

The angle made by the wave ray to the x axis can be obtained in the 
same manner as the local wave direction [see Figure 4.141: 

kY 8 = tan-' - 
k, 

The wave frequency can be determined from the phase function as 

aa 
at 

a=-- 

It is readily seen that the following expression is identically zero: 

+VQ) a + v( - $) = 0 
at 

which using Eqs. (4.94) and (4.99) can be written as 

dk - + V a = O  
at 

(4.99) 

(4.100) 

(4.101) 

This equation states that any temporal variation in the wave number vector 
must be balanced by spatial changes in the wave angular frequency. If the 
wave field is constant in time, then V a  = 0, or-the wave period does not 
change with space. It is constant even as the water depth changes. If the waves 
encounter a steady current, it was shown in Chapter 3 that a = k .  U + 
d m ,  where U = mean current vector. Even for this case a +Ax, y),  
that is, only changes in k occur to compensate for the variable current. 

To examine the conservation of waves relationship further, it is best to 
rederive it in a more intuitive manner. For a small length dx in the direction 
of wave travel, shown in Figure 4.15, we will relate the number of waves 
entering and leaving the block of fluid to the accumulation of waves within it. 
The rate at which waves enter the column is 1/T or 0/2n. The rate at which 
waves are leaving the column a distance dx away is found by using the first- 
orderTaylor series. The difference in inflow and efflux of waves must be equal 

Figure 4.15 Consideration of conservation of waves. 
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to the accumulation of waves within the region with time, that is, the time 
rate of change of the number N of waves within the column, 

Equating, we have 

b - ( ? + - ! - a b d x ) =  +-- dx ak 
2 R  2~ 2nax 2~ at 

or 
ak ao 
at ax 
- + - = o  

(4.102) 

(4.103) 

which agrees with Eq. (4.101) when applied in the direction of the waves. 

4.8.2 Refraction 

Referring back to Eq. (4.94), the wave number vector is the gradient of a 

V x k = O  (4.104) 

by the identity that the curl of a gradient is zero.This irrotationality condition 
on k indicates that the line integral Jk - dl is independent of path (Chapter 2). 
Rewriting the integral, we have JVQ . dl = JdQ. Therefore, the irrotationality 
implies that Q(x, y ,  t) is uniquely determined at each point (for fixed t). 

scalar. If we take the curl of k, we find that 

Substituting the components of k yields 

= o  (4.105) 

For a shoreline where the alongshore variations in the y direction of all 
variables are zero, that is, there are straight and parallel offshore contours, 
this equation reduces to 

d(k sin 6) d(k cos 6) - 
ax dY 

= O  d(k  sin 6) 
dx 

(4.106) 

or 

k sin 6 = constant (4.107) 

Therefore, the longshore projection of the wave number is a constant. 
Dividing by (T in the steady-state case, 

sin 6 -- - constant 
C 

(4.108) 
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The constant is most readily evaluated in deep water, yielding Snell's law: 

sin 8 sin 8, 1 c=c, 1 (4.109) 

This equation, originally found in geometric optics, relates the change in 
direction of a wave to the change in wave celerity. Yet from before we know 
that waves slow down in shallower water; therefore, Snell's law indicates that 
for coastlines with straight and parallel contours, the wave direction 8 
decreases as the wave shoals, tending to make the waves approach shore 
normally. 

In general, however, offshore contours are irregular and vary along a 
coast, so that the full equation must be used. 

a k sin 8 d k cos 8 - = O  
ax aY 

or 

a0 a0 ak ak k cos 8 -  + k sin 8 -  = cos 8- - sin 8- 
ax JY dY ax 

(4.110) 

(4.111 j 

This first-order nonlinear partial differential equation for 8 must be solved 
by computer techniques for a general coastline (see Noda et al., 1974) to give 
the wave directions for various locations and water depths. 

Historically, ray-tracing techniques were developed to solve this equa- 
tion following the path of the waves. We can transform Eq. (4.111) into one 
valid for a coordinate system (s, n) such that s is in the wave direction and n 
normal to it (see Figure 4.16), defined as 

x = s cos 8 - n sin 8 (4.112a) 

y = s sin 8 + n cos 8 

Using the chain rule the derivative operators in the s and n directions can be 

Figure 4.16 Coordinate system (5,  n) 
defined by direction of wave number 
vector k. 

11 

Y 

X 
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(4.112b) a d x a  d y a  
as ds ax ds ay 

+-- -=-- 

a a 
= cos 8 - + sin 8- 

ax aY 
and correspondingly, 

(4.112~) a a a 
- = -sin 8 - + cos 8 - 
an ax aY 

It is clear that the equation governing the wave angle can be rewritten as 

a8 1 ak 1 ac 
as k a n  C a n  
-=- -=-- -  (4.113) 

with k =a/C. This equation relates the curvature of the wave ray to the 
logarithmic derivative of the wave number normal to the wave direction. 

Ray tracing is often done by hand calculation,* as well as by computer 
programs. The procedure involves using Snell’s law locally at each contour 
line of the offshore bathymetry that must be known. First a “smoothing” 
procedure is used to remove sharp changes of direction of the contour lines. 
The proper amount of smoothing is unfortunately a matter of judgment. 
Then the deep water wave period and angle of incidence must be known. 
Drawing the deep water wave crest on the bathymetry chart offshore of the 
(h/Lo = 0.5) contour provides the starting point for each of the rays, which 
are spaced at equal intervals. These intervals are chosen to give sufficient 
detail in the nearshore zone. For each of the contours representing a known 
depth, the wave celerity is determined. A ray is then drawn from the deep 
water crest location to the first intersection of a contour for which the wave 
feels bottom. At this point, a locally straight contour line is assumed and 
constructed by making a line segment tangent to the point of intersection. 
The normal to this line provides a means to calculate the angle of incidence 
with respect to the contour. Using Snell’s law [Eq. (4.109)], the angle to which 
the wave is refracted is computed. The ray is then extended to the next 
contour and the process repeated. This can be tedious and several aids have 
been constructed to aid in this process (see the Shore Protection Munuul). 

4.8.3 Conservation of Energy 

For conservation of energy, in a steady-state case, where there are not 
any energy losses or inputs, equations are developed readily relating the wave 

‘See, for example, the Shore Protection Manual (1977). 
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heights at two points of interes't, especially for the case of straight and parallel 
bottom contours as in Figure 4.17. Recognizing that there is no energy flux 
across the wave rays, the energy flux 5 across bo is the same as across bl and 
bz. Due to the convergence or divergence of the wave rays, resulting from 
either refraction or actual physical boundaries, and due to changes in depth, 
the energy per unit area changes between bl and bz. Assuming no wave 
reflection, the conservation of energy, Eq. (4.81), requires 

(EnC),bl = (EnC)zbz (4.114) 

or, using our definition for E as 

E = Q pgH2 (4.115) 

we can solve for the wave height Hz: 

(4.116) 

If it is recognized that waves do not change period with depth (ie., the wave 
period is a constant), then we have between deep and intermediate or shallow 

Depth contours 

Figure 4.17 Characteristics of wave rays during refraction over idealized bathymetry. 
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= H o K K  
where K,  is the shoaling coefficient and K, the 
shoaling coefficient is plotted in Figure 3.9. 

(4.117) 

refraction coefficient. The 

In-water with straight and parallel offshore contours, it is possible to 
determine the refraction coefficient, (b0/b2)”*, directly. In Figure 4.17 two 
rays are shown propagating to shore. Intuitively, since each wave refracts at 
the same rate along the beach, it should be expected that ray 2 is merely ray 1 
displaced a constant distance lo in the longshore direction. This is, in fact, the 
interpretation of the constancy of longshore wave number given by Snell’s 
law, ko sin 8, = k sin 8. From the diagram it can be seen that bo = lo cos 8, and 

Figure 4.18 Changes in wave direction and height due to refraction on slopes 
with straight, parallel depth contours. (From U.S. Army Coastal Engineering 
Research Center, 1977.) 
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b2 = lo cos 02. Therefore, the refraction coefficient K, is 

K, = ( $ ) ' I 2  = (cos ">'I2 = ( I  - sin2 e,,>"4 (4.118) 
cos 82 1 - sin' e2 

which is always less than unity. The perpendicular spacing between the rays 
always becomes greater as the wave shoals. Figure 4.18 presents a convenient 
means to determine K, and wave directions from deep water characteristics. 
Since K, depends on h/gT2 and O0 and K, depends only on h/gT2, it is possible 
to present the product K,K, as a function of h/gT2 and eo, as shown in Figure 
4.19. 
Example 4.1 

A wave of 2 m height in deep water approaches shore with straight and parallel 
contours at a 30" angle and has a wave period of 15 s. In water of 8 m, what is the 
direction of the wave, and what is its wave height? 

Solution. Using Figure 4.18, h/gT2 = 0.0036 and therefore 6 2: 10.5" and K, = 0.94. 
The value of K,, using the C,/Co curve of Figure 3.9, is computed to be 1.2. H = 
2(0.94)(1.2) = 2.26 m. This result can also be obtained directly from Figure 4.19 [i.e., 
K,K, = 1.13 and H = 2(1.13) = 2.26 m]. 

In ray-tracing procedures, the separation distance b can be found 
analytically (Munk and Arthur, 1952). From Figure 4.20 it can be seen, for 
waves traveling with celerity C in the s direction, that the velocity com- 
ponents are- 

ds d x  dY - = C,  
dt dt dt 

- = C cos 8, - = c sin (4.119) 

+ i v m -  s SeIweA43 provide- ' along the ray 
path. 

At A ,  d8 = (dO/dn)b and, also db = dB ds, which is the first-order change 
in arc length &e toXeZ$e i n c r m m t  rf8.SubZE-rn8in these two 

--equations yields 

?.. V=fq 
1 ab ae --=- -I 

b -  
or, defining p = b/bo, where bo is an initial reference spacing of the wave ray, 
we obtain 

I ap ae 
p a s  an 
--=- (4.120b) 

This equation, which relates the change in spacing along the ray to the change 
in 8 in the normal direction, is similar in form to Eq. (4.113), which also 
involves 8. 
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Y 
4 

Figure 4.20 Schematic diagram showing adjacent rays. 

An ordinary differential equation can be obtained for p by computing 
the mixed derivatives 

a ae a ae 
an  as asan 

Using the defnitions for the alan, d/as operators [Eqs. (4.112b) and (4.112c)], 
we obtain 

an  as asan 

=-(->’+-( 1 ac 1 a p 2  ) 
c2 an  p2 as 

after substituting from Eqs. (4.113) and (4.120b). Note that the right-hand side 
is nonzero; this is due to the fact that the derivative operators are functions of 
8. 

If we cross-differentiate Eqs. (4.113) and (4.120b) directly for the mixed 
derivative expressions, the following results: 

again, a nonzero right-hand side. If we now equate the two right-hand sides, 
we have 

a2p 1 d 2 c  
as2 c a n  - + - 7 p  = 0 (4.121a) 

This equation can be used to obtain p;  however, it involves knowledge of the 
wave fronts in order to determine derivatives in the n direction. If we 
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evaluate the second term, we have 

a2c ay2 acae) as an  
az c aZc 

Canz  C ax ay 
- (sin2 eax2 - 2 sin 8 cos 8- + cos2 8- - - - 

but aO/an = (l/p) (ap/as) from Eq. (4.120b). 
Therefore, finally p is given by 

g + p  -+  dP q p = o  
ds2 ds 

(4.12 1 b) 

where 

cos 8 dC sin 8 aC p(s )  = - - __ - ~ - 
c dx c ay 

and 

sin2 8 a2c sin 8 cos 8 a2c cos2 8 a2c 
c ax2 c axay c ay2 

q(s) = - - - 2 +-- 

Equations (4.121b) and (4.1 19) provide four ordinary differential equations 
which can be solved simultaneously to provide locations along the ray and 
the spacing between the rays over a given bathymetry for which C(x,  y) is 
available (through the dispersion relationship). Numerous ray-tracing pro- 
grams have been written (see, e.g., Wilson, 1966) and a recent example from 
Noda (1974) is presented in Figure 4.21. 

Wave heights along a ray are related to P, as shown in the preceding 
section. Similarly to Eq. (4.117), we have 

4.8.4 Waves Breaking in Shallow Water 

The shoaling coefficient indicates that the wave height will approach 
infinity in very shallow water, which clearly is unrealistic. At some depth, a 
wave of given characteristics will become unstable and break, dissipating 
energy in the form of turbulence and work against bottom friction. When 
designing a structure which at times may be inside the surf zone it becomes 
necessary to be able to predict the location of the breaker line. 

The means by which waves break depends on the nature of the bottom 
and the characteristics of the wave. See Figure 4.22. For very mildly sloping 
beaches, typically the waves are spilling breakers and numerous waves occur 
within the surf zone (defined as that region where the waves are breaking, 
extending from the dry beach to the seaward limit of the breaking). Plunging 
breakers occur on steeper beaches and are characterized by the crest of the 
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Figure 4.21 Ray lines for oblique wave incidence on a beach in the periodic rip 
channels. (From Noda, 1974.) 

wave curling over forward and impinging onto part of the wave trough. These 
waves can be spectacular when air, trapped inside the “tube” formed by the 
wave crest, escapes by bursting through the back of the wave or by blowing 
out at a nonbreaking section of wave crest. Surging breakers occur on very 
steep beaches and are characterized by narrow or nonexistent surf zones and 
high reflection. Galvin (1968) has identified coffupsing as a fourth classifica- 
tion, which is a combination of plunging and surging. 

The earliest breaker criterion was that of McCowan (1894), who deter- 
mined that waves break when their height becomes equal to a fraction of the 
water depth 

Hb = Khb (4.122a) 
where K = 0.78 and the subscript b denotes the value at breaking. Weggel 
(1972) reinterpreted many laboratory results, showing a dependency of 
breaker height on beach slope m. His results were 

(4.122b) 
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where 

a(m) = 43.8(1.0 - e-'9m) 

b(rn) = 1.56(1.0 + e-'g.Sm)-l 
which approaches K = 0.78 as the beach slope rn approaches zero.g See Figure 
*-+ 1 IL. 1 .  

As a first approximation, the depth of wave breaking can be determined 
by the shoaling and refraction formulas for straight and parallel contours if 
the offshore wave characteristics are known. 

H = Ho (&)'I* (-) cos 8, 
cos 8 

For shallow water, this is approximately equal to 

(4.123) 

(4.124) 

if it is assumed that the breaking angle is small. Using McCowan's breaking 
criterion, we have 

and solving for hb yields 

(4.125) 

(4.126) 

or for a plane beach where h = rnx and rn =tan /?, the beach slope, the distance 
to the breaker line from shore is 

Finally, the breaking wave height is estimated to be 

(4.127) 

(4.128) 

Komar and Gaughan (1972), using the conservation ofwave energy flux 
in the manner of Munk (1949) for solitary waves, developed an equation 
similar to Eq. (4.128) for normally incident waves (8 = 0"). Dalrymple et al. 
(1977) included the deep water wave angle as developed above. By comparing 
to a number of laboratory data sets, it appears that Eq. (4.128) underpredicts 
the breaking wave height by approximately 12% (with K = 0.8). See Figure 

9The a(m) parameter originally defined by Weggel was dimensional and required use of the 
English system of units. The parameters a(m) and b(m) presented here are dimensionless. 
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Figure 4.23 Surf zone width xb and breaking wave height Hb versus deep water 
wave height Ho in dimensionless form and as a function of Oo, the deep water 
incident angle K = 0.8. 

4.23 for a dimensionless representation of Eq. (4.128). Wave breaking, with its 
complexities of turbulence and wave nonlinearities, is still an area of active 
research. The reader who must deal with design in the surf zone is referred to 
the literature for the most accurate prediction of surf zone width, breaking 
wave height, and other surf zone parameters. As an example, see Svendsen 
and Buhr Hansen (1976). 

4.9 WAVE DIFFRACTION 

Wave diffraction is the process by which energy spreads laterally perpendicu- 
lar to the dominant direction of wave propagation. A simple illustration is 
presented in Figure 4.24, in which a wave propagates normal to a breakwater 
of finite length and diffraction occurs on the sheltered side of the breakwater 
such that a wave disturbance is transmitted into the “geometric shadow 
zone.” It is clear that a quantitative understanding of the effects of wave 
diffraction is relevant to the planning and evaluation of various harbor 
layouts, including the extent and location of various wave-absorbing features 
on the perimeter. Diffraction is also important in the case of wave propaga- 
tion across long distances, in which classical wave refraction effects consid- 
ered alone would indicate zones of wave convergences and extremely high 
concentrations of wave energy. As the energy tends to be concentrated 
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Y 

Geometric shadow zone 
Geometric illuminated + 

Diffracted wave 

X : Incident wave 

Figure 4.24 Diffraction of wave energy into geometric shadow zone behind a 
structure. 

between a pair of converging wave orthogonals, some of this energy will 
“leak” across the rays toward regions of less wave energy density. Most 
present methodologies for computing wave energy distribution along a 
shoreline due to wave propagation across a shelf do not account for diffrac- 
tion and may result in greatly exaggerated distributions of wave energy. In the 
following sections, the main contributions contained in the classical paper by 
Penney and Price (1952) which relate to diffraction around breakwater-like 
structures will be reviewed. 

4.9.1 Diffraction Due to Wave-Structure 
Interaction 

The three-dimensional linearized boundary value problem formula- 
tion for this situation is similar to that presented before [Eqs. (3.19), (3.20), 
(3.29), and (3.30)] for two dimensions with the exception of the no-flow 
condition on the structure boundary and will not be presented here. Consid- 
ering water of uniform depth, the vertical dependency Z ( z )  satisfying the no- 
flow bottom boundary condition is 

Z(Z) = cash k(h  + Z )  (4.129) 

is represented by and the velocity potential 

&x, Y ,  z ,  0 = Z(z )F(x ,  Y )  eluf (4.130) 

where F(x ,  y )  is a complex function and i = J-1. Substituting Eq. (4.130) into 
the Laplace equation yields the Helmholtz equation in F(x ,  y ) :  

a2F a2F 
~ + __ + k2F(x,  y )  = 0 
ax2 ay2 

(4.131) 
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The kinematic and dynamic free surface boundary conditions yield the 
usual dispersion equation 

c? = gk tanh kh 

and an equation for the water surface displacement q given by 

ia 
g 

(4.132) q = - F(x,  y) cosh kh eluf 

The solutions to this equation will be examined for several important cases. 

Normal wave incidence on a semi4nfinite breakwater. An ideal (per- 
fectly reflecting) breakwater aligned on the x axis and extending from x = 0 to 
x = +a will require the boundary condition 

(4.133) 

For the boundary condition for x < 0, we require that the waves be 

~ ( x ,  y )  = Ae+, x + -a, all y (4.134) 

The solution of the governing equations was developed by Sommerfeld 

dF -=o,  o<x<+co, y = o  
dY 

purely progressive in the positive y direction, that is, 

which, when combined with Eq. (4.132), yields the desired result. 

(1896) and is expressed as 

where p, j?', and r are defined by 

and the signs of p and j?' to be taken depend on the quadrant in which the 
solution is being applied (see Figure 4.25). With considerable algebra, it can 
be verified that F(x,  y) as given by Eq. (4.135) satisfies both the Helmholtz 
equation and the boundary condition given by Eq. (4.133). The solution for 
F(x ,  y) may be evaluated in terms of Fresnel integrals 

L'cos 1 nu2 du and 1"s in  t nu2 du (4.137) 

which are tabluated in Abramowitz and Stegen (1965). 
As F ( x , y )  is complex, it contains both wave amplitude and phase 

information. As expected, at large x and y < 0 a standing wave is formed, at 
large x and y the waves approach zero, and for x -, -a, and all y ,  the wave is 
unaffected by the presence of the breakwater. Figure 4.26 represents wave 
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Figure 4.25 Sign criterion for (J, p). 1 

fronts and isolines of relative wave height for y > 0; the horizontal scales are 
rendered dimensionless in terms of wave lengths. 

Although the solution for F(x, y )  is algebraically complicated, there are 
several simple features that are of engineering relevance. First for large y ,  the 
relative wave height approaches one-half on a line separating the geometric 
shadow and illuminated regions (x =0) (see Figure 4.27). Second, for 
y /L  > 2, isolines of wave height behind a breakwater may be determined in 

10 

8 

6 

4 

2 

-8 -6 -4 -2 0 2 4 6 8 

L 
X - 

Figure 4.26 Wave fronts and contour lines of maximum wave heights in the lee of 
a rigid breakwater, and waves being incident normally. (- )exact solution, 
(- - - - -)approximate solution based on Eq. (4.138) and Figure 4.27. (After Penney 
and Price, 1952.) 
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Figure 4.27 Relative diffracted wave height R versus distance parameter W. 
(From Penney and Price, 1952.) 

accordance with the following parabolic equation: 

x = v m  
L 16 2 L  

(4.138) 

in which PR is the abscissa value obtained from Figure 4.27 for any value of 
relative wave height, R = H/HI. The dashed lines in Figure 4.26 compare 
several isolines obtained from Eq. (4.138) and Figure 4.27 with those from the 
complete solution. 

Obliquely incident waves on a semi-infinite breakwater. For this 
case, there will also be three regions or zones corresponding to (1) the 
geometric shadow zone, (2) the geometric illuminated zone outside the 
region of direct reflection from the breakwater, and (3) the up-wave region 
within which direct reflection from the breakwater occurs. An example of a 
diffraction diagram showing isolines of relative wave height is presented in 
Figure 4.28 for 0, = 30". Plots for other directions are presented in the Shore 
Protection Manual (1977). The diffracted wave fronts in the geometric 
shadow zone are approximated well by circles with their centers at the 
breakwater tip. As before, the relative wave height along a line separating the 
geometric sheltered and illuminated zones is approximately one-half. 

Wave diffraction behind an offshore breakwater of finite length. For 
an offshore breakwater of finite length, an approximate diffraction diagram 
can be developed by considering the maximum wave height to be the sum of 
the two waves diffracting around each of the two ends of the breakwater. The 
resulting diffraction coefficients would therefore represent an upper limit, 
since only in very special locations would the waves reinforce completely. 
Figure 4.29 presents approximate isolines of diffraction coefficients for an 
offshore breakwater which is 10 wave lengths long. 
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0.40 

Waves of wavelength L 

Figure 4.29 Isolines of approximate 
diffraction coefficients for normal wave 
incidence behind a breakwater that is 10 
wavelengths long. (From Penney and 
Price, 1952.) 

Wave diffraction due to waves of normal incidence propagating 
through a breakwater gap. For a gap width that is in excess of one wave 
length, it can be shown that the diffracted wave solution is very nearly given 
by the superposition of terms in the diffraction solution selected to approxi- 
mately satisfy the boundary conditions on the two breakwater segments. 
Figure 4.30 presents an example for a gap that is 2.5 wave lengths long. 

Waves propagating through a breakwater gap narrower than one wave 
length. For this case, the waves in the lee of the breakwater propagate as if 
from a point source and in accordance with energy conservation relation- 
ships; the wave heights decrease as r-”’ with distance from the center of the 
gap. The expression for relative wave height as a function of r for locations 
not too near a gap of width b is 

(4.139) 

in which yis the Euler constant (= 0.577.. .). 
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Figure 4.30 Isolines of approximate 
diffraction coefficients for normal wave 
incidence and a breakwater gap width 
of 2.5 wavelengths. (From Penney and 
Price, 1952.) 

4.10 COMBINED REFRACTION-DIFFRACTION 

Refraction, which involves wave direction and height changes due to depth 
variations, and diffraction, caused by discontinuities in the wave field 
resulting from the wave’s interaction with structures, often occur simultane- 
ously. For example, at the tip of a breakwater, diffraction is of utmost 
importance, yet if a large scour hole exists there or if a beach is nearby, 
refraction is important as well. It therefore is necessary to be able to treat both 
phenomena simultaneously. 

Theoretically, the problem is difficult, demanding the solution of the 
Laplace equation in an irregularly varying domain. Therefore, approxima- 
tions must be made to simplify the problem. The crudest approach, most 
often used in practice, is to assume that diffraction predominates within 
several wave lengths of the structure and farther away, only refraction. In the 
last decade, however, a newer approach has evolved through the use of a 
model equation. Berkhoff (1972), seeking an equation governing the pro- 
pagating wave mode [which has a cosh k(h + z )  dependency over the depth], 
multiplied the Laplace equation by cosh k(h + z) and integrated over the 
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depth. This reduces the equation to the two horizontal dimensions and yields 

(4.140) 

where vh is the horizontal gradient operator and C and Cg are the wave and 
group velocity, respectively. The F is a complex function which represents the 
wave amplitude and phase. The total velocity potential then is 

cosh k(h + z) 
cosh kh &x, Y ,  4 = F - (4.141) 

In deriving this equation it was assumed that the bottom slopes are mild. This 
model equation, while approximate in intermediate depth, is exact in both 
deep and shallow water. In deep water it reduces to Eq. (4.131), while in 
shallow water it is 

gvh * (hVhJ;? + dF = 0 (4.142) 

which is a two-dimensional equivalent of Eq. (5.37), valid for long waves, as 
discussed in Chapter 5. 

Analytical solutions to the model equation are few; Jonsson and Brink- 
Kjaer (1973) and Smith and Sprinks (1975) present the case of waves 
encountering a circular island, and for Smith and Sprinks, the case for edge 
waves and waves propagating over a step are also treated. Kirby et al. (1981) 
used the model equation to study edge waves on irregular beach profiles. 
Numerical finite element techniques have been used by Berkhoff to treat 
arbitrary boundary problems such as harbors and islands. 

A second approach, developed by Radder (1979) and Lozano and Liu 
(1980), utilizes a parabolic approximation to the elliptic Laplace equation, 
which makes the solution more easily obtainable as only initial condition 
must be specified as opposed to all the lateral boundary conditions. These 
methods are computationally quicker than Berkhoff’s. 
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PROBLEMS 

4.1 (a) A wave train is propagating normally toward the coastline over bottom 
topography with straight and parallel contours. The deep water wave length 
and height are 300 m and 2 m, respectively. What are the wave length, 
height, and group velocity at a depth of 30 m? 

(b) What is the average energy per unit surface area at the site of interest? 
(c) Work part (a) for the case of the same deep water characteristics, but with 

Derive the relationship for the average potential energy per unit interface area 
associated with the interface displacement: (Note: Neglect capillary effects.) 

deep water crests oriented at 60" to the bottom contours. 
4.2 

H 
2 

r )  = - cos ( k x  - of)  

h' 

/\ 
/ 11 

h" p" > p' 

4.3 The harbor entrance shown below is designed for the following deep water 
wave conditions: 

H 0 = 5 m  

T = 1 8 ~  

b- 6000 m -4 

Ocean b ,  Harbor 

Statibn B 

It is desired to design the width at station B such that the wave height at station 
B resulting from the design wave is 2 m. What must be the slope of the side 
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- n - - -  
/ - -  w - -  

walls between A and B for this criterion to be satisfied? Use the following 
information: 

bA = 100 m 

hA = 15 m 
hB = 10 m 

and assume that the wave height is uniform across the harbor width at station B 
and that the spacing between orthogonals at station A is one-half that in deep 
water. 

4.4 Observations of the water particle motions in a small-amplitude wave system 
have resulted in the following data for a total water depth of 1 m. 

major semiaxis = 0.1 m 

minor semiaxis = 0.05 m 

These observations apply for a particle whose mean position is at middepth. 
What are the wave height, period, and wave length? 

4.5 As a first approximation, the decrease in wave amplitude due to viscous effects 
can be considered to occur exponentially. For example, for a progressive wave 
v, 

H, 
2 

q = - e-w cos (kx - at) 

(a) Develop an expression corresponding to that above for the wave system 
resulting from a wave ofheight H generated at the wave maker, propagating 
(and suffering a loss in wave height due to viscosity) to the barrier which is 
at x = C, reflecting back (reflection coefficient = 1.0) and propagating back 
to the wavemaker. Do not consider secondary reflections from the 
wavemaker. 

(b) Outline a laboratory procedure for determining the wave system ampli- 
tude envelope I q I. 

(c) Showthat 

H 
2 

I v I = - e-@ J2 [cos 2k(x - C) + cosh 2p(x - t)]  

x = o  X" 
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4.6 A wave of 10 s period is propagating toward the rubble mound breakwater. The 
recording determined by the traversing pressure sensor is shown below. Calcu- 
late the rate (per meter of width) of energy dissipation by the breakwater. At 
what separation distance do the pressure maxima occur? 

Pressure 4700 N / m 2  

0 

Pressure record from traversing sensor 

4.7 An important problem in beach erosion control is the scour in front of vertical 
walls due to reflected waves. Assuming perfect reflection from a wall and 
shallow water conditions, determine the resulting water depth under the node 
nearest the wall if the wave height and period are known at the wall. Assume 
that the equilibrium scour depth h is one for which the maximum horizontal 
velocity at the bottom is less than or equal to 3 m/s. 

4.8 For a group of waves in deep water, determine the time for each individual 
wave to pass through the group and the distance traveled by the group during 
that time if the spacing between the nodes of the group is L I  and the wave 
period of the constituent wave is T. There are n waves in the group. 

4.9 Two pressure sensors are located as shown in the sketch. For an 8-s progressive 
wave, the dynamic pressure amplitudes at sensors 1 and 2 are 2.07 x lo4 N/m2 
and 2.56 x lo4 N/m2, respectively. What are the water depth, wave height, and 
wave length? 

Sensor 2 

Sensor 1 
1.62 m 
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The z axis is oriented vertically upward, that is, in a direction opposed to the 
gravity vector. The following values may be used: 

g = 9.81 m/s2 

p = 992 kg/m’ 

4.10 An experiment is being conducted on the wave reflection-transmission by the 
step-barrier combination shown in the drawing that follows. The characteris- 
tics of the two wave envelopes are shown. 
(a) What is the height A of the step? 
(b) Is enough information given to determine whether or not energy is con- 

served at the step-barrier? 
(c) Ifthe answer to part (b) is “no,” what additional information is required? If 

the answer to part (b) is “yes,” determine whether energy losses occur at the 
step-bamer. 

Step 

4.11 An axially symmetric wavemaker is oscillating vertically in the free surface, 
generating circular waves propagating radially outward. At some distance (say 
Ro) from the wavemaker, the crests are nearly straight over a short distance and 
the results derived for plane waves may be regarded as valid for the wave 
kinematics and dynamics at any point. The wave height at R, is H(R0). Derive 
an expression for H(r) ,  where r > Ro. (The depth is uniform.) 

4.12 A wave with the following deep water characteristics is propagating toward the 
coast: 

H o =  1 m 
T = 1 5 ~  

At a particular nearshore site (depth = 5 m) a refraction diagram indicates that 
the spacing between orthogonals is one-half the deep water spacing. 
(a) Find the wave height and wave length at the nearshore site. 
(b) Assuming no wave refraction, but the same deep water information as in 

part (a), and that the wave will break when the ratio H/h reaches 0.8, in 
what depth does the wave break? 
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4.13 A wave with the following deep water characteristics is propagating toward the 
shore in an area where the bottom contours are all straight and parallel to the 
coastline: 

H o = 3 m  

T =  10s 

The bottom is composed of a sand of 0.1 mm diameter. If a water particle 
velocity of 30 cm/s is required to initiate sediment motion, what is the greatest 
depth in which sediment motion can occur? 

4.14 For the wave system formed by the two progressive wave components 

H, 
2 

q, = - cos (kx - ot + E , )  

H ,  
2 

q, = - cos (kx + of - E,) 

derive the expression for the average rate of energy propagation in the +x 
direction. 

4.15 Develop an experimental method for determining the phase shift E incurred by 
a wave partially reflecting from a bamer. 

4.16 Develop an equation for the transmitted wave height behind a vertical wall 
extending a depth d into the water ofdepth h based on the concept that the wall 
allows all the wave power below depth d to propagate past (Wiegel, 1960). 
Qualitatively, do you believe that your equation for the transmitted wave 
height would underestimate or overestimate the actual value? Discuss your 
reasons. 

4.17 What is the physical reason that the pressure is hydrostatic under the nodes ofa 
standing wave (to first order in wave height)? 

4.18 Consider an intuitive treatment for the sum of an incident wave of height H ,  
and reflected wave of height H, and show that the same envelope results are 
determined as obtained in the text. Represent the incident wave as two 
components: one of height H ,  and the second as H ,  - H,. Now the combination 
of the first incident component with the reflected yields a pure standing wave 
and the second incident component is a pure progressive wave. Simply add the 
envelopes for the pure standing and progressive wave systems. 

4.19 Develop the pressure response factor by integrating the linearized equation of 
motion from some arbitrary elevation z up to the free surface z = r].  

4.20 Using as a breaking criterion that the horizontal water particle at the wave crest 
exceeds the wave celerity, determine breaking criteria for deep and shallow 
water. Why does the latter one differ from that of McCowan? 
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Dedication 

LORD KELVIN 

Sir William Thompson (Lord Kelvin) (1824-1907), born in Belfast, con- 
tributed significantly to the field of hydrodynamics, from its theoretical 
basis to the solution of numerous wave problems. Here he is cited for 
his work in long waves with Coriolis and gravitational forcing, but he 
addressed a variety of problems, as is evidenced by his 661 papers and 
56 patents. (See Mathematical and Physical Papers, Cambridge, 1882.) 

When he was 11 years old, he entered the University of Glasgow, 
leaving in 1841 to enter Peterhouse, Cambridge University, to further his 
education. During this time he made a trip to Paris University to meet 
Biot, Liouville, Sturm, and Foucault. In 1846 he became Professor of 
Natural Philosophy at Glasgow, a post he held for 53 years. 

A contemporary of Joule (whom he had met at Oxford) as well as 
Carnot, Rankine, and Helmholtz, Kelvin pursued a variety of research 
areas, including heat and heat conduction. Between 1851 and 1854, he 
fully elucidated the first two laws of thermodynamics, and suggested 
the concept of refrigeration by the expansion of compressed cold air. 

Kelvin contributed actively to the early development of submarine 
cables. He interacted with cable companies and developed means of 
testing the purity of copper in the cables after he showed that the purity 
affected its conductivity. He was knighted in 1866 for his cable work. 
Before the Institution of Civil Engineers in 1883, Kelvin remarked, 
“There cannot be a greater mistake than that of looking superciliously 
upon practical applications of sciences.” This philosophy led him to 
invent numerous electrical devices such as a galvanometer and an 
ampere gauge, and to set up an electrical company, Kelvin and White, 
Limited. 

He became the first Baron Kelvin of Largs in 1892. He died in 1907 
and was buried in Westminster Abbey. 

131 
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5.1 INTRODUCTION 

Waves propagating in shallow water, kh < n/lO, are often called long waves or 
shallow water waves. Tidal waves, tsunamis (erroneously called tidal waves), 
and other waves with extremely long periods and wave lengths are shallow 
water waves, even in the deep ocean. 

The study of long waves is of importance to the engineer in the design of 
harbors and in studying estuaries and lagoons. Because long wave energy is 
effectively reflected by structures or even by beaches of mild slope, harbors, 
which have waves propagating into them, can be excited into resonance by 
long waves of the proper period, obviously not a desirable state. Tidal 
propagation in estuaries is affected greatly by the geometry of the estuary; 
resonance, as in a harbor, can also occur, yielding large tides (50+ ft at the Bay 
of Fundy). 

In this chapter selected long wave topics are presented, after the 
equations governing them are derived. 

5.2 ASYMPTOTIC LONG WAVES 

Previously, the velocity potential and the corresponding velocities and free 
surface profile for small amplitude waves were derived. The velocities and 
the surface profile for a progressive wave are described by these equations: 

H 
2 

q = - cos (kx - at) 

Using the shallow water asymptotic forms of the hyperbolic functions, we can 
arrive at equations for the water particle velocities of long waves, kh << n/10, 

g H k  rlc us = - cos (kx - at) = - 
2a h (5.2) 

where the shallow water wave celerity C = &% was introduced and the 
subscript s denotes shallow water. Interestingly, us is not a function of 
elevation; the horizontal velocity is uniform over depth. For the vertical 
water particle velocity, 

g H k  w, = -[k(h + z)]  sin (kx - at) 
20 

(5.3) - -_ sin (kx - at) = -C 
2 h  
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The vertical velocity varies linearly with depth from zero at the bottom to a 
maximum at the surface and is much smaller in magnitude than us. The ratio 
of their maximum values is 

where kh is small. The pressure under these long waves is found by Eq. (4.22): 

cosh k(h + z )  
cosh kh P = -P@ + Pgrl 

or 

The pressure under these long waves is thus hydrostatic, as might be expected 
since the vertical accelerations can be shown to be small. 

5.3 LONG WAVE THEORY 

In Chapter 3 the equations and boundary conditions necessary to solve for 
two-dimensional water waves were presented. If we assume that the pressure 
under long waves is hydrostatic at the outset, we can integrate the governing 
equations over the water depth to get the long wave equations directly rather 
than asymptotically. Integrating over depth should not be a surprising tech- 
nique here, particularly when we know that the horizontal velocity is not a 
function of depth. As a further generalization of the results, the flow will be 
allowed to be three-dimensional. 

5.3.1 Continuity Equation 

The three-dimensional conservation of mass equation for an incom- 
pressible fluid is 

(5.6) 
a u  a v  a w  
ax ay az 
-+-+-=o 

This is true everywhere in the fluid. Integrating over depth, we have 

(5.7) 

The Leibniz rule of integration is used to integrate terms such as the 



1 34 Long Waves Chap. 5 

first two on the right-hand side of this expression. In general, it is stated as 

Note that if the limits of the integral are constants relative to the variable of 
integration, the differential operator can be moved into or out of the integral 
without generating additional terms. 

Therefore, the integrated continuity equation is rewritten as 

arl ah d 
ax ax ax 

dz - u(x, Y ,  rl)  - - u(x,  Y ,  -h) - + w(x, Y ,  V )  - w(x, Y ,  -h) 

arl ah 

aY aY aY 
+ l:v dz  - v(x, y ,  q) - - v(x, y ,  -h) - = 0 (5.9) 

If we define 

U=-lhudz 1 q  and V=-J‘vdz 1 
h + v  h + q  -h 

through the use of the mathematical definition of an average (thereby 
incorporating any possible vertical variation in horizontal velocity), or if we 
just assume that u and v are constants over the depth, U and V, the continuity 
equation can be written as 

(5.10) 

Further simplification will result through the use of boundary conditions. 
The kinematic free surface boundary condition is, in three dimensions, 

The bottom boundary condition for a fixed (with time) surface is 

(5.11) 

(5.12) 

Substituting these conditions into the vertically integrated continuity equa- 
tion yields the final form of the continuity equation 

(5.13) a[U(h + 701 + a[ V(h + rl)l = - d’l 
ax aY at 



Sec. 5.3 Long Wave Theory 135 

This equation can also be derived by considering a column of water of area 
dx dy and height (h  + v). The continuity equation states that the sum of all the 
net fluid flows into the column must be balanced by an increase of fluid in the 
column, which, since it is an incompressible fluid, is manifested by a change 
in height (volume) of the column (see Figure 5.1). This exercise is recom- 
mended to the reader. 

5.3.2 Equations of Motion 

The equation of motion in the x direction for a fluid is [Eq. (2.35)] 

- + u - + v - + w - = - - - + -  -+-+- (5.14) au au  au au 1 ap 1 ar, az,, 
at ax ay az p a x  p ( ax ay az 

Using the equation for pressure under a long wave [Eq. (5 .5 ) ] ,  p = pg(q - z) ,  
which states that the pressure is hydrostatic, the first term on the right-hand 
side becomes 

(5.15) 

which is constant over depth. After adding the continuity equation, and 
vertically integrating using Leibniz’s rule, as well as using the kinematic 
boundary conditions at the surface and the bottom, the horizontal momen- 
tum equation becomes 

(5.16) 

Figure 5.1 
and V(h + r]),  respectively. 

Control volume for conservation of mass. The qx, qv denote U(h + r] )  
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Equation (5.16) is based on the assumption that z, and z,, do not depend on 
z. The parameters are momentum correction factors, P, is slightly greater 
than unity, and they are used in hydraulics in order to permit the substitution 
of the squared mean velocity for the mean of the velocity squared. 

They equation becomes 

(5.17) 

Quite often in practice the momentum correction factor is considered to be 
unity, and, employing the continuity equation, the equations may be simpli- 
fied to 

(5.18) 

(5.19) 

The governing equations, continuity and the equations of motion, are 
nonlinear. To linearize them to facilitate analytical solutions, we again argue 
that U ,  V ,  and q are small; therefore, their products are also small. The linear 
equations become, in the absence of shear stresses: 

Linearized continuity equation- 

(5.20) 
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Linearized frictionless long wave equations of motion- 

au aq 
at ax 
av aq _-  - -g - 
at aY 

_ -  - -g - (5.21) 

(5.22) 

If the bottom is horizontal, the equations can be cross-differentiated to 
eliminate U and V,  yielding 

(5.23) 

where C = @. This is known as the “wave equation,” which occurs quite 
often in other fields; it governs, for example, membrane vibrations and 
planar sound waves. To compare with the previous asymptotic results, a 
solution of the wave equation will be sought for only the x direction. The 
solution to this equation for a progressive long wave is 

(5.24) H 
2 

q = - cos (kx - at) 

Substituting into the x equation of motion [Eq. (5.21)] yields 

H 
= g - k sin (kx - at) 

at 2 
or 

H VC U = g - k cos (kx - at) = - 
20 h 

(5.25) 

(5.26) 

the same as found by asymptotic means before. 

form of the dispersion relationship as derived in Chapter 3. 
Substituting into the continuity equation yields C2 = gh, the long wave 

5.3.3 The Energy and Energy Flux in a Long 
Wave 

For a progressive long wave, the total average energy may be obtained 
as before as the contributions from the kinetic (KE) and potential energy (PE) 
components. Because the vertical velocity component is much smaller than 
the horizontal velocity component, it is not necessary to account for the 
vertical velocity (for the same order of accuracy). The appropriate expres- 
sions are 

(5.27) 
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Substituting Eqs. (5.24) and (5.26) for U and q, respectively, and integrating, 
it is found that 

KE = PE = k p g H 2  

and, as before, the total energy per unit surface area is 

E = KE + PE = ipgH2 (5.29) 

The average energy flux can be shown to be 
- 
3 = EnC = E,@ 

which again shows that the wave energy travels with the phase speed of the 
shallow water wave. If we examine the change in wave height due to changes 
in water depth and channel width via conservation of energy flux, we find 
that 

which is the shallow water approximation to Eq. (4.116). For the special case 
of bl = b2, this relationship is called Green’s law. 

5.4 ONE-DIMENSIONAL TIDES IN IDEALIZED CHANNELS 

5.4.1 Co-oscillating Tide 

As a simple example of tidal wave propagation into a channel, consider 
a long wave propagating from the deep ocean into a channel of constant depth 
which has a reflecting wall at one end. This configuration is depicted in Figure 
5.2. The wall requires that there be an antinode of a standing wave system 
there. 

Adding two long waves (remember, the equations are linear and super- 
position is still valid), we have 

H H 
2 2 

q = q, + qr = - cos (kx - at) + - cos (kx + at) 

= H cos at cos kx (5.30) 

a pure standing wave system as before. Note that the total water surface 
elevation has a range twice that of the incident tidal height and a = 2n/T, 
where T is the tidal period. For a semidiurnal tide, two highs and two lows 
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X = I  

Figure 5.2 Co-oscillating tide in a channel of length 1. 

during a lunar day, the tidal period is 12.4 h. The distance to the node is found 
by equating the spatial phase function of qr to a/2, that is, finding the phase 
position for which q equals zero. 

or 

The range of the tide at the entrance to the channel is 

2 ( q ( f ) 1  = 2 H I  coskfl- 

Relating q(2) to q(O), the amplitude of the tide at the wall, we have 

1 

(5.3 la) 

(5.3 lb) 

(5.32) 

(5.33) 

For channels for which f approaches (2n - 1)(L/4) and n = 1,2,. . . , the ratio 
I q(O)/q(f) I approaches infinity (i.e., this represents a resonant condition). 

5.4.2 Channels with Variable Cross Sections 

In deriving the equations of motion and continuity, had we not taken a 
unit width in the derivation, but considered a channel of width b, the 
linearized one-dimensional equations valid along the channel centerline 
would have been 

(5.34a) 

(5.34b) 

These can be verified by integrating Eqs. (5.6) and (5.14) with respect to y 
prior to the integration over depth. Differentiating the first equation (5.34a) 
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with respect to time, 
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Substituting the second equation (5.34b) yields 

(5.35) 

(5.36) 

which reduces to the wave equation if b and h are constant. As in the previous 
case for the constant depth basin, assume that q(x, t )  can be written as 
q(x, t) = q(x) cos at. The equation then becomes 

(5.37) 

Several examples of the application of this equation to estuaries with linearly 
varying widths, depths, or both are provided by Lamb (1945) in Article 186. 
One case is discussed below. In all these examples, the resulting wave height is 
different from that predicted by Green's law, as Eq. (5.37) allows for the 
reflection of waves by the topographic changes, while Green's law assumes 
that the bathymetric changes are so gradual as to not cause reflection. 

Example 5.1 

Consider an estuary of uniform depth whose width increases linearly (from zero) with 
distance toward the mouth at x = I .  Determine the tidal surface elevations within the 
estuary, due to the co-oscillating tide. 

Solution. Let b = ax, where a is equal to b//I and b/ is the width of the bay at the 
mouth. Substituting into Eq. (5.37) the following equation results directly: 

(5.38) 

where k2 = d / C 2  = $/gh. This equation is a Bessel equation of order zero which is 
solved in terms of Bessel functions. The general solution is 

q(x, t )  = [CIJO(kx) + C,Yo(kx)] cos at (5.39a) 

where C I  and C2 are constants to be determined. At x = 0, the end of the channel, 
Yo(0), is infinite, which would be unrealistic for ~ ( 0 ,  t ) ;  therefore, C2 = 0. To evaluate 
C,, the tide at x = I ,  the mouth, is taken to be ( H j 2 )  cos gf, where, again, H i s  the local 
tide range. 

H 
2 

ll(L t )  = CIJO(kl) cos at = - cos at 

or 
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Figure 5.3 Standing waves in a pie-shaped estuary of uniform depth. 

Finally, the solution is 

(5.39b) 

As shown in Figure 5.3 the zeroth-order Bessel function calls for a large increase in 
tidal height into the estuary or bay, with a corresponding wave length decrease in the 
near field (about 25% over the first half wave length). If the estuary length 1 
corresponds to a zero of the Bessel function, then again the possibility for resonance 
occurs. 

5.5 REFLECTION AND TRANSMISSION PAST AN ABRUPT 
TRANSITION 

A more dramatic example of long wave reflection (and transmission) occurs 
when there is an abrupt change in depth or channel width. Also in this case, 
Green's law does not apply due to the presence of a reflected wave. Figure 5.4 
shows the geometry of the transition region. The fluid domain is divided into 
regions 1 and 2 as shown. The incoming wave qi will be assumed to propagate 
in the positive x direction with height Hi. At the step, it is expected that a 
portion of the wave will be reflected and some of it transmitted. Therefore, in 

Figure 5.4 Elevation and plan views of an abrupt channel transition. 
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each region, the total wave forms are assumed as follows: 

Hi H 
2 2 

ql= qj + q r  = - cos (klx - at) + 2 cos (klx + at + E, )  

q 2  = qf = - cos (k2X - at + €0 
(5.40) Hf 

2 
where the subscripts i, r, and t signify incident, reflected, and transmitted, 
respectively. The difference in sign modifying at in the phase function for the 
reflected wave means that this wave is propagating in the negative x direc- 
tion. In each region the angular frequencies are the same; however, the wave 
numbers are different due to the change in water depths. The two phase 
angles, E, and Ef, are included to allow for the possible phase differences 
caused by the reflection process. 

At the step there are two boundary considerations that must be met by 
the wave forms ql and q 2 .  First (at x = kb, where 6 is infinitesimally small), 
the water levels on each side of the step should be the same, as, from the long 
wave equations of motion, any finite water level change over an infinitely 
small distance 26 would give rise to infinite accelerations of the fluid 
particles. Second, from continuity considerations, the mass flow rate from 
region 1 must equal that into region 2. For a homogeneous fluid, this merely 
reduces to matching volumetric flow rates between regions. Applying the first 
condition gives us 

qi + qr = qf at x = 0 (5.41) 

or, through a trigonometric expansion after substitution, 

2 2 
(5.42) 

As this condition must be valid for all time t ,  two independent condi- 

(5.43a) 

H ,  sin E ,  = -H, sin El (5.43b) 

The continuity of flow condition can be written in terms of the horizon- 
tal water particle velocity of the wave multiplied by the cross-sectional area 
for each region [from the width-integrated continuity equation, Eq. (5.34a)l. 

tions result by equating each bracketed term separately to zero: 

H ;  i H ,  cos E,  = HZ cos E/  

( U l ~ h ) ~  = ( U l ~ h ) ~  at x = 0 (5.44) 
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or, recalling that for a long wave, 

in the direction of the wave, we can write 

biCi(V1- V r )  = b2C2~r (5.45) 

Again we have two conditions, after trigonometric expansion and 

(5.46) 

equating the terms modifying the cosine and sine, respectively: 

blClHi - biCIH, cos E~ = b2C2HI cos €1 

b l C I H ,  sin E ,  = b2C2Hf sin (5.47) 

Denoting the reflection and transmission coefficients by K ,  (= H,/Hi) 
and K ,  (= Hf/Hi) ,  respectively, the four equations (5.43a, 5.46, 5.43b, and 
5.47) in terms of the four unknowns (K,, K,, E,, and el) are 

1 + K ,  cos E ,  = K ,  cos E ,  (5.48) 

1 - K ,  cos E ,  = K( - b2C2 cos E, 
biCi 

(5.49) 

K~ sin E~ = -K, sin.€, (5.50) 

Subtraction of the last two equations yields 

(5.51) 

(5.52) 

which requires that E ,  be +_nn for non-trivial values of xf. Multiplying Eq. 
(5.50) by b2CzlbICI and adding to Eq. (5.51) also indicates that E ,  = k n n  for 
nontrivial solutions. The four governing equations can therefore be con- 
densed to the following two: 

1 k K ,  = kKf  (5.53) 

(5.54) 

in which the plus and minus signs follow from the requirements on E ,  and E,. 
It is only known that the signs on the right-hand side of each equation are the 
same and those on the left-hand side are in opposition. The correct signs will 
be determined later from physical reasoning. Adding Eqs. (5.53) and (5.54), 
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we find that 

(5.55) 

and here it is clear that the + sign is to be taken because for b2C2 = blCI ,  that 
is, the case of a uniform channel, the transmission coefficient is obviously 
unity. Multiplying Eq. (5.53) by b2C2/bICI and subtracting from Eq. (5.54) 
gives us 

(5.56) 

and here the minus sign is to be taken since for the limiting case ofa vanishing 
channel, b2CZ/blCI = 0, the reflection coefficient should be +I, that is, 

(5.57) 

Several interesting cases can be examined for bl = bZ. If the long wave 
assumptions are still valid, yet h i  >> h2, then K~ -. 2 and K ,  -, 1. This case 
corresponds to a pure standing wave in region 1 and transmitted wave of the 
same height as the standing wave. But if the situation is reversed, that is, if 
long waves in very shallow water propagate to a region of greater depth, 
h2 >> h I ,  then rc, -. 0 and rc, -. -1. (A negative reflection coefficient means only 
that the phase of the wave E,, which we had taken as zero degrees, is shifted to 
180".) It is thus very difficult for waves to propagate from shallow to deeper 
water. This in fact is true for short waves also. [Hilaly (1969) shows interesting 
experiments for waves unable to propagate over steps.] Figure 5.5 presents 
the variations of Kr and rcf with the parameter ( b 2 / b I ) m .  

Dean (1964), using this approach and Eq. (5.37), has examined numer- 
ous cases of cross-sectional channel changes and obtained the transmission 
and reflection coefficients. 

5.5.1 Seiching 

In previous sections, the oscillations of the water in a basin were forced 
by the tide at a frequency corresponding to the tidal frequency. However, any 
natural basin, closed or open to a larger body of water, will oscillate at its 
natural frequency if it is excited in some fashion, such as by earthquake 
motion, impulsive winds, or other effects. 

To predict these oscillations, the equation developed previously can be 
used. As an example, the seiching in a long rectangular lake with essentially a 
constant depth will be examined first. A solution to Eq. (5.23) for standing 
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Figure 5.5 Reflection and transmission coefficients for long waves propagating 
past an abrupt transition. 

waves in this basin is, as before, 
H 
2 

?l= - cos kx cos at. (5 .58)  

except that aand k are both unknown. At the ends of the basin, the horizontal 
velocities must be zero. This requirement can be satisfied using Eq. (5.21) or 
using the knowledge that the antinodes must be situated at the walls, x = 0,l. 
This requirement yields sin kx = 0 for x = 0,l. Therefore, kl = nn, where n is 
the number of oscillations of the wave within the basin (equivalently the 
number of nodes). Substituting for k gives us 

21 L = -  (5.59) 
n 

For three values of n, the wave lengths are shown for the basin in Figure 5.6. 
Each possible type of oscillation is called a mode, and the mode that occurs in 

n = l  n = 2  n = 3  

Figure 5.6 
shown. 

Standing waves in a simple rectangular basin. The first three modes are 
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seiching is determined by the cause (forces) that induces seiching. In reality, 
however, the lower modes are most prevalent since the energy in the higher 
modes is dissipated more rapidly. 

To determine the period of seiching, the dispersion relationship for 
shallow water waves is used, with Eq. (5.59): 

or 

(5.60) 

This formula is known as the Merian formula. Proudman (1953) gives several 
examples for actual lakes. For Lake Baikal in Siberia, the length is 664 km 
and the average depth is 680 m. The Merian formula predicts T = 4.52 h, 
compared to a measured period of 4.64 h. 

For more complex one-dimensional basins, a modified Merian formula 
can be used. Wilson (1966) has summarized the results for a number of 
geometries and these are presented in Table 5.1. More icCcntly, Wilson (1972) 
has developed more analytical seiching models and also reviews the litera- 
ture. 

5.6 LONG WAVES WITH BOTTOM FRICTION 

The bottom shear stress 756 retarding the motion of the fluid in unidirectional 
open channel flow can be expressed in terms of a quadratic friction law: 

(5.61) 

wherefis the Darcy-Weisbach friction factor and U is the fluid velocity. This 
equation has been developed through dimensional analysis and experimental 
data have been used to develop values off. Further discussion of bottom 
friction appears in Chapter 9. 

For an oscillatory flow, it is clear that as the fluid reverses direction, so 
also must the bottom friction. Therefore, an absolute value sign is intro- 
duced. 

(5.62) 

For wave motions, the bottom friction is a nonlinear function and due to the 
absolute value sign becomes difficult to work with directly. A common 
procedure is to linearize the friction term. 
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Consider U as a periodic function in time, U = Um cos at, where Urn is 
the maximum magnitude of U. Ifwe expand the shear stress term in a Fourier 
cosine' series, we have 

m 

U l U l  =ao+ 2 a,cosnat 
,=I 

where 

a. = - 

(5.63) 

(5.64) 

and 

a,=- 2v', lT cos at lcos at I cos not dt (5.65) 
T 

Evaluating several of these integrals yields 

a0 = 0 

a2 = 0 

8 Gl 
a3 = - 

15n 

All of the even harmonics are zero while the odd harmonics are nonzero. It is 
interesting that the quadratic friction law has introduced higher harmonics 
(which is expected as friction is a nonlinear process). Keeping only the first 
term in the Fourier expansion (recognizing, however, that the next term in 
the series expansion is only one-fifth of the leading term), 

(5.66) 

This linearization was first developed by Lorentz (1926) utilizing a dissipa- 
tion argument and is sometimes referred to as the Lorentz concept. For 
uniform depth the vertically integrated equation of motion in the x direction 
can now be written with r b  = r,(-h), from Eq. (5.18), as 

(5.67) 

where A = f l m / 3 n h ,  typically a small number, much less than unity. The 
continuity equation, Eq. (5.13), remains unchanged, of course. Cross- 
differentiating the two equations assuming A is locally constant and substi- 

' A  cosine series is chosen as U and 7 6  are even functions of time. 
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tuting, the wave equation can be derived, including friction: 

a2q aq a2q 
at2 at ax 
- + A - = gh 7 

5.6.1 Standing Waves with Frictional Damping 

If a solution is assumed of the form 

(5.68) 

(5.69) 

where k remains fixed, such as would occur with a standing wave in a basin 
with fixed length, andf(olt) is some unknown function of time, then the 
equation is 

df dtf+ A - + g h k y =  0 
dt2 dt 

(5.70) 

The total solution is then found to be 

q = 5 e(-A/2)1cos (5.71) 
2 

where 0, = krCI (the subscript I refers to undamped conditions), C, = ,@ 
and H I  is the initial wave height (at t = 0), or 

where 

and ar = al A 
Q. = - 

I -  2 

The horizontal velocity can be found using the continuity equation 

or u=-- H I  d m  e-"(' sin (a,t + E )  sin kIx (5.72) 
2kIh 

where 

ai 

or 
E = tan-' - 

The parameters a, and a, are plotted in Figure 5.7 versus the ratio A/a,. 
As ar decreases with friction, the period of oscillation increases; friction slows 
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Figure 5.7 Wave number and phase angle for a damped standing wave. 

the wave motion. It is clear that the damping ratio A/a,  in the expression for 
a, must be less than 2; otherwise, excessive damping occurs and there is no 
wave-like motion (such as might occur with a basin full of molasses). 

The relative reduction in amplitude over one wave period is a constant 
value and is expressed as 

(5.73) 

which decreases rapidly with increasing cri or A. For example, for A/oI  as 
small as 0.05, this ratio is 0.85, or a 15% reduction in height within one wave 
period. 
Example 5.2 

Shiau and Rumer (1974) carried out a series of experiments to examine the decay of 
shallow water standing waves (seiches) in a basin. The experiments were conducted in 
very shallow water (0.15 < h < 8.5 cm). Assuming that the motion is laminar, a 
friction factor can be chosen to compare the above model with their experimental 
results. Stokes's (1851) second problem, that of an oscillating (with frequency a) flat 
plate beneath a still fluid, yields a shear stress on the plate with a magnitude 

=b- = P f i  urn (5.74) 

where v is the kinematic viscosity of the fluid and U,,, is the magnitude of the 
oscillating velocity. This problem is directly analogous to the case under considera- 
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Figure 5.8 Decay modulus versus Proudman number for an assumed laminar 
friction factor. [From Shiau and Rumer (1974). Equation (21) in figure refers to 
their solution.] 

tion; the only change is that of the reference frame, which is taken as one that is fixed 
to the oscillating plate. 

Since Eq. (5.74) for the.shear stress is linear and the preceding treatment 
represents a linearized form of the shear stress, the laminar flow problem can be 
treated directly. Comparison of Eqs. (5.74), (5.67), and (5.18) shows that 

(5.75) 

The Shiau and Rumer study determined the decay modulus a, which can be obtained 
from Eq. (5.73) as 

or from Eq. (5.75)can be expressed as 

(5.76) 

(5.77) 

where P is the Proudman number, P = 3/gk2h5.  Figure 5.8 shows the theoretical value 
of a compared with the experimental data. As can be seen, the agreement is excellent 
for this case with laminar conditions. For deeper relative water depth, when the flow 
conditions become turbulent, the friction factor becomes more like that for turbulent 
open channel flow. 

5.6.2 Progressive Waves with Frictional 
Damping 

For a periodic progressive wave, the free surface is assumed of a similar 
form as before, except for a spatial amplitude dependence, 

H I  -k,x v = - e cos (k,x - ot) 
2 

(5.78) 
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Figure 5.9 Wave number and phase angle for a damped progressive long wave. 

The k, and ki are determined from the differential equation, Eq. (5.68): 

1- + l]"' N k,[ 1 +'(">I (5.79) 
8 0  

where the second expression is valid for small A / a  and kI = a/&%. 

k,=- [ v q  - l]"* N !!!A_ for small A/a  (5.80) Jz 2 a  
These wave numbers are plotted in Figure 5.9 as a function ofA/a. As can be 
seen, k, increases with A/a; therefore, friction decreases the wave length of 
the wave, thus slowing it. 

The change in wave amplitude over one wave length of travel can be 
readily found to be 

dx + L, - - e-k,L = e - 2 ~ ( k , / k , )  e-R(A/a) (5.81) 

which decreases rapidly with increasing A/a. For example, with A / a  = 0.05, 
this ratio is 0.85, or a 15% reduction in wave height.The horizontal velocity is 
then found by the same means as before. 

rt(x) 

HIae-k8x 
2h ,/m U =  cos (k,x - at - E )  (5.82) 
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where 

ki E = tan-’ - 
k, 
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5.7 GEOSTROPHIC EFFECTS ON LONG WAVES 

The earth’s rotation plays an important role in long wave motion when the 
Coriolis acceleration becomes significant, or equivalently when the wave 
frequency o is the same order as f c ,  the Coriolis parameter defined as 
2 0  sin $,where $ is the earth’s latitude measured positive and negative in the 
northern and southern hemispheres, respectively, and o is the rotation rate 
of the earth, o = 7.27 x lo-’ rad/s-’. Typically, the Coriolis acceleration can 
produce significant effects in tidal waves. 

The frictionless equations of motion for long waves on a rotating 
surface are modified by the introduction of two terms as follows: 

-+ au u-+ au v - - - v = - g -  au az7 
at ax ay ax 
av av av arl -+u--+ v-+feu=-g- 
at ax ay aY 

(5.83a) 

(5.83b) 

where shear stresses have been neglected. The continuity equation is the same 
as before: 

- arl+ + 49 + a w  + rl) = O  (5.84) 
at ax aY 

To illustrate the effects of the Coriolis acceleration, consider the propagation 
of long progressive waves in an infinitely long straight canal in the x direction 
with a flat bottom. The transverse velocity V is considered negligible. The 
equation of motion in the x direction, therefore, is not affected by the 
presence of the Coriolis force. In the y direction the equation reduces to 

feu=-g- arl 
dY 

(5.85) 

which states that the Coriolis force is balanced by a cross-channel hydrostatic 
force in the form of a water surface slope, which varies in magnitude and sign 
with the longitudinal velocities in the channel. 

If we linearize the equation of motion in the x direction (5.83a), a 
solution can be assumed as 

q = $(y) cos (kx - ot) 

u = - q(y)  cos (kx - ot) 
C -  
h 
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The y equation of motion is now 

(5.86) 

where C = m. The total water surface profile and horizontal water profile 
motions are now 

tl = - e - L Y l c  cos (kx - at) 
2 

&lJ = - - e - f Y l c  cos(kx-at)  
2 h  

(5.87) 

(5.88) 

At the wave crest, the wave amplitude and velocity decrease across the 
channel ( y  increasing) while at the wave trough (when the velocities are 
reversed) the amplitude increases. (Recall that we are dealing with a right- 
handed coordinate system.) The wave is called a Kelvin wave after Lord 
Kelvin (Sir W. Thomson), who derived an expression for it in 1879. The speed 
of propagation of the Kelvin wave is found by the continuity equation and it 
is the same as any other long wave, C = @. 

The deviation in tidal ranges between the French and English coasts of 
the English channel can be largely explained by a northward-propagating 
Kelvin wave, which causes the French tides to be roughly twice as large 
(Proudman, 1953). 

5.7.1 Amphidromic Waves in Canals 

Consider the superposition of two Kelvin waves, traveling in opposite 
directions but with the same height: 

The resulting water surface elevation is always zero at the origin, (x, y )  = 0; 
however, the wave amplitudes reinforce across the channel. The wave pro- 
pagating in the positive x direction has a surface slope increasing in the 
negative y direction, while the wave propagating in the negative x direction 
has a positive surface slope in the positive y direction. Lines of maximum 
water surface elevation may be found by maximizing q(x, t )  as a function of 
time, 

- = o  arl 
at 
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or, after some rearranging, 

LY tanh - = -cot at tan kx 
C 

Near the origin the equation for the tidal maxima is given by 

fey = -kx cot at 
C 

or 
Ckx y = - - cot at fc 

(5.90) 

(5.91) 

which is a straight line varying with time. A plot of the lines of high tide as a 
function of time is shown in Figure 5.10. These lines are called cotidal lines. 
The origin is called an amphidromic point and the tides are seen to 
apparently rotate around the origin. However, there is no transverse V 
velocity and the motion is purely in the X direction. Amphidromic tides of 
this nature are frequently seen in semienclosed bodies of water; Proudman 
(1953) cites the Adriatic Sea and Taylor (1920) discusses the Irish Sea. The 
mechanism for opposite traveling Kelvin waves requires a narrow channel in 
order that the motion be rectilinear and either two connected seas or a 
reflecting end to the channel. Taylor (1920) discusses the problem of the 
reflection of Kelvin waves and also seiching in a rectangular basin with the 
influence of Coriolis forces. For a further discussion of long waves with 
Coriolis effects, see Platzman (1971). 

ut = 90". 

ut = 120°, 300" ut = 150°, 330" 

kx 

Figure 5.10 Cotidal lines. 
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5.8 LONG WAVES IN IRREGULAR-SHAPED BASINS OR 
BAYS 

Quite often, a study of long waves or tides in a basin, lagoon, or near the coast 
requires the use of a computer, due to the complicated bathymetry, basin 
shape, and forcing due to winds or tide. To study these problems adequately, 
recourse must be made to computer techniques. Numerous studies have been 
made of tidal propagation by computer-too numerous to mention, in fact; 
however, many are referenced in two papers by Hinwood and Wallis 
(1975a,b). 

5.9 STORM SURGE 

The long wave equations can be used to describe the change in water level 
induced by wind blowing over bodies of water such as a continental shelf 
(Freeman et al., 1957) or a 1ake.Although the wind shear stress is usually very 
small, its effect, when integrated over a large body of water, can be cata- 
strophic. Hurricanes, blowing over the shallow continental shelf of the Gulf 
of Mexico, have caused rises in water levels (storm surges, but not tidal 
waves!) in excess of 6 m at the coast. 

The wind shear stress acting on the water surface t,, is represented as 

t, =pkW I w I (5.92) 

where p is the mass density of water, W the wind speed vector at a reference 
elevation of 10 m, and k a friction factor of order Numerous studies have 
been made for k (see Wu, 1969) and one of the more widely used sets of results 
is that of Van Dorn (1953), 

where W, = 5.6 m/s. 
If we adopt a coordinate system normal to a coastline, and the wind 

blows at an angle 8 to the coast normal (Figure 5.11), then the onshore wind 
shear stress is z, = It, I cos 8. The linearized equation of motion in this 
direction is [from Eq. (5.18), neglecting lateral shear stresses] 

(5.94) 

After a long time, the flow U in the x direction must be zero, due to the 
presence of the coast, and therefore the steady-state equations show that the 
wind shear stress is balanced by the bottom shear stress as well as a hydros- 
tatic pressure gradient. As we can no longer define the bottom fiction in 
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terms of the mean (zero) flow U,  it is convenient to define a factor n such that 

n r z x ( 4 9  = T z x ( 4 9  - L 4 - h )  
or 

(5.95) T z x ( - h )  n = 1 -~ 
L(49 

This factor, which lumps the effect of the bottom friction in with the wind 
shear stress, is greater than 1, as the bottom shear stress in our convention 
(Figure 2.4) is negative. Typical values are n = 1.15 to 1.30 (Shore Protection 
Manual, 1977). 

The equation is now 

(5.96) 

Example 5.3 

Calculate the wind setup due to a constant and uniform wind (t, is not a function ofx) 
blowing over a continental shelf of width 1. Assume (a) that the depth is a constant, ho; 
and (b) that h is linearly varying, h = ho (1 - x / l ) .  

Solution. To begin, the governing equation can be written as 

(a) Since ho is not a function of x, 
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Solving gives us 

+ c  (ho + q)’ = ~ 

2nrWxx 
Pg 

To evaluate the constant of integration, we require the setup to be zero at x = 0. This 
condition arises from the fact that where h is very large, there is no surface gradient 
(why?) and thus no setup in deep water. After substitution for C, we have 

or 

In dimensionless form, q is 

(5.97a) 

(5.97b) 

where A = nr,,l/pgh;, a ratio of shear to hydrostatic forces. 
(b) For a sloping bottom, the governing equation, Eq. (5.96), can be rewritten as 

d(h + 49 dh n r ,  
dx d x .  Pg 

(h  + q)-- - (h + q) - = - 

where dhldx = -ho/l, a constant. Separation of variables leads to 

- 

with A again defined as nr,J/pgh;. 
Solving yields 

x + C = l  [( 1 -~ h h + o q )  - A  Cn (y -A)] 
Evaluating C as before, we have 

. .. \ 1 - A  

(5.98) 

or, in dimensionless form, 

(5.99b) 

These two solutions [Eqs. (5.99b) and (5.97b)l are plotted in Figure 5.12 
to show the effect of the bottom slope on the storm surge. Clearly, the sloping 
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Figure 5.12 Dimensionless storm surge versus dimensionless distance of a conti- 
nental shelf for two cases ofdimensionless wind shear stress. 

bottom causes an increase in the storm surge height; this can be explained by 
referring to Eq. (5.96), which indicates that for a given wind stress, the water 
surface slope depends on the local water depth in such a way that the 
shallower the depth, the greater the slope. In Figure 5.13, the storm surge at 
the coast (x / l  = 1) is shown for a sloping shelf as a function of the dimension- 
less onshore shear stress. The solution for x / l  is usually obtained for given 
values of (h + q)/ho. However, to obtain (h + q)/ho directly for a given x / l  
value, then it is usually more convenient to solve the equation iteratively for 
(h + q)/ho. The Newton-Raphson technique works well here. 

The solution of Eqs. (5.99) is generally not computed for x shoreward of 
the shoreline (x/Z = 1); however, it is often useful to determine backshore 
inundation (i.e., when h is negative). This can be done with this equation up 
to the point where 

At this point the water surface slope is equal to the bottom slope [from Eq. 
(5.98)] and a uniform steady surge is reached, analogous to steady open 
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Figure 5.13 Storm tide for x// = 1.0 for a sloping shelf. For the case of no Coriolis 
force, the ordinate is equal to q/ho, the storm surge at the coast, as h = 0 at x// = 1. 

channel flow, in the sense that the downstream component of fluid weight is 
supported by the surface and bottom shear stresses. In a practical problem, 
the backshore region terminates in a wall or else significant flooding can 
occur. 

5.9.1 Bathystrophic Storm Tide 

For large-scale systems the influence of the Coriolis forces cannot be 
neglected. If the wind blows at an angle 8 to the coast, such that a longshore 
current is generated, then if the current is moving in such a direction that the 
coastline is to the right (in the northern hemisphere), the Coriolis force 
requires a balancing hydrostatic gradient, as in the Kelvin wave. This gradi- 
ent adds to the surface gradient induced by the wind. If the wind were blowing 
in the opposite direction, of course, the Coriolis forces would reduce the 
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surge; however, large storms, such as hurricanes (due to their circular wind 
patterns), will induce longshore flows in both directions. 

The analytical solution will be developed for a wind that begins 
abruptly at t = 0, with a magnitude W and a direction 8. To simplify the 
problem, we will assume that (a) the onshore flow and the return flows are 
continually in balance, so that U = 0 for all times, and (b) the wind system is 
uniform, so that there is no variability in the y direction. Assumption (a) is 
not always true, as a certain amount of water must flow into the shelf region 
to generate the surge. For these conditions the equations of motion in the x 
and y directions are 

(5.100) 

fv’ (5.101) 

where a Darcy-Weisbach friction factorfis introduced for the bottom shear 
stress in the y direction. If we now consider q << h, we can solve the last 
equation: 

d V  - 7 w ,  - Ly(-h) - Z W ”  y :  -- 
at P(h + rl) P(h + 7) 8(h + tl) 

where k is defined in Eqs. (5.92) and (5.93). The longshore velocity increases 
from V = 0 at t = 0 to the steady-state value of 

8k sin 8 
v s =  vF (5.103) 

for t = co. Effectively, the time to steady state is determined by setting the V 
argument of the hyperbolic tangent to n (tanh 7c = 0.996) or 

Solving for t, we get 

nh t =  

(5.104) 

(5.105) 

The time to steady state varies with the depth, with the shallower depths 
reaching the terminal velocity more rapidly than the offshore regions. As an 
example, for h = 10 m and W = 20 m/s, about 8 h is necessary for steady state 
to be reached. At this time, Eq. (5.103) shows that V, is about 3% of the wind 
speed. 
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If V is now introduced into the x-momentum equation, 

(h + q) [ ~ d(h + q )  - - dh - f c  - Vstanht/ 
dx dx g 

(5.106) 

where 

Again solving by separation of variables yields 

h + V  

- I* - -( 1-- hi:) - A * h  iT 1 - -A*]  A* (5.107) 

where 

and 

or 

(5.108a) 

(5.108b) 

for large t. 
This solution in dimensionless form is exactly the same as the solution 

for a surge over a sloping beach without the Coriolis terms except that I is 
replaced by I*, and we see that the Coriolis force simply serves to “modify” 
the bottom slope. 

The effect of wind angle becomes important in this problem as 7w, is 
important for the direct wind stress component of the surge, while T~~ is 
important for the Coriolis force contribution. Figure 5.14 shows the effect of 
wind angle for the setup at the shoreline at x = I .  

5.10 LONG WAVES FORCED BY A MOVING 
ATMOSPHERIC PRESSURE DISTURBANCE 

Consider the case of an atmospheric pressure disturbance po moving with 
speed U in the positive x direction: 

po =flu - x) (5.109) 
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Figure 5.14 Maximum storm surge at x = I from the bathystrophic storm tide. 

where the parentheses indicate a functional relationship. The governing 
equations include the momentum and continuity equations. The linearized 
momentum equation is 

(5.110) 

The continuity equation will be developed by selecting a coordinate system 
moving with the wave that renders the system stationary with a horizontal 
velocity component u - U. Realizing that the discharge Q past any given 
point is invariant and that the wave-induced particle velocity is proportional 
to the water surface displacement, 

or 

which has been linearized. Assuming r,~ of the form 

v = G ( U t - x )  
it is clear that 

!!I=-,- a? 
at ax 

(5.11 1) 

(5.112) 

(5.113) 
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and combining Eqs. (5.109), (5.110), (5.112), and (5.113), we get 

which is an exaCt differential and can be integrated from a location from 
where both r] and PO are nonexistent to 

-=- tt PolP 
h U 2 - g h  

(5.1 14) 

From Eq. (5.114), it is seen that for a static condition, q, = -po/pg,  whereas for 
cases in which the speed of translation approaches that of a long free wave 
(C = @) there is an amplification which becomes unbounded due to the 
lack of any damping teFms. Moreover, when U < C, the pressure and dis- 
placement are exactly o h  of phase, whereas for U > C, the two are in phase. 
For values of U >> C, the response approaches zero as the time interval over 
which the force is applied is not sufficient for the liquid to respond. The solid 
line in Figure 5.15 presents the amplification factor 1 r,~ I / I rlS I for no damping 

1 2 3 4 5 

UIC 

Figure 5.15 Dynamic response of translating pressure disturbance, with and 
without friction. 
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in which qs is the static water displacement for a pressure anomaly, 

;Pol l r l s l  =- 
Pg 

(5.115) 

It is noted that the effect of friction is to reduce the maximum amplifi- 
cation due to a finite value as shown by the dashed line in Figure 5.14; see also 
Problem 5.19. 

Finally, it is noted that the “forcing function” present in Eq. (5.109) 
could have been generalized to include the surface shear stress. 

5.1 1 LONG WAVES FORCED BY A TRANSLATING 
BOTTOM DISPLACEMENT 

A displacement of the bottom qo, which translates at speed U, will cause an 
associated surface displacement, much as in the case for a moving pressure 
displacement discussed in the preceding section. In this case, the linearized 
momentum equation is simply 

(5.116) 

where qI and qo pertain to the air-water and bottom interface displacements, 
respectively, given by the forms 

rlo =fo (Ut - x) 

r l l  =fi (Ut - x) 

(5.1 17a) 

( 5.1 17b) 

The continuity equation can be determined in the same manner as before: 

(5.118) 

Combining Eqs. (5.116), (5.117), and (5.118), the following exact differen- 

W r l l  - rlo) 
h + (111 - rlo) 

U(?I - v o )  
h 

U =  ?= 

tial results: 

or 

U2 
r l l  = rlo- 

U2 - gh 

(5.119) 

(5.120) 

which, as in the previous case, increases without bound as U approaches the 
speed, C (= @) of a long free wave. For U = 0, of course, there is no upper 
surface displacement and for large U ,  the upper surface displacement r l ~  
approaches the lower surface displacement VO. The latter can be interpreted as 
due to the bottom motions occurring so rapidly that the upper surface does 
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not have time to respond laterally (i.e., for the liquid to be mobilized in the 
horizontal direction). 
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PROBLEMS 

5.1 Compare the fundamental periods of seiching for a long narrow basin with 
length 1 km and maximum depth of 10m, if its bottom is flat or sloped. 
Explain the differences. 
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5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 
5.9 

Making reasonable assumptions, calculate the time necessary for the seiching 
in Problem 5.1 to reduce to 10% of the original value. 
Determine the water surface elevation of a long standing wave in an estuary 
with linearly increasing depth and constant width. What assumptions have 
been made? h = ho at x = I, the mouth of the estuary. 
Show that a linearized equation for seiching in two dimensions would be 

With this equation, determine the seiching periods in a rectangular basin of 
length I and width b with constant depth h. 
Verify that long wave reflection from an abrupt step conserves the flux of wave 
energy. 
An edge wave is a progressive wave that propagates parallel to a coast. For a 
sloping beach given by h = mx, show that 

t l =  Ae-*& L, (21,~)  cos (Any - of) 

is a solution where L, (21,~)  is the Laguerre polynomial oforder n and A, and o 
are related by 2 = gA, (2n + 1)m. 
A large dock extends from above the free surface down to a depth d. Assuming 
long waves and that the dock is rigid, calculate the reflection and transmission 
coefficients for the dock, which has a width of 1. 
Determine the Kelvin wave in a long narrow canal with bottom friction. 
Develop the condition for the constant of integration C for the case of a storm 
surge in a closed basin of constant depth ho. A numerical solution will be 
necessary. 

5.10 Calculate an equation for the “blow-down’’ on a sloping continental shelf of 
width I due to a strong directly offshore wind. Determine the location of the 
mean water line. 

5.11 Show from the continuity equation, Eq. (5.6), that the vertical velocity W(z)  
under a long wave varies linearly with depth and can be expressed as 

Dtl W ( z ) = - + ( q - z )  
Dt 

if U and V are assumed to be independent of depth. 
5.12 Determine the seiching period of a circular tank of radius a. Use the wave 

equation in cylindrical form and find only the first mode, which has a cos 0 
dependency (Lamb, 1945). Compare your results to reality by shaking a coffee 
cup. 

5.13 Compare the transmission coefficient determined in the abrupt step problem 
to the one calculated by Green’s law. Account for the differences. 

5.14 Develop an equation for the ratio R of kinetic energy in the horizontal 
component of water particle velocity to the total ‘kinetic energy. Solve for the 
shallow and deep water asymptotes. Plot this ratio versus h/&. 
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5.15 For a bay of uniform depth and pie-shaped plan form as discussed in Example 
5.1, develop an expression for the ratio R ,  

as determined by Green’s law and the complete solution, Eq. (5.39b). Plot and 
discuss the ratio R for the case of I/L = 10 and I/L = 2. 

5.16 Which continental shelf configuration allows the greatest storm surges at the 
coast: (a) shelf width lo; maximum depth ho; (b) shelf width II (> lo), same 
maximum depth ho; or (c) shelf width II (> lo), maximum depth h l  (> ho) but 
with bottom slope (ho/lo)? Verify your answer for h l  = 5ho, I I  = 510, and A (for 
case a) = 0.05. 

5.17 Show that the storm surge for a continental shelf modeled as h = ho [ 1 - (x/l)]’  
can be approximated by 

(Note: There is another possible solution to the linearized problem; however, it 
gives infinite surge heights at x = 1.) 

5.18 Show that the governing linearized momentum equation for long waves forced 
by an atmospheric pressure anomaly with linear friction present is 

and that the solution depends on the wave number (k) of the forcing disturb- 
ance and that the solution in terms of the ratio of the modulus of the dynamic 
to static water surface displacements is 

I I dyn = 1 

I Fda) I stat J( U2/gh - 1)’ + (AU/khgh)’ 

[Note: There are at least two ways of approaching this problem. One is to 
represent the traveling pressure and water surface displacements aq 

p = PR cos (at - kx) 
v = NR cos (at - kx - a) 

and to substitute these in the governing equation above and solve for N R  and a. 
The second (equivalent) method is to represent p and v as Fourier integrals 

tl(x, t )  = ~ s“ F,, da 
-m 

in which Fp (a) and Fq (a) are complex amplitude spectra (i.e., they contain 
phases). The latter approach is the simpler of the two, algebraically.] 



Wavemaker Theory 

Dedication 

SIR THOMAS HENRY HAVELOCK 

Sir Thomas Henry Havelock (1877-1968) pursued a variety of water 
wave areas, including ship wave problems and the generation of waves 
by wavemakers, the subject of this chapter. 

Havelock was born in Newscastle upon Tyne. He obtained his 
education at Armstrong College, University of Durham, and St. Johns 
College, University of Cambridge. Returning to Durham, he became a 
lecturer and then professor of mathematics. He received knighthood for 
his scientific works in 1957 and accepted honorary doctorates from 
University of Durham and University of Hamburg. He received the first 
William Froude Gold Medal in 1956 for his work in naval architecture. 

Havelock was a Fellow of the Royal Society and a corresponding 
member of the Academy of Science, Paris. 

6.1 INTRODUCTION 

To date most laboratory testing of floating or bottom-mounted structures and 
studies of beach profiles and other related phenomena have utilized wave 
tanks, which are usually characterized as long, narrow enclosures with a 
wavemaker of some kind at one end; however, circular beaches have been 
proposed for littoral drift studies and a spiral wavemaker has been used 
(Dalrymple and Dean, 1972). For all of these tests, the wavemaker is very 
important. The wave motion that it induces and its power requirements can 
be determined reasonably well from linear wave theory. 

Wavemakers are, in fact, more ubiquitous than one would expect. 
Earthquake excitation of the seafloor or human-made structures causes 

170 
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waves which can be estimated by wavemaker theory; in fact, the loading on 
the structures can be determined (see Chapter 8). Any moving body in a fluid 
with a free surface will produce waves: ducks, boats, and so on. 

6.2 SlMPLlFlED THEORY FOR PLANE W A V E M A K E R S  IN 
SHALLOW WATER 

In shallow water, a simple theory for the generation of waves by wavemakers 
was proposed by Galvin (1964), who reasoned that the water displaced by the 
wavemaker should be equal to the crest volume of the propagating wave 
form. For example, consider a piston wavemaker with a stroke S which is 
constant over a depth h. The volume ofwater displaced over a whole stroke is 

Sh (see Figure 6.1). The volume of water in a wave crest is (H/2) sin kx dx 

= H/k.  Equating the two volumes, 
LL’* 

S h = - = -  - - 
k ,(,I2 2 2 7 1  

in which the 2/71 factor represents the ratio of the shaded area to the area of 
the enclosing rectangle (i.e., an area factor). This equation can also be 
expressed 

where H/S is the height-to-stroke ratio. This relationship is valid in the 
shallow water region, kh < 71/10. For a flap wavemaker, hinged at the bottom, 
the volume of water displaced by the wavemaker would be less by a factor of 
2. 

These two relationships are shown as the straight dashed lines in Figure 6.2. 

Figure 6.1 Simplified shallow water piston-type wavemaker theory of Galvin. 
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Figure 6.2 Plane wavemaker theory. Wave height to stroke ratios versus relative 
depths. Piston and flap type wavemaker motions. 

Another type of wavemaker is the plunger wavemaker. This could be, as 
an example, a horizontal cylinder moving vertically about the mean water 
level. If the cylinder has a radius R and a stroke R, then the cylinder position 
ranges from fully emerged to half submerged at full stroke. If waves are 
generated in each direction normal to the cylinder axis, then for shallow 
water conditions the wave height-to-stroke ratio can be easily shown to be 

6.3 COMPLETE WAVEMAKER THEORY FOR PLANE 
WAVES PRODUCED BY A PADDLE 

The boundary value problem for the wavemaker in a wave tank follows 
directly from the boundary value problem for two-dimensional waves pro- 
pagating in an incompressible, irrotational fluid, as in Chapter 3. For the 
geometry depicted in Figure 6.1, the governing equation for the velocity 
potential is the Laplace equation, 

-+-=() a2+ a2+ 
ax2 az2 
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The linearized forms of the dynamic and kinematic free surface boundary 
conditions are the same as before. 

The bottom boundary condition is the usual no-flow condition 

-0, z=-h  a4 
az 

The only conditions that change are the lateral boundary conditions. In 
the positive x direction, as x becomes large, we require that the waves be 
outwardly propagating, imposing the radiation boundary condition (Som- 
merfeld, 1964). At x = 0, a kinematic condition must be satisfied on the 
wavemaker. If S(z) is the stroke of the wavemaker, its horizontal displace- 
ment is described as 

x=- sin at 
2 

where a is the wavemaker frequency. 
The function that describes the surface of the wavemaker is 

S(z)  F(x, z ,  t) = x - - sin at = 0 
2 

The general kinematic boundary condition is Eq. (3.6). 

(6.10) 

where u = ui + wk and n = V F /  I V F  I. Substituting for F(x, z, t) yields 

sin at = - a cos at on F(x, z ,  t) = 0 (6.11) w dS(z) . 
2 dz 2 

u 

For small displacements S(z) and small velocities, we can linearize this 
equation by neglecting the second term on the left-hand side. 

As at the free surface, it is convenient to express the condition at the 
moving lateral boundary in terms of its mean position, x = 0. To do this we 
expand the condition in a truncated Taylor series. 

(6.12) 



174 Wavemaker Theory Chap. 6 

Clearly, only the first term in the expansion is linear in u and S(z); the others 
are dropped, as they are assumed to be very small. Therefore, the final lateral 
boundary condition is 

u(0, 2,  t )  = 32 a cos rst (6.13) 

Now that the boundary value problem is specified, all the possible solutions 
to the Laplace equation are examined as possible solutions to determine 
those that satisfy the boundary conditions. Referring back to Table 3.1, the 
following general velocity potential, which satisfies the bottom boundary 
condition, is presented. 

&x, z ,  t )  = A p  cosh kp ( h  + z )  sin (k+ - at) + (Ax + B )  (6.14) 

+ CfkJ cos k,(h + z )  cos rst 

The subscripts on k indicate that that portion of q4 is associated with a 
progressive or a standing wave. For the wavemaker problem, A must be zero, 
as there is no uniform flow possible through the wavemaker and B can be set 
to zero without affecting the velocity field. The remaining terms must satisfy 
the two linearized free surface boundary conditions. It is often useful to 
employ the combined linear free surface boundary condition, made up of 
both conditions. This condition is 

2 

(6.15) 

which can be obtained by eliminating the free surface q from Eqs. (6.5) and 
(6.6). Substituting our assumed solution into this condition yields 

tf = gk, tanh kJz (6.16) 

and 

d = -gks tan k,h (6.17) 

The first equation is the dispersion relationship for progressive waves, as 
obtained in Chapter 3, while the second relationship, which relates k, to the 
frequency of the wavemaker, determines the wave numbers for standing 
waves with amplitudes that decrease exponentially with distance from the 
wavemaker. Rewriting the last equation as 

d h  - = -tan k,h 
gksh 

(6.18) 

the solutions to this equation can be shown in graphical form (see Figure 6.3). 
There are clearly an infinite number of solutions to this equation and all 

are possible. Each solution will be denoted as ks(n), where n is an integer. The 
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-0.5 

Figure 6.3 Graphical representation of the dispersion relationship for the stand- 
ing wave modes, showing three of the infinite numbers of roots, ks(n). Here, dh /g  
= 1.0. 

final form for the boundary value problem is proposed as 

4 =A, cosh k, (h + z) sin ( k g  - at) (6.19) 

Cne-ks(n' cos [k,(n)(h + z)] cos at 

Again, the first term represents a progressive wave, made by the wavemaker, 
while the second series of waves are standing waves which decay away from 
the wavemaker. To determine how rapidly the exponential standing waves 
decrease in the x direction, let us examine the first term in the series, which 
decays the least rapidly. The quantity k,(l)h, from Figure 6.3, must be greater 
than n/2, but for conservative reasons, say k,(l)h = n/2, therefore, the decay 
of standing wave height is greater than e-(d2Xx/h). For x = 2h, e-("'2xx/h) = 0 - ,  04 
for x = 3h, it is equal to 0.009. Therefore, the first term in the series is 
virtually negligible two to three water depths away from the wavemaker. 

For a complete solution, A, and the Cn's need to be determined. These 
are evaluated by the lateral boundary condition at the wavemaker. 

m 

n-1 
+ 

S(Z) a4 u(0, z, t )  = - 0 cos at = - - (0, z ,  t )  
2 ax 

= -A&, cash k,(h + Z )  cos at 
m 

n-1 
+ c C,k,(n) cos [k,(n)(h + z)] cos at 

or 
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Now we have a function of z equal to a series of trigonometric functions of z 
on the right-hand side, similar to the situation for the Fourier series. In fact, 
the set of functions, (cosh k,(h + z ) ,  cos [k,(n)(h + z ) ] ,  n = 1, co) form a 
complete harmonic series of orthogonal functions and thus any continuous 
function can be expanded in terms of them.' Therefore, to find A,, the 
equation above is multiplied by cosh k,(h + z )  and integrated from -h to 0. 
Due to the orthogonality property of these functions there is no contribution 
from the series terms and therefore 

-1: a cosh k,(h + z )  dz 
- A, = 

kp 1; cosh' kp(h + z )  dz 
(6.21) 

Multiplying Eq. (6.20) by cos {k,(rn)(h + z)}  and integrating over depth yields 

l:F a cos [k,(rn)(h + z ) ]  dz 

r o  c, = (6.22) 
k,(rn) J cos' [k,(m)(h + z ) ]  dz 

-h 

Depending on the functional form of S(z) ,  the coefficients are readily 
obtained. For the simple cases of piston and flap wavemakers, the S(z) are 
specified as 

piston motion +El, flapmotion 
c 

(6.23) 

The wave height for the progressive wave is determined by evaluating q far 
from the wavemaker. 

q = - - = - 5 a cosh k,h cos ( k ~  - at) 
g at z=o g 

= cos (k+ - at) x>>h 
2 

(6.24) 

'This follows from the Sturm-Liouville theory. Proof of the orthogonality can be obtained by 
showing that the integrals below are zero, that is, 

JI cosh k,(h + z) cos [ks(n)(h + z)] dz = 0 cos [k,(m)(h + z)] cos [k,(n)(h + z)]  dz = 0 

for m + n using the dispersion relation and Eq. (6.17), Problem 6.8. 
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Substituting for A,, we can find the ratio of wave height to stroke as 

H sinh kph kph sinh k,h - cosh k,h + 1 , flapmotion (6.25) 
- = 4 (  S kph ) sinh 2kph + 2kph 

piston motion H 2 (cash 2k,h - 1) -- - 
S sinh 2kph + 2k,h’ 

(6.26) 

In Figure 6.2, the wave height-to-stroke ratio is plotted for both flap and 
piston wavemaker motions for different water depths. This graph enables the 
rapid prediction of wave height given the stroke of the wavemaker. The 
reader is referred to Ursell et al. (1960) for further details. 

The power required to generate these waves can be easily obtained by 
determining the energy flux away from the wavemaker. 

P = ECn (6.27) 

where E is proportional to the propagating wave height, as obtained from the 
preceding equation. The power necessary to generate waves in various water 
depths is shown in Figure 6.4. By examining Figures 6.2 and 6.4, it can be 
seen that to generate a wave of the same height, in shallow water, it is easier to 
generate it with a piston wavemaker motion, as the piston motion more 
closely resembles the water particle trajectories under the waves, while in 
deeper water, the flap generator is more efficient. 

0 . 7 t  -I 

0 1 2 3 4 5 

kPh 

Figure 6.4 Dimensionless mean power as a function of water depth for piston 
and flap wavemakers. 
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The wavemaker theory has been developed assuming both small- 
amplitude motions of the paddle and small wave heights. There are singifi- 
cant nonlinear effects that occur when thc wavemaker moves with large 
displacements; in fact, the waves that result are of different size and shape at 
different locations away from the wavemaker (see, e.g., Madsen, 1971, and 
Flick and Guza, 1980). 

6.3.1 Planar Wave Energy Absorbers 

Energy may be removed from waves by moving paddles as well as 
added, as in the preceding section. One means to extract wave energy from 
waves under various conditions has been discussed by Milgram (1970). 

The principle behind the wave absorber is that incident waves onto the 
paddle are absorbed by the paddle moving in a manner so as to be invisible to 
the waves. In other words, while in the wavemaking problem, the paddle is 
pushed forward to make a wave crest, in this case the paddle will move 
backward as a wave crest impinges on it (thus making waves on the other side 
of the paddle, if there is water), making it appear that the waves have passed 
through. 

The most efficient absorption of the waves, of course, is dependent on 
moving the paddle in just the “right” motions, which can be determined 
theoretically. The mathematical formulation involves examining the waves 
on the opposite side of the paddle from the previous analysis. The velocity 
potential remains the same, except for the x dependency ofthe standing wave 
terms. 

(6. . 
- Hg ‘Osh kP(h + ’) ,.,in (kdc - at) 

incident - 
20 cosh kph 

W 

+ 2 Cfle+k~(“b cos [k,(n)(h + z)] cos at 
f l= l  

The value of wave absorber stroke S must be found for a given inc 
To do this we use the boundary condition at x = 0. 

a t x = O  S(Z)O cos at a(6 
2 ax 

=- -  u(2) = 

Following the same procedure as before, the same relationship 
and (6.26)] results for H/S.  Therefore, for a given incident wavc 
stroke necessary to absorb the waves can be determined. There stiliare, of 
course, the standing waves that are set up to account for the fact that the 
paddle velocities do not exactly match those of the incident wave. In 
addition. the velocitv of the wavemaker motion must have exactlv the same 

(6.28) 

forx=sO 

dent wave. 

(6.29) 

Eqs. (6.25) 
height. the 

2 ---- ------ , ~ ~ . ~ ~ .  .. _._._.___ _ _ _ _  .-._.__ .._. - -..____. I ~ ~ ~ - - ~ -  ... . ~ . ~ .  

phase as that of the horizontal velocity of the incoming wave. 
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6.3.2 Three-Dimensional Wavemakers 

The "snake" wavemaker. By using an articulated long wavemaker in 
a wave basin, it is possible to make waves propagating in different directions 
depending on the motion of the wavemaker. To study this case, consider a 
wavemaker located on the y axis, making waves that propagate in the x-y 
plane. For simplicity the wavemaker will be assumed to be infinitely long. 
The motion of the wavemaker at x = 0 generates velocities in the x direction, 
u(y ,  z; t ) ,  which in the simplest case may be written 

(6.30) 

This represents a horizontal velocity at the wavemaker which consists of 
periodic motion, propagating in the +y direction. 

u(y,  z ;  t )  = U ( z )  cos (Ay - at) on x = 0 

The boundary value problem which must be solved is 

o<x<oo 
-+-+-=O in - m < y < c o  (6.31) I - h < z < O  

a2+ a2+ a2+ 
ax2 ay2 aZ2 

At the horizontal bottom of the basin, the bottom boundary condition 
must be met. At the surface, the linearized kinematic and dynamic conditions 
apply, as before. 

Using separation of variables a solution is assumed which satisfies the 
bottom boundary condition. 

+ = A, cosh kp(h + z) sin ( d v -  x + Ay - at) (6.32) 

+ 5 Cn cos [k,(n)(h + z)] exp [ - J k m  X] cos (Ay - at) 
n=l 

where d = gk, tanh k,h; d = -gk,(n) tan k,(n)h. 

It can be shown, by examining all other possible solutions, that only 
this form provides for a propagating wave in the x direction with the usual 
cosh kp(h + z) depth dependency. Further, this imposes a restriction that 
kp 3 A. 

Invoking the wavemaker boundary condition at x = 0, 

V ( z )  cos (Ay - at) = - - :: I x=o 

= -A, Jv- cosh k, (h + z )  cos (Ay - at) 

(6.33) 

+ 5 Cn JW cos (k ,  (n)(h + z)I cos (Ay - at) 
n=l 
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/ A 

x 

Figure 6.5 Definition for 0. 

Examining only the propagating mode (in the x direction), and utilizing the 
orthogonal properties of (cosh k,(h + 2 ) ;  cos [k,(n)(h + z)], n = 1 ,  
2,. . . , 00, we have 

4k, so U ( z )  cosh kp(h + z) dz 

,/P (sinh 2k,h + 2k&) 

which is nearly the same as before. 
If we introduce a directional angle 8 made by the wave orthogonal to the 

x axis as in Figure 6.5, where A is the wave number in the y direction and 
4- is the wave number in the x direction, we see that k, represents the 
wave number in the propagation direction. Further, 4- = k, cos 8 and A 
= k, sin 8. This latter expression requires that the wavelength A of the 
wavemaker displacement be related to the desired wave angle. Substituting, 
the velocity potential of the propagating wave can be written 

&(x, y ,  z ;  t )  =A, cosh k,(h + z) cos ((k, cos 8)x + (kp sin8)y - at) (6.35) 

where A, is given by Eq. 6.34 and is related to the planar value [Eq. (6.21)] by 
(cos 8)-'. To make waves in the opposite -8 direction, the wave displacement 
must propagate in the opposite direction 

u(z, y ;  t )  a cos (Ay + at) 
In order to generate a realistic sea state in a wave basin, numerous 

wavemaker motions can be superimposed due to the linearity of the problem. 

(6.34) 
-h A, = - 

6.4 CYLINDRICAL WAVEMAKERS 

Although not in common use, the wavemaker theory for water waves 
generated by moving vertical cylinders follows directly from plane 
wavemaker theory, the only exception being that the problem is worked in 
polar coordinates (see Chapter 2). 

The fluid motion can be described by a velocity potential which is 
governed by the Laplace equation with the usual linearized free surface and 
bottom boundary conditions. 

(6.36) 
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where r and 8 are the polar coordinates of the horizontal plane. 

(6.37) 

Additionally, a radiation boundary condition is imposed at large r to ensure 
outgoing waves and a kinematic condition must be applied to the moving 
wall of the cylinder. 

There are several possibilities for cylindrical wavemakers, which will be 
denoted by different types. Type I will be a vertical cylinder (located at r = 0, 
with radius a )  moving in piston or flap motion in a fixed vertical plane, taken 
as 8 = 0 or n. Applying a kinematic condition that the fluid at the cylinder wall 
follows the cylinder’s motion, we have in linearized form 

where Re( ) denotes real part,2 m is an integer equal to unity and S(z)  is the 
vertical variation of the displacement of the cylinder. The Type I1 wavemaker 
is a pulsating cylinder, which expands and contracts radially with no 8 
dependency. The corresponding linear kinematic condition is 

with m = 0. Finally, the Type I11 wavemaker is a spiral wavemaker discussed 
by Dalrymple and Dean (1972), who advocate its use in littoral drift studies. 
In a circular basin the spiral wavemaker generates waves which impinge on a 
circular beach everywhere at the same angle, thus resulting in an “infinite” 
beach ideal for sediment transport studies. [In some cases, the spiral wave 
shoals in a manner differently than plane waves (Mei, 1973).] The cylinder 
motion can be visualized by placing a pencil point down on a table and 
rotating the top in a small circular path. The linearized kinematic boundary 
condition becomes 

where rn = 1 for the case of the rotating pencil, but could be greater than unity 
for a lobe-shaped cylinder. 

*See page 190. 
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The solution for the velocity potential is obtained by separation of 
variables, in the same manner as before (see Problem 6.9). The solutions that 
satisfy all the boundary conditions with the exception of the kinematic 
condition on the cylinder are 

where H$(k,r) is the Hankel function of the first kind, defined as H$(k,r) = 
J,(kpr) + iY,(k,r), a complex number formed by the Bessel functions, and 
Krn(ks(n)r) is the modified Bessel function of the second kind. Associated with 
these solutions are the dispersion relationships relating the angular frequency 
to the wave number(s), 

d = gk, tanh k,h 

and 

2 = -gks(n) tan k,(n)h, n = 1, 2,. . ., co (6.42) 

The unknown coefficients in the series for the velocity potential are 
obtained by satisfying the remaining boundary condition at the cylindrical 
wall using the orthogonality of the depth-dependent functions, with the result 
that I: SOa cosh k,(h + z )  dz 

2 
m A, = - 

k,[Hijtl(k4)]’ J - cosh’ k,(h + z)  dz 
-h 

and 

m c, = - 

(6.43) 

(6.44) 

The [ . 1’ denotes the derivative with respect to the argument of the function. 
The coefficients A, and C, are. the same for all three types of cylinder 
wavemaker and are similar to the coefficients for the planar wavemaker, 
differing due to the presence of the derivative of a Bessel function in the 
denominator. These terms in the velocity potential account for the radial 
decay of the waves away from the wavemaker. 



Sec. 6.4 Cylindrical Wavemakers 183 

Far from the wavemaker, the water surface displacement q may be 
determined from the linear dynamic free surface boundary condition and the 
Hankel function term as the others become negligible several water depths 
from the wavemaker. Using the asymptotic form for the Hankel function, we 
have I 
q(r, 8, t) = Re I -iaA, cosh k& 

I 

I 

(6.45) 

4 

4 

I 

ling the relations-ip between strokes S(z)  and A, and the last equation, the 
wave height-to-stroke ratio can be determined.This is shown in Figure 6.6 for 

kPh 

Figure 6.6 Dimensionless progressive wave amplitude evaluated at the cylinder 
for piston or circular motion of the wavemaker. rn = I. (From Dalrymple and 
Dean, 1972.) 
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Figure 6.7 Dimensionless progressive wave amplitude evaluated at cylinder, 
sway motion. rn = 1. (From Dalrymple and Dean, 1972.) 

the case of piston motion and Figure 6.7 for sway motion for Type I and I11 
wavemakers (rn = 1). 

Power requirements to generate these radial waves, energy flux, and the 
direction (for spiral waves) can be determined fairly simply; the reader is 
referred to the original paper by Dalrymple and Dean (1972) for details. 

6.5 PLUNGER WAVEMAKERS 

Plunger wavemakers with a wedge-shaped cross section are often used in 
laboratories instead of piston or flap-type paddles. These wavemakers can be 
designed to generate waves in only one direction. For example, a wedge 
oscillating vertically as in Figure 6.6 would only generate waves in the 
positive x direction. For an immersed wedge making small vertical motions 
and for small p,  the linear theory is the same as that for piston wavemakers; 
for larger vertical strokes and for large p,  as well as for other shapes the reader 
is referred to Wang (1974), who solved the plunger problem using a conformal 
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I 
Figure 6.8 Schematic of wedge-shaped 
plunger wavemakers. 

transformation. He presents figures of amplitude/stroke ratios versus dimen- 
sionless geometrical parameters for wedge-shaped wavemakers as shown in 
Figure 6.8. 
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PROBLEMS 

6.1 A piston wavemaker operates over only halfthe water depth and oscillates with 
frequency CT and a maximum velocity U O .  
(a) Determine the wave height away from the wavemaker in terms of UO if the 

wavemaker operates over the top halfof the water column. 



186 Wavemaker Theory Chap. 6 

(b) An alternative design is to operate the wavemaker over the bottom half of 
the water column. Plot the ratio of wave heights (away from the 
wavemaker), Htop/Hbotlorn as a function of kh, where H,,, indicates the wave 
height in part (a). Which wavemaker is more efficient and why? 

(c) Calculate the ratio H / S  for shallow water using the simplified approach 
and compare with the results developed in parts (a) and (b). 

6.2 Show, using the simplified shallow water approach, that the ratio of wave 
height near the cylinder to wave height stroke for a vertical cylinder, oscillating 
vertically with a stroke d and generating circular waves, is 

H kR 
d 2  
_ = _  

where R is the radius of the cylinder. 
6.3 What are the stroke and power necessary to generate a 2-s period 20-cm-high 

wave in 2 m of water for both flap and piston wavemakers. 
6.4 A long rectangular barge with draft d in shallow water is heaving (moving 

vertically) with a velocity Vo cos at. 
(a) Determine the amplitude of the waves generated by this motion if the barge 

(b) Determine the damping ofthe barge motion due to wave generation. (Hint: 

6.5 Determine the equations for instantaneous and mean power required for 
wavemakers using the wave-induced pressure on the wavemaker. Determine, 
for a wavemaker with a displacement of S(z)  = S cosh k(h + z),  the instantane- 
ous and mean power required. Why might it be advantageous to incorporate a 
flywheel into the generating mechanism? 

6.6 Using conservation of energy flux, show how the waves due to a circular 
wavemaker (see Problem 6.2), would decay in height with radial distance. 

6.7 Examine the energy flux at the wavemaker due to the progressive and standing 
wave mode components. Discuss your results. 

6.8 Show that the set (cosh k, (h + z), cos [ks (n)(h + z)], n = 1, 2,. . ., a)) are 
orthogonal over the range -h < z < 0, given the dispersion relationships for a, 
k,, and ks(n). 

6.9 Develop the theory for waves made by a circular cylinder wavemaker with 
vertical axis moving in piston motion. 

6.10 Develop dimensionless expressions for the maximum total forces on piston 
and flap-type wavemakers. 

6.11 Develop the three-dimensional wavemaker theory for waves in a long wave 
tank. The side walls are located at 1 y I = I, and the waves are made by a paddle 
with a mean position of x = 0, yet which varies in stroke over the vertical and 
across the tank width (Madsen, 1974). 

width is given. 

It is easiest to use energy arguments here.) 
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Dedication 

LORD RAYLEIGH 

John William Strutt (1842-1919), the third Baron Rayleigh, for whom the 
Rayleigh probability distribution is named, received (with Sir William 
Ramsey) the Nobel Prize in 1905 for the discovery of argon. 

He was born in Langford Grove, Essex, England, and entered 
Trinity College, Cambridge, in 1861, becoming a Fellow in 1866. 

Over his career, Rayleigh wrote 446 papers that ranged from his 
noted Treatise on the Theory of Sound, published in 1877, to works in 
electromagnetism and physical optics. These works have been col- 
lected in Scientific Papers. His research interests included electricity 
and psychic phenomena and theoretical/experimental work on the 
explanation of the sky’s color. 

In 1879 he gained appointment as the second Cavendish Profes- 
sor and in 1884 became the director of the Cavendish Laboratory at 
Cambridge University. In 1894 he retired from these positions to do 
research in his private laboratory in Terling Place, Witham, Essex, 
where he was Baron (after the death of his father in 1873). 

In 1908 he became the Chancellor of Cambridge University. Ray- 
leigh died in 1919 and was buried in WestminsterAbbey. 

7.1 INTRODUCTION 

Previous chapters have discussed waves that are monochromatic (i.e., they 
have only one frequency). (The term “monochromatic” derives from the 
analogy of water waves to light waves and the relation of color to frequency.) 
However, by simply looking at the actual sea surface, one sees that the surface 
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is composed of a large variety of waves moving in different directions and 
with different frequencies, phases, and amplitudes. For an adequate descrip- 
tion of the sea surface, then, a large number of waves must be superimposed 
to be realistic (as mentioned in Chapter 1). This chapter discusses the 
methods by which this is done and the characteristics of the sea surface. 

7.2 WAVE HEIGHT DISTRIBUTIONS 

Designing in the ocean requires an adequate knowledge of possible wave 
heights. For example, in the design of a structure, the engineer may be faced 
with designing for the maximum expected wave height, the “highest possi- 
ble” waves, or some other equivalent wave height. Historically, several wave 
heights have become popular as characterizing the sea state. These are the 
H I I 3  (the significant wave height) and the H,,, wave heights. To envision 
what these definitions mean, consider a group of N wave heights measured at 
a point. Ordering these waves from the largest to the smallest and assigning to 
them a number from 1 to N, two statistical measures may be obtained. First, 
Hl,3 is defined as the average of the first (highest) N / 3  waves. Correspond- 
ingly, Hp would be defined as the average of the first p N  waves, with p < 1. 
( H I  would be the average wave height.) Second, the probability that the wave 
height is greater than or equal to an arbitrary wave height fi is 

P(N > A) = 
N 

where n is the number of waves higher than A. We note for later use that 
P(H <fi) = 1 - n/N. 

The root-mean-square wave height for our group of waves, H,,,, is 
defined as 

which is always larger than H I  in a real sea. 

7.2.1 Single Wave Train 

It is clear that for the sea surface described by a single sinusoid wave, 
q( t )  = (Ho/2) cos at, the waves are all of the same height and that Hp = HO for 
any p and H,,, = Ho. 

7.2.2 Wave Groups 

To make the sea surface somewhat more realistic, another wave train is 
added, with slightly different frequency, in order to make wave groups, as was 
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done in Chapter 4. 

q = 5 cos (Q - $)t  + $ cos (0 + $)t 
2 

= Ho cos at cos *t = H(t) cos at 
2 2 

(7.3) 

which represents a propagating wave system evaluated at x = 0. 
The resulting wave system has a carrier wave at frequency a and a 

slowly modulated wave height 2H0 cos (Aa/2)t  (see Figure 4.12). Therefore, to 
examine the wave height distribution for the wave system, we need only to 
look at the envelope from t = 0 to n/Aa (or from the antinode to the first 
node). 

To determine H,, we average the wave height envelope from t = 0 to 
pn/Aa, since the wave heights decrease monotonically from the maximum to 
the minimum. 

A0 
2 

H p = -  2Ho cos -t dt 

Ho ' Pn 
Pn 2 

H, = 4- sin - 

The rms wave height can be derived: 

A0 
2 

H 2  =- J''Au 4Hi cos2 -t dt rms nlAa 0 

(7.4) 

or 

Hrms =JZHO 
We can therefore express the H p  wave height in terms of H,,, which will be a 
more definable wave height for real seas. 

2JZHrms P X  H p  = sin - 
PR 2 

(7.7) 

and since H,,, must be equal to 2Ho, we have,' from Eq. (7.6), 

Example 7.1 

A wave group consisting of two sinusoids of equal height and slightly different periods 
is generated in a laboratory wave tank and recorded by a fixed wave gage. What are the 
values ofH,,, Hlllo, H I / , ,  and HI in terms ofHrmS? 

'Alternatively, this can be obtained from Eq. (7.7) as in the limit asp - 0. 
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Solution. 
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Hmax = Jz H,, = 1.414H- 

2oJz  Hms sin = 1.408Hm, Hiiio = 
20 n 

7.2.3 Narrow-Banded Spectra: The Rayleigh 
Distribution 

For a more realistic case, we assume that the sea surface is composed of 
a large number of sinusoids, but with their frequencies near a common value, 
a. This is referred to as a narrow-banded sea (in that all the frequencies are in 
a narrow frequency band about a). Therefore, for M component frequencies 

H m  q(t) = c - cos (amt - Em) 
m=l 2 

or equivalently, in complex notation,2 

(7.9) 

(7.10) 

The notation Re{. ) refers to taking only the real part, Re(e'"') = cos at. 
Factoring out the carrier wave of frequency a yields 

tt(t) = Re p 5 L!iei~(~m-~)~-~ml r m=l 2 
(7.11) 

Again, to define the wave height distribution, we need only to examine 
I 

the statistics of the slowly varying envelope, B(t): 

B(t)  = 5 H, eIl(um-u)l-€ml (7.12) 
m=l 2 

*From complex variable theory, e'" = cos c7t + i sin at, where i = G. These formulas can be 
readily derived if we express em as a Maclaurin series. 

(ix)* (1x1~  ( i ~ ) ~  & " = l  + i x + - + - + -  
2! 3! 4! 

1 = (1 - 2 + g .  . . ) + i ( x  -- x3 + . . . 
2! 4! 3! 

The terms in the two sets oflarge parentheses are the power series expansion for cosine and sine. 



Sec. 7.2 Wave Height Distributions 191 

From statistical theory, it can be shown (e.g., Longuet-Higgins, 1952) 
that if the individual components of B are statistically independent and a 
large number M is used, then the probability of the wave height being greater 
than or equal to an arbitrary wave height (A) is given by 

P(H > A) = e-(fi/Hrrn# (7.13) 

This theoretical probability can be compared to our rank-ordered group 
which is called the Rayleigh distribution. 

of waves, N, Eq. (7.1): 

(7.14) - n  P ( H a  H ) = -  
N 

or equating, 

(7.15) 

This expression provides a means to determine the number of waves out of 
the total number N which have a height greater than or equal to a certain 
height H. Alternatively, we can solve this expression to determine the height 
fi which is exceeded by n waves in our group of N. By taking the natural 
logarithms of both sides, we find that 

fi = H r m S E  

The height that is exceeded by p N  of the waves is therefore 

H = HrmsK 
(7.16) 

(7.17) 

Example 7.2 
At a pier in Atlantic City, New Jersey, 400 consecutive wave heights are measured. The 
H,,, is determined by Eq. (7.2). (a) Assuming that the sea state is narrow-banded, 
determine how many waves are expected to exceed H = 2H,,,. (b) What height is 
exceeded by half the waves? (c) What height is exceeded by only one wave? 

Solution. 
(a)To answer the first part, Eq. (7.15) is used. 

= Ne-(2)’ 

= 7.3 N 7 waves 

Approximately seven waves, less than 2% of the total number, exceed 2Hr,,. 
(b)The height H exceeded by half the waves (n = N / 2 ,  or p = I) is 

H = H,,, = 0.833Hms 
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For H ~ , N  we have p = 1/N or HIIN = K N  H,, = 2.45Hr,,. It is perhaps not too 
surprising that the more waves present in the group (i.e., large N), the higher the 
maximum wave will be. This is due to the fact that the Rayleigh probability function 
decays asymptotically to zero for large H, but never reaches zero. Thus all wave 
heights are statistically but not necessarily physically possible. 

7.2.4 The Rayleigh Probability Density Function 

The wave height probability density function fH follows from the 
Rayleigh probability distribution P(H < Z?): 

This function is plotted in Figure 7.1. Maximizing with respect to H yields the 
maximum probability for &/HrmS = 1/4, or the most frequent wave is 
H = 0.707Hm,. 

From statistical theory we can obtain important relationships using the 
distribution function for the wave height. 

The mean wave height is defined as 

-_  - &HrmS = O.886Hm, 
2 

(7.19) 

To find the average height of the highest p N  waves, we first recall that 

0 1 .o 2.0 

H I H m  

Figure 7.1 
curve is unity. 

The Rayleigh probability distribution function. The area under the 
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the height fi exceeded by the pN waves is 

Next, 

where x is a dummy variable. Integrating by parts, we get 

(7.20) 

(7.21) 

where erfc ( x )  is the complementary error function (see Abramowitz and 
Stegun, 1965). 

InTable 7.1 various values of Hp/Hrms are presented. It is clear that asp 
becomes smaller, there is a significant change from the results obtained by the 
simple wave group model (see Example 7.1). 

TABLE 7.1 Relationship of Hp to H,,, using the Rayleigh Distribution 

Forristall(l978) has shown that for real seas of large magnitude, the Rayleigh 
distribution tends to overpredict the larger wave heights. This is presumably 
due to the breaking phenomenon “trimming” these larger heights. 

7.3 THE WAVE SPECTRUM 

The waves recorded at a wave staff generally are composed of components of 
many frequencies a, and amplitudes a, with different phases E,: 

cc 

q(t) = 2 a, cos (ant - E,)  
n=O 

(7.22) 
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Figure 7.2 (a)Types of spectra; (b) broad versus narrow-banded energy spectrum. 

If the amplitudes a,, are plotted versus frequency, an amplitude spec- 
trum results. More commonly used, however, is the energy spectrum, which 
is a plot of af. Both of these spectra are line or discrete spectra in that each 
frequency component is discrete. The energy density spectrum, on the other 
hand, is a plot of ai/Ao versus a, which is more popular, as the area under the 
curve is a measure of the total energy in the wave field. It is more likely in 
nature that the spectrum be comprised of a continuous range of frequencies 
or 

~ ( t )  = Re [ Lm a(o)~?["-I'~)~ do} (7.23) 

where a(a) do is the amplitude of each wave and a(@ might be called the 
amplitude density function. Examples of these spectra are shown in Figure 
7.2a. The shape of the spectrum varies with the types of seas and whether it is 
broad- or narrow-banded (Figure 7.2b). 

7.3.1 Spectral Analysis 

The procedure of extracting spectra from wave records is an evolving 
field and a complete presentation of spectral analysis is beyond the scope of 
this book. However, some rudimentary aspects of it will be discussed. Of 
primary importance is the fact that the use of computers in time-series 
analysis has made it far more convenient to deal with digitized data3 and 
spectral analysis is usually done by the fast Fourier transform (FFT) tech- 

'The time series of q(t)  digitized at an interval of At is the sequence of numbers: q(At), q(2 At) ,  
rj(3 At) ,  and so on. 
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nique, popularized by Cooley andTukey (1965). It should be noted parenthet- 
ically that almost all our knowledge about spectral analysis comes to the 
ocean engineers via the electronic and communications fields. 

7.3.2 Fourier Analysis 

The basis for spectral analysis is the Fourier series, named for Joseph 
Fourier (1768-1830). The premise of Fourier analysis follows from the fact 
that any (piecewise continuous) function JTt) can be represented over an 
interval of time ( t  to t + T) as a sum of sines and cosines, where t is arbitrary 
andJTt) is assumed to be (or is) periodic over the time period, T. The Fourier 
series is written as 

m 

A t )  = C (a, cos not + b, sin not)  (7.24) 

where o = 2z/T and bo = 0 as sin (0) = 0, and uo is simply the mean of the 
record. The coefficients a, and b, can be obtained by minimizing the mean 

n=O 

squared error of the function E ,  which is defined as 

I' m 

E = 1 6"' [A t )  - C(a, cos not + b, sin not)  dt 
T n=O 

Minimizing yields 

Expressing these equations fully, we have 

1 m 

J'+'[JTt) - 2 ( u n  cos not + b, sin not)  cos mot dt = 0 

(7.25) 

(7.26a) 

(7.26b) 

I m 

Ll tT[At )  - z ( a n  cos not + b, sin not) sin mot dt = 0 

Using the following orthogonality properties of the trigonometric func- 
tions: 

T/2 m = n + O  sin not sin mot dt = [o, m + n  

sin not cos mot dt = 0 6"' 
m = n = O  

cos not cos mot dt =: 
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and carrying out the integration following from Eqs. (7.26b), we obtain 

a0 = - Jr i r f i t )  dt 

a, = 2. rT At) cos not dt 

b, = 2 J'+'flt) sin not dt 

(7.27a) 

(7.27b) 

(7.27~) 

T 

T 

T 

for n = 1, 2,. . ., cc 

for n = 1, 2,. . . , co 

Example 7.3 
A square wave centered about t = 0, with an amplitude of unity and a period of 4 s, 
can be described in the interval 1 t 1 < 2 as 

(7.28) 

(see Figure 7.3). 
Since the function is an even function, that is f l t )  = f l- t) ,  all the bn's are 

identically zero. (Try it if you do not believe it.) Solving, then, solely for the an's, using 
Eq. (7.27b), we get 

a, = 5 T o  s' (1) cos .($It dt + :lz(-l) cos n($)t  dt 

or 
4 . n x  

Un = - S1n - 
nn 2 

(7.29) 

Figure 7.3 Fourier series tit to a square wave. As the results are symmetric about 
the origin, only the positive axis has been shown. The parameter N denotes the 
number of terms in the Fourier series. 
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For n an even number, a,, = 0, and for n odd, a,, = (-1)”+’(4/nn) for n = 1,3, 5,. . . ; thus 

4 
n T 3 n  T 5 n  T 7 n  T 

At) = - cos E - 4 COS 6nt + COS !ont - Aces 14nt + . , (7.30) 

Figure 7.3 shows the fit of the series to the function for one, two, and 
three terms. For a good representation to a function, it is necessary that a 
sufficient number of terms N be taken in the summation (practicality dictates 
that N not be infinite). How large N should be can be determined by finding 
the mean square value of the functionflt). 

(7.31) I’ t+T N 1 d f2( t )  dt =-  dt+T [ a ~  + 2 (a, cos not + b, sin not) dt 
T T 

l N  
= a; + - 2 (at, + bt,) 

2 n=l 

This is referred to as Parseval’s theorem, and it implies that if one-half the 
sum of the squares of the coefficients does not approximately equal the 
average mean square value offlt), more terms should be taken (N larger). It is 
often more meaningful in this comparison to subtract out the mean offlt) 
prior to using Parseval’s theorem, as a; can dominate the summation. 

For the square wave in the example, 

-!- s2 . f ’ ( t )  dt = 1 
T -2 

For various values of n we have [from Eq. (7.29)] 

0.811, N =  I 
0.900, N =  3 I 

aS,+bS, 0.933, N = 5 1 0.950, N = 7  n+ ’-----= 2 

I 1.00, N =  00 

7.3.3 Complex Series Representations 

The exponential form of the Fourier series is obtained from the Euler 
identities 

eina‘ = cos not + i sin not 

e-inat = cos not - i sin not 
(7.32) 

where i = fi. By adding and subtracting these two relationships, we have 
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einuf + e-inul 

2 
cos nat = 

sin not = =-i( ) einui - e-inul einuf - e-inut 

2i 

These expressions are then substituted into the Fourier series as repre- 
sented in Eq. (7.24): 

(7.33) 

If the dummy subscript in the term modifying e-inuf is changed to -n, we 
can write 

N 
At) = C: F(n)einuf 

n=-N 
(7.34) 

where 

a,, - ib, 

a, + ib, 

for n >, 0 

for n < 0 

2 (7.35) i 2 

F(n)  = 

Since F(-n) = P ( n ) ,  where the asterisk means complex conjugate, the right- 
hand side of Eq. (7.34) is real. The F(n) may be obtained equivalently from 
the time series by 

(7.36) 

using Eqs. (7.35), (7.27b), and (7.27~). 
Equations (7.34) and (7.36) constitute a Fourier transform pair. For 

discrete data, obtained at Z points, the Fourier transform pair must be 
replaced by sums or 

I N  
Zm=l 

F(n)  = - 2 Am At)e-2nimn" 

where T = I At and At is the time between samples, and 
112 

n=-II2 
Am At)  = 2 F(n)e2"i"n" 

(7.37) 

(7.38) 



Sec. 7.3 The Wave Spectrum 199 

Figure 7.4 Argand diagram for F(n).  Real axis 

Any complex number such as F(n)  can be expressed in terms of an 
amplitude and a phase, using an Argand diagram (see Figure 7.4), which 
shows the real number along the abscissa and the imaginary numbers on the 
ordinate. 

F(n)  = I F(n) I e-i'n 
where 

(7.39) 

and 

E,, = tan- - 
an 

The phase E ,  gives the relationship of each particular harmonic term to 
the origin. For example, if the functionflt) is even, then all the b,'s are zero 
and the phases are either 0" or 180". If the function is odd, the E ,  values are 
either n/2 or 3n/2 for all n. If theflt) is translated with respect to the origin, 
the phases change, but I F(n)  I remains the same. Thus the I F(n)  I 's provide a 
good characterization of a function. 

7.3.4 Covariance Function 

The covariance function, or the correlation function of two time- 
varying quantitiesfi'(t) andA(t), can be defined as 

r+T 

C,(Z) = Ll f( t2f(t  + 5) dt (7.40) 

where T is a time lag. If i = j  = 1, then C,(Z) is the autocorrelation function, 
while if i + j ,  this quantity is the cross-correlation or cross-covariance func- 
tion. 

T 
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There are two important uses of the autocovariance function. The first 
is to identify periodicity within the time seriesfi(t). For periodic data, CIl(7) 
will be periodic with the same period as fi(t).  The second utility for a 
covariance function is that it is related directly to the energy spectrum, as will 
be shown shortly. 

It can be shown that CIl(z) = c11(-7), that is, CII(7) is symmetric about 
the origin, and that the covariance is independent of the phase angles of the 
components offi(t). 

If we now substitute the Fourier series representation forA(t+ t) into 
the equation for the covariance, we obtain 

N12 

1 N / 2  r+T 

T ~ = - N I ~  1 
= - 2 f(t)einur dt I;,(n)dnm (7.41) 

N12 NI2 

where c(n) is the complex conjugate of the complex Fourier coefficients of 
m. 

For the autocovariance, 

(7.42) 

F , ( n )  12 cos naz  

since CIl(z) is symmetric. For the case where the time lag 7 is zero, 
N12 

(7.43) 

which recovers Parseval's theorem. 

7.3.5 Power Spectrum 

The Fourier transform of the covariance function is defined as the 
power spectrum (for i = j )  or the cross spectrum (for i + j ) .  For water waves it 
is more appropriate to call it the energy spectrum (i =j) ,  as in the context the 
components of the spectrum are the squares of the wave amplitude at each 
frequency which are related to wave energy. Taking the Fourier transform of 
C,,(7), we obtain 

(7.44) 
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for - N / 2  < n < N / 2 ,  which is the two-sided energy spectrum. In practice, the 
one-sided energy spectrum is used, which is physically more intuitive as it 
does not involve negative frequencies, -no. 

(7.45) @;l(n)  = 2 I F1(n) 12, 

@{l(O) = IF,(O) 1 2 ,  
n > 0 

n = 0 

for 0 < n < N / 2  only. 
In the past, the procedure described above to obtain the wave spectrum 

was the only practical procedure available. This method, called the mean- 
lagged products method, involved the computation of the covariance func- 
tion and then its Fourier transform was calculated to obtain the power 
spectrum. This laborious method was necessary, instead of the more direct 
technique of just taking the Fourier transform of the wave record to obtain 
the F(n)  coefficients and then finding I F(n)  I ', as it was very time consuming 
to obtain the Fourier transform. However, in the last two decades, with the 
implementation of the fast Fourier transform (FFT), which drastically 
reduced the amount of time necessary for computation, the more direct 
technique is now favored. In fact, most computer library systems have FFT 
algorithms available. 

The cross spectrum Q J n )  (for i + j )  is obtained in a similar manner as 
@ f f .  

f+T  

Q1,(n) ='s Cf,(z)e-fnur dz = c(n)F, (n)  (7.46) 

or, it is the product of the Fourier coefficients of time seriesj and the complex 
conjugate of the coefficients for series i. The cross spectrum is in general 
complex, the real part is denoted the cospectrum, and the imaginary, the 
quad(rature) spectrum, or Ql,(n) = Co,(n) + iQuad,(n). 

There are numerous intricacies of spectral estimation, such as stability 
and resolution of the spectrum, length of time series necessary, digitizing 
frequency, and so on. The interested reader is referred to other references for 
this; see, for example, Jenkins and Watts (1968). 

T I  

7.3.6 The Continuous Spectrum 

The amplitude, phase, and energy spectra that have been discussed 
have been discrete; that is, there are contributions only at discrete frequen- 
cies, for example, for the energy spectrum Qll(n), and the spacing on the 
frequency axis is 

(7.47) 2R A a = -  
T 

The discrete nature of the spectra is a direct result of considering the time 
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series to be periodic. Natural phenomena such as gustiness in the atmosphere 
or water waves are usually considered to be aperiodic, and therefore there are 
a number of analytic continuous wave spectra which are used in design. 

The formal derivation of aperiodic spectral relationships will not be 
presented here. It suffices to note that the procedure is one of considering the 
interval of periodicity T to approach infinity and recognizing that in the limit 
the contributions are densely packed on the frequency axis [cf. Eq. (7.47)] and 
thus approach a continuous distribution. 

In practice, to represent the periodic energy spectrum as a continuous 
spectrum, the following simple transformation ensures that the total energy 
is conserved: 

IF(G) l 2  ACT = IF(n) I Z  (7.48) 

where o;, = n A c  and it is seen that for the one-sided spectra I F(n)  I and 
I F ( @  I 2, 

+cu 

(7.49) 
n=O 

7.4 THE DIRECTIONAL WAVE SPECTRUM 

During a storm, such as a hurricane, a great number of waves are present on 
the sea surface, coming from many different directions. To characterize this, 
a directional wave spectrum is used. This generalizes the frequency spectrum, 
(7.23), by adding the variable 8, the wave direction, in addition to the wave 
frequency. Thus for each frequency there may be a number of wave trains 
from different directions. This directional wave system is expressed as4 

where B is the angle made by the wave orthogonal and the x axis. 

reduces to 
For waves measured at a point, say the origin, as a function of time, this 

(7.51) 

Measurement of the directional spectrum and its use in design has 
recently become widespread in the ocean industry. In fact, in relatively deep 
water, the directional nature of the sea surface during storms is at least as 
important as the nonlinearities present due to large waves. (For shallow 

‘The artifice of negative frequencies is required here to ensure that q(t) is real. Note that this 
requires that k, = -kn, but that in the depth-dependent terms, k - I k. I, to ensure the decay with 
depth. 
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water conditions, the nonlinearities are generally much more significant than 
in deep water.) 

As an example of the formulations necessary to develop the directional 
spectra, we will consider measurements made by a surface-piercing wave 
gage [Eq. (7.50)] and a two-component current meter, oriented such that it 
measures the horizontal components (u,  v). 

The velocities u and v can be represented as 

K,(z)F(n, O)einuf do 

K,(z)F(n, O)einuf d0 

" gk,, cos 0 

" gkn sin 13 

na 
u(t)  = F 1 

n=-N/2 

na 
v ( t )  = 5 

n=-N/2 

(7.52) 

(7.53) 

where, as developed in Chapter 4, 

and the associated velocity potential is 

(7.54) 

The energy density spectrum @,,(n) is obtained analytically by first 
determining the covariance function C,,(z). 

C,dz) = -! J"' q(t)  i2' F(n, O)einu(r+r) d0 dt 
(7.55) T n=-NI2 

C,,(z) = 12' P ( n ,  0') de' 12' F(n, 0) dOefnm 
n=-NI2 

The integrands are periodic functions, and it can be shown (by expand- 
ing F(n,  0) in a complex Fourier series) that C,,(z) can be written as 

The energy density spectrum of the surface displacement @,,(n) is the 
Fourier transform of C,,(z), or 

(7.57) 
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This quantity QV,,(n) is the energy at each frequency a,, and it is seen to 
be the integral over the directions 8. The directional energy density spectrum 
is I F(n,  6) I ' ,  which gives the distribution of energy with direction as well as 
frequency. Alternatively, if we examine the energy density spectra of the 
horizontal velocities. we obtain 

Zn 
~ " " ( n )  = KZ J sin2 e 

Finally, the cross-spectra 
where K = gkK,(z)/na. 

mUv(n)  = K J z n  cos epqn,  e) 

~ ( n ,  @ I 2  do for -N G n G N 

do 

r 2 n  

(7.58) 

(7.59) 

(7.60a) 

(7.60b) 

(7.60~) 

To obtain the directional wave spectrum, a method developed by 
Longuet-Higgins et al. (1963) may be used. The directional spectrum is 
expressed as a Fourier series, 

m m 

 IF(^, e) 1' = C ~ , ( n )  cos rn8 + C Bm(n) sin me (7.61) 

Now, A ,  and B, can be evaluated in the foregoing expressions for the 

@ q @ )  = nAo(n) (7.62a) 

m=O m=l 

energy spectra. Thus 

(7.62b) 

(7.62e) 

From the equations above, the first five harmonics of the directional spectra 
can be determined in terms of the cross-spectra. The reader should verify that 
the spectrum Qvv(n) would yield an additional but not independent equation 
in Ao(n) and Az(n). 



Sec. 7.4 The Directional Wave Spectrum 205 

Different methods for obtaining the directional spectrum using wave 
staffs or pressure transducers have been discussed or utilized. Panicker and 
Borgman (1970) discuss various gage arrays and Borgman (1979) presents a 
unified approach to arrays using different types of sensors. Seymour and 
Higgins (1978) have developed the slope array, which uses pressure transduc- 
ers to provide estimates of the directional spectrum. 

Example 7.4: Directional Wave Spectrum from a Linear Array 
Pawka (1974) uses a linear array of pressure transducers parallel to shore. Using, 
instead, wave staffs, a method of determining the directional spectra will be illus- 
trated, differing only in the fact that the pressure response factor is not included for 
ease of presentation. 

Consider three wave gages distributed at x = 0, 11, and I 2  along the x axis with 
they axis pointing offshore. For each gage the wave records with time are 

N I Z  r 2 n  
q0(t) = C J F(n, 0) d0e-'"" (7.63a) 

n=-NIZ 0 

where k, is related to n a  by the dispersion relationship 

(no)' = gk, tanh k,h (7.64) 

and k-, = -k,. 
If the cross spectrum between qo and vl is examined, we find that 

Qol(n) = 12  ̂IF(n, 0) 12eik~c0se'1 d0 (7.65) 

for - N / 2  < n < N / 2 .  Again expressing the directional spectrum 1 F(n,  0) 1 in terms of 
a Fourier series, as in Eq. (7.61) and substituting into Eq. (7.65), integrals of the 
following form result: 

Izn cos m0 eiknc0s9'1 d0 = nimJm(k,ll) (7.66) 

and 

S'" sin me e'k-cos911 do = 0 

where J,,,(knll) is the mth-order Bessel function of the first kind. Therefore, 
M 

(7.67) 

Qo,(n) = n 2 imAm(n)Jm(k,ll) (7.68) 
m=O 
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The other possible cross-spectra are 
M 

m-O 

M 

Qo2(n) = n C imAm(n)Jm(kn12), 0 n co (7.69) 

012(n) = n imAm(n)Jm(kn(12 - 11)) (7.70) 
W=O 

The energy spectrum for each gage is 

With three gages we have three cross-spectra and one autospectrum (since the 
three autospectra are the same) or seven real linear equations for seven real unknown 

and 

(7.72) 

(7.73) 

where (Co),, and (Quad), refer to the real and imaginary parts of the cross-spectrum, 

The resulting values ofAo to A6 thus define the directional energy spectrum. The 
fact that the BmL are not obtained means that the resulting directional spectrum is 
symmetric about 8 = 0. That is, there is an ambiguity in the results in the sense that the 
sensor array cannot tell ifwaves are coming from the +y direction or the -y direction 
and hence the physical reason for the array being parallel to shore, as the assumption 
can be made that waves do not come from shore (of course, wave reflection or a 
significant wind generation area behind the array could affect these results). 

It is important to notice that if the gages are spaced evenly, that is, 12  = 211, then 
two of the equations in the matrices are redundant, and only five Fourier coefficients 
can be obtained instead of seven. 

q. 
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7.5 TIME -S ERI ES S I M U LATI ON 

Simulation refers to the calculation of phenomena of interest to investigate 
their characteristics or to evaluate the effectiveness of various designs to 
measure or withstand the phenomena. An example is the simulation of 
directional waves to investigate the forces caused on a particular structural 
design. Numerical simulation is feasible through the extremely efficient FFT 
procedures noted earlier. In principle, simulations for one-dimensional and 
directional spectra are essentially the same; the procedure will be discussed 
here for a directional spectrum. 

Consider a continuous directional spectrum I F ( q  0) I 2, representing 
the continuous directional spread of energy over direction 0 and frequency O. 

For numerical simulation, the water surface displacement q is expressed as 

(7.74) 
n 4  m-I 

cos (not - kmnxX - kmn? - e m n )  

in which the above represents a total of M x N / 2  wavelets, with M directions 
at each of N / 2  frequencies. The phase angles ern, are considered to be random, 
in accordance with the concept of the generation of a wavelet over a fetch 
which is long compared to the wavelength. Since the set of emn is random, any 
number of simulations can be carried out based on a single spectrum; each 
simulation is termed a “realization” of the spectrum and is interpreted as one 
of an infinite number of possible wave systems that could result from a storm 
that caused the spectrum of interest. Thus statistics can be developed describ- 
ing the probability of the maximum wave height or force or probability of 
exceeding design limits, and so on. 

In carrying out the simulation, the FFT is generally used due to its 
speed. Thus it should be recognized that Eq. (7.74) represents a periodic time 
series and any attempt to apply a simulation for a greater period than the 
interval of periodicity (= 2 n / A o )  would not yield any additional information 
and probably would be misleading. To apply the FFT to simulation, it is more 
useful to express Eq. (7.74) as 

(7.75) 

in which a, and bn depend on x and y and include the contributions from all 
directions at the nth frequency, 

M 
a, = 2 J I F(On, 0, I ’ Aern AO cos ( k m J  + knmJ + Emn) 

(7.76) m=l 

M 
b, = C J I  F ( o ~ ,  Om I ’ AOm AO sin (knmxx + k,,J + e m n )  

m=l 
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As an illustration of a simulation, suppose that a wave gage array has 
been designed to determine the directional spectrum. For selected input 
directional spectra, simulations could be carried out and from these the 
directional spectra calculated. The use of various record sampling lengths, 
various levels of random noise added to the input, and so on, would assist in 
evaluating both the methodology developed for extracting the directional 
spectrum and the effectiveness of the array for different directional spectra. A 
specific example would be one in which the longshore component of energy 
flux at a particular point is of primary interest. Simulations would assist in 
the evaluation of the ranking of different array designs for extracting the 
parameter of interest for a range of directional spectra considered likely to 
occur. 

7.6 EXAMPLE OF USE OF SPECTRAL METHODS TO 
DETERMINE MOMENTUM FLUX 

In Chapter 10 it will be shown that the onshore flux of the longshore 
component of momentum S,, is given by 

E C G  S ---sin28 
x y - 2  c (7.77) 

in which 8 is measured counterclockwise with respect to the x axis and the x 
axis is directed shoreward, and E is the usual total energy per unit surface 
area. Equation (7.77) represents the contribution for a particular frequency 
and wave direction. If measurements of waves are made such that the 
directional spectrum is obtained, the contribution is given, in terms of the 
directional spectrum, as 

YIF(~ ,  e m ) 1 2  (1 + 2knh ) sin 26, A6, (7.78) 
4 sinh 2knh 

Sxy(n, O m )  = 

where y =pg, the specific weight of water. The contribution to the momentum 
flux component on a frequency-by-frequency basis yields 

2knh ) 5 IF(n, & ) I 2  sin 28, A8, (7.79) 
sinh 2knh m=l 

and the total longshore component of the onshore component of momentum 
flux is 

(7.80) 
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7.6.1 Measurement of S., in Shallow Water 

If shallow water wave conditions prevail, an interesting and simple 
application of spectral theory affords a direct determination of the momen- 
tum flux component Sxy. 

The integral counterparts to Eq. (7.74) expressed for the u and v 
components of water particle velocity are 

ernof de (7.81) 

e de (7.82) 

cosh k(h + z) 
sinh kh 

cosh k(h + z) iflot 

u(z, t )  = n=N/2 c J2” F(n, e)g cos e 

v(z, t )  = ny J2’ F(n, e)a sin e 
n=-N/Z 

sinh kh n=-N/2 

Consider the time average of the product of u and v: 
~ 

dB (7.83) 
n=N/2 271 d . cosh2k(h+z) 

n=-N/Z 2 sinh’ kh 
u v =  2 J I F(n, e) 12 - sin 20  

which upon using the dispersion equation (3.44) and shallow water approxi- 
mations becomes 

(7.84) 

which can be shown to be proportional to S,,, that is, 

Sxy = p h h  (7.85) 

Thus the time-averaged product of the output from a biaxial current 
meter could be used to determine an estimate of the total value of Sxp A 
running average of this product would provide a useful measure of the 
longshore forces exerted on the surf zone by the incident waves. The result 
displayed in Eq. (7.85) should not be surprising since the definition of Sxy is 

Sxy = J h  puv dz (7.86) 
0 

and for shallow water conditions, u and v are uniform over depth. 
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PROBLEMS 

7.1 

7.2 

7.3 

7.4 

In a wave train consisting of 600 waves with a rms wave height H,, of 4 m, 
what is the probability that the height of a particular wave will exceed 6 m? 
What is the probability that the height of at least one of the 600 waves will 
exceed 6 m? 
Recognizing - that the total area under a spectrum is q, that for a single sinusoid 
$ = H2/8 ,  and that for a Rayleigh distribution Hl13 = 1.416Hm,, develop a 
realtionship between HI/, and the square root of the area under the spectrum 
%Ills. 

For the time functions below: (a) determine the Fourier coefficients a,, and b,; 
(b) the phase angles E,; (c) the complex Fourier coefficients; (d) the two-sided 
energy spectra; (e) the cross-spectrum. 

f i ( t )  = 1 + 2 cos at + 2 sin at - 3 cos 3at 

f i ( t )  = 2 + 3 sin at - - + 4 cos 4at i :> 
The cross-correlation function C12(t) associated with a pair of time functions 
fl(t) andfi(t) is given by 

Cl2(~)  = 3 cos2 at sin at 
Iffi(t) is given as 

fi(t) = f + cos at + i sin 2at - sin 3at + 4 cos 4at 
findR(t). 
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7.5 

7.6 

Demonstrate that an arbitrary shift of the time origin by an amount t' changes 
the individual values of a, and 6, but does not change ,/=. 
Using two wave gages located a distance I apart, show that the wave direction 
for a sea that has a unique direction for each frequency is 

7.7 For a directional wave system as expressed by Eq. (7.51), derive the following 
cross-spectra: 

@?Idn 1, @fj4J? I /Jdn  ), % J ? I / J Y ) ( ~  1, @ ( d q / J x ~ J q J x ) ( n  )> @@q/dy)(J@y)(n)  

Develop the counterparts to Eq. (7.62) for the coeficients of the directional 
spectrum. 

7.8 Develop the first five harmonics of a directional spectrum based on records of 
the water surface and the surface slopes, that is, 

7.9 Compare the values ofHlllo, HI/,, and HI obtained by the Rayleigh distribution 
and by the two-component model. Discuss and develop a reasonable qualita- 
tive explanation for the differences. Also compare H,,, obtained from the two 
approaches. 



Wave Forces 

Dedication 
WILLIAM FROUDE 

William Froude (1810-1879) is well known for the dimensionless param- 
eter that bears his name. This parameter, utilized in model testing 
involving a liquid free surface, such as would occur in testing of ships, 
harbor response or wave forces on structures, is a ratio of the inertial 
forces extant to the gravitational forces. 

Froude was born in Dartington, England, and received his bache- 
lor’s degree in mathematics from Oriel College, Oxford, in 1832 and his 
master’s degree in 1837. After graduation he worked for lsambard K. 
Brunel, the well-known civil engineer and naval architect. Brunel asked 
him in 1856 to study the waves generated by ships. In 1859 he moved to 
Torquay, an Admiralty establishment, to continue his work in naval 
architecture. During this time he studied trochoidal waves and devel- 
oped techniques to reduce ship roll. In 1870 he began a series of 
experiments to study the resistance of ships using a covered towing 
tank 76 m long, 10 m wide, and 3 m deep. He used dynamometers to 
measure the forces of various models of ship hulls and scaled these up 
to prototype scale. 

8.1 INTRODUCTION 

An important application of water wave mechanics is the determination of 
the forces induced by waves on fixed and compliant structures and the 
motions of floating objects. All objects, whether floating on the sea or 
attached to the bottom, are subjected to wave forces, and therefore these 
forces are of central interest to the designer of these structures. 

The investigation of wave forces has been under way for a considerable 

21 2 
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time and numerous studies have been carried out for the case of wave forces 
on a vertical pile, yet no wave force calculation procedure has been developed 
to date for this most simple case for which there is uniform agreement. 
Although for long-crested waves, with a single fundamental period, theories 
are available which accurately represent the water particle motions in the 
absence of a pile for a wide range of wave characteristics, at present there is no 
reliable procedure for calculating the wave interaction with a structure for all 
conditions of interest. Watching a wave impinge on a vertical pile, the 
complexity of the problem becomes immediately obvious. As the wave crest 
approaches the pile, a bow wave forms and run-up occurs on the front of the 
pile, while a wake develops at the rear. We know from fluid mechanics that 
the wake signifies separated flow, which is impossible to treat analytically. 
Moreover at Reynolds numbers of interest, the flow is generally turbulent. As 
the wave crest passes and the trough reaches the pile, the flow field reverses 
and the previously formed wake may wash back past the pile as a new wake is 
formed. All of these phenomena clearly violate our previous assumptions of 
irrotational flow with small-amplitude waves and small velocities. 

Later discussions will describe the wave forces as comprised of an 
inertia and drag force component. In the case of structures that are large 
relative to the wave length, the wake effects are not important; the inertia 
force dominates, and accurate calculation methods exist. For objects that are 
small, the wake plays a dominant role on both the drag and inertia force 
components, and the roughness characteristics of the object are also of 
significance. In the latter case, no reliable analytical approaches are available 
and experimental results provide the major design basis. 

8.2 POTENTIAL FLOW APPROACH 

The treatment of ideal flow about a circular cylinder will provide a frame- 
work for wave force discussions to follow. If, for convenience, we consider a 
section of vertical piling far from the free surface, then to obtain a first 
approximation for the wave force we integrate the pressure distribution 
around the piling using potential flow. For a circular piling, it is convenient to 
use polar coordinates (I; 0, z) in the horizontal plane. In this system, the 
Laplace equation in three dimensions is 

a2+ 1 a4 a2+ a2+ 
ar2 r ar r2ae2  az2 

v2+ = - + - - + - +-=O 

and the velocity components are 

A solution to this equation, which is uniform in the vertical direction, 
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&r, 8) = U(t)r 1 + - cos 8 ( 3 
At r =  a, the radius of the pile, there is a no-flow condition in the r direction as 
expected. 

U(t), the far-field velocity, is considered to vary sinusoidally with the wave 
period T. In plan view the flow around the cylinder is as shown in Figure 8.1. 
(Note the absence of a wake in potential flow.) 

To calculate the pressure distribution around the cylinder, the unsteady 
form of the Bernoulli equation is applied at the cylinder wall and far 
upstream at a point where r = I, 8 = 0, and 1 >> a: 

+gz+'----- 
2 at 2 at 8=0 

(8.5) 

+gz+------- 

The elevation terms cancel, leaving the pressure difference between the free 
stream pressure in the fluid and that at that cylinder as 

(8.6) 

Substituting from the velocity potential yields 

dU p(a ,  8) - p ( l ,  0) = p[m(l - 4 sin' 8) + 2a - cos 8 - I"] (8.7) 

where terms of O(a2/12) have been dropped as extremely small. The pressure 
term is thus due to two different contributions, the steady flow term, 
proportional to U2(t), and an acceleration or inertial term, due to dU(t)/dt. 
Let us examine them term by term. 

2 dt dt 

Figure 8-1 Potential flow around a circular cylinder. 
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8.2.1 Steady Flow Term 

The steady pressure contribution as a function of angular position 
around the pile is 

p(u ,  8) - p( l ,  0) = PU'(t) ----(1 - 4 sin' 8) 
2 

This pressure distribution is shown in Figure 8.2. The pressure is symmetrical 
about the pile and in the absence of a wake, the pressure at the rear of the pile 
is the same as that at the front. Intuitively, the net pressure force in the 
downstream direction should be zero. Integrating the pressure around the 
pile, noting that we use the component of the force in the downstream 
direction as illustrated in Figure 8.3, yields the steady (drag) force per unit 
elevation dFD, where 

dFD = J2np(u,  8)a cos 8 d8 (8.9) 

= ~ * ' ~ ~ ( l  - 4 sin2 8) + p(l ,  0) a cos 8 dB 1 
or 

dFD = 0 (8.10) 
Therefore, as expected from the pressure symmetry, there is no force on the 
pile in ideal steady flow. However, this is contrary to the actual results 
determined from real flows; an experience familiar to all is the force occur- 
ring on one's arm when extended out the window of a moving car. This 
discrepancy has been called DAlembert's paradox and it puzzled the early 
hydrodynamicists. The reason for the paradox, as alluded to before, is the 
unrealistic assumption of potential flow, which precludes the formation of 
boundary layers and a wake. 

Figure 8.2 Pressure distribution around cylinder for case of ideal flow. Note the 
low pressure at the sides, 0 = 90", and the symmetry with respect to 0 = 0" and 
e = 90". 
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.X- 

Figure 8.3 Calculation of elemental 
force in x direction. AFx is positive in 
the downstream (-x) direction. 

The real pressure distribution around a cylinder in steady flow is a 
function of the Reynolds number IR, defined as IR = UD/v, where U is the 
velocity normal to the cylinder axis, D is the pile diameter, and v = p/p, the 
kinematic viscosity of the fluid, which is the ratio of the dynamic viscosity p 
to the fluid density p. In Figure 8.4, Goldstein (1938) shows the measured 
pressure distribution around cylinders for two Reynolds numbers compared 
to the theoretical ideal flow result. For the upstream portion of the cylinder, 
with 8 G 8,, the separation angle, ?he pressure may be described approxi- 
mately by potential flow; however, for 8 > 8,, which is a function of the 
Reynolds number, the pressure appears nearly constant. We can therefore 
approximate the force on a cylinder by using the potential flow solution for 
0 G 8 G 8, and using a constant pressure in the wake, as follows: 

dF - - 2Jn’h pq (1 - 4 sin2 8)a cos 8 d8 + 2 (8.11) 

= pU2(t)a[ s”(1 0 - 4 sin2 0) cos 8 d8 + LIpu2(l)/2 cos 8 do] 

1 .o 

0 

P - P o  
~ 

l P U 2  -1.0 

-2.0 

-3.0 

0 30 60 90 120 150 180 210 240 270 300 330 360 

0 (degrees) 

Theoretical - Measured IR = 6.7 X lo5 ----- Measured IR = 1.9 X lo5 

----- 

Figure 8.4 Measured pressure distributions around cylinders. (From Goldstein, 
1938.) 
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Figure8.5 Variation of drag coefficient, CD with Reynolds number [R for a 
smooth circular cylinder. (From H. Schlichting, Boundary Layer Theory. Copy- 
right 0 1968 by McGraw-Hill Book Company. Used with the permission of 
McGraw-Hill Book Company.) 

The term within the brackets is a function of Reynolds number lR, as both %, 
and Pwake vary with Reynolds number. Therefore, the force per unit length, 
dF, can be related to a function, CD, which varies with R , allowing us to write 
the force on the pile per foot of elevation as 

(8.12) 

where D = piling diameter = 2a and for the case of a circular cylinder is equal 
to A = projected area/unit elevation of the cylinder (i.e., A = 2a). The last 
form of Eq. (8.12) applies to two- and three-dimensional objects, with the 
stated definition ofA. The function CD is called the “drag coefficient” and its 
variation with Reynolds number is empirically known for steady flows as 
shown in Figure 8.5 for a smooth cylinder of circular cross section. In 
practice, CD is generally on the order of unity and depends on piling rough- 
ness in addition to Reynolds number. 

8.2.2 Unsteady Flow 

Examining the remaining term in the potential flow expression for the 
pressure [Eq. (8.7)], we have, integrating the component of force in the 
downstream direction, 

dFI = 9 2a2 cos2 % d% - Jb-2n P- dU(t )  la cos % d% (8.13) 
dt dt 
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The second term on the right-hand side integrates to zero, thereby 
contributing no net force. The first term, however, yields 

dFI = pa2 27r 
dt (8.14) 

2 dU =2pna - 
dt 

The term xuz is the volume V of the pile per unit length, so that the final 
expression can be written as 

(8.15) 

where CM is defined as the inertia coefficient, which in this case (of potential 
flow about a circular cylinder) is equal to 2.0. Thus there is a force called the 
inertial force caused by the fluid accelerating past the cylinder, even in the 
absence of friction. The general form [Eq. (8.15)] for the inertia force compo- 
nent is valid for two- and three-dimensional objects of arbitrary shapes, 
except that the inertia coefficient can vary with the flow direction. 

The inertia coefficient, in practice, can be discussed meaningfully as the 
sum of two terms, 

C M = l + k ,  (8.16) 

where the second term, k,, is called the added mass which depends on the 
shape of the object. The interpretation of the inertia coefficient is that the 
pressure gradient required to accelerate the fluid exerts a so-called “buoy- 
ancy” force on the object, corresponding to the unity term in Eq. (8.16). An 
additional local pressure gradient occurs to accelerate the neighboring fluid 
around the cylinder. The force necessary for the acceleration of the fluid 
around the cylinder yields the added mass term, km. 

Let us first consider the force on an object due to the unaffected 
pressure gradient in an accelerating fluid. If the pressure gradient is uniform 
across the dimension of the object, the knowledge available for vertical 
buoyancy forces in a hydrostatic fluid can be applied. In the latter case, the 
hydrostatic buoyancy force FB on an object of volume V in a fluid of specific 
weight y is 

FB=yV (8.17) 

and for a hydrostaticlluid, the pressure gradient dplaz and specific weight y 
are related by 

dU dFI = CMp V - 
dt 

y = - -  aP 
dZ 

Therefore, 

(8.18) 
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(8.19) 

Returning to the effect of a horizontal pressure gradient associated with 
an accelerating fluid, the “buoyancy-like” force component is 

(8.20) 

and from the Euler equations, - ap/ax may be replaced by p (du/dt), yielding 

du 
FB = pvdt (8.21) 

and by comparing Eqs. (8.20), (8.15), and (8.16), the origin ofthe unity termin 
CM is clear (i.e., it is due directly to the pressure gradient). The added mass, 
which is shape dependent, is caused by the disturbance of the flow field. It 
appears that in all cases, CM should be greater than unity. 

For two-dimensional flow about a cylinder of elliptical cross section, 
the added mass coefficient k,,, can be shown (Lamb, 1945) to be 

b 
a 

(8.22) k = -  rn 

3 
I r 
r) 

i- 

.- 
e 
8 
m .- 
I 

Y - 
Value for cylinder of  circular 

cross section 

I k,,, , added mass component 

Prcssure gradient component = 1 i 
I 

I 
I 

- - -- - - -- - _ _ ,  - - -. -. __ - - . -. __ __ - - _ -  

I 
I 

0 1 2 3 
alb 

Figure 8.6 Inertia coeffkient for a cylinder of ellipsoid cross section. 
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where a and b are the semiaxes aligned with and transverse to the line of 
acceleration, respectively. Equation (8.22) is plotted in Figure 8.6, which 
demonstrates the occurrence of a small k, for a streamlined body. 

Example 8.1 

It is instructive to consider the case where a circular cylinder is accelerating through a 
quiescent ideal fluid. Is the force exerted on the cylinder by the fluid the same as when 
the fluid accelerates past the cylinder? We expect that since there is no pressure 
gradient in the fluid, the force would only be due to the added mass coefficient. 
Therefore, the force should not be the same. To determine this, we write the two- 
dimensional velocity potential for a moving cylinder as 

(8.23) 

where now, U(t )  represents the velocity of the cylinder. It is clear that this equation 
satisfies the following kinematic boundary condition on the cylinder 

U,I,=~ = u(t) cos e (8.24) 

a* 
r 

&r, 8, t) = u(t)- cos 8 

The pressure at the wall of the cylinder due to the fluid acceleration is given as 

(8.25) 

where 1 is as defined before for the case of a stationary cylinder. Integrating the 
downstream component of the pressure force around the cylinder, we have 

dF, = J2’[p(a, 8)la cos 8 d8 

2n d U a 3  
= L 2 ” p  %a2 COS’ 8 d e  + 1 p - - cos 8 dB + L2>(1, O)a cos 8 d0 

dt I (8.26) 

In addition to this force by the fluid on the accelerating cylinder, a force is necessary, of 
course, to accelerate the mass of the cylinder itself. Therefore, the total force required 
to accelerate a cylinder through water could be greater or less than if the water 
accelerated past the cylinder depending on whether the mass of the cylinder is greater 
or less than that of the displaced water. 

In interpreting the physics and terminology associated with the added 
mass concept it is helpful to consider the energetics of the case of a circular 
cylinder accelerating through a fluid. As noted previously, the force per unit 
length exerted by an accelerating circular cylinder on the surrounding fluid is, 
from Eq. (8.26), 
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2 dU 
at 

Fl = pk,,,na - (8.27) 

where k,  = 1 for a circular cylinder. 
Let us now calculate the kinetic energy of the accelerated fluid as a 

function of time. The radial and angular components of velocity are, from 
Eq. (8.23), 

a’ a4 
ar r2 

u, = - - = v(t) - cos e 

The total fluid kinetic energy KE at any time is 

(8.28) 

(8.29) 

(8.30) 

The time rate of change of kinetic energy should equal the product of the 
force and the velocity, ( F I .  U), that is, the rate at which work is being done by 
the cylinder, which is verified as follows: 

(8.31) 

and by comparison with Eq. (8.26), we see that this is exactly equal to F .  U. 
Thus the added mass coefficient represents the ratio of the additional mass of 
fluid that is accelerated with the cylinder to the mass of the fluid displaced by 
the cylinder. 

au -- - pa2 - u 
at at 

8.3 FORCES DUE TO REAL FLUIDS 

8.3.1 The Morison Equation 

Previously, we have treated the inertia and steady-state drag force 
components independently. However, in a wave field both forces occur and 
vary continuously with time. Morison et al. (1950) proposed the following 
formula for the total wave force;which is just the sum of the two forces, drag 
and inertia. 

dF = dF0 + dFI 
(8.32) DU 

Dt 
= 1 CDpAu 1 u I + chfpv- 
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Equation (8.32) is frequently referred to as the “Morison equation.” 
It is noted that in Eq. (8.32), an absolute value sign on one of the 

velocity terms ensures that the drag force is in the direction of the velocity, 
which changes direction as the wave passes. 

8.3.2 Total Force Calculation 

To determine the total force on a vertical pile, the force per unit 
elevation must be integrated over the immersed length of the pile. 

F+F 
(8.33) 

In genera CD and possibly CM vary over the length of the pin; as the 
Reynolds number surely does. Therefore, we cannot integrate these equations 
directly. If, however, we take constant values of CD and CM and use linear 
wave theory’ and consider only the local acceleration term, the integration 
can be carried out up to the rneunfieesur-uce to give an approximation to the 
total force. 

cosh2 k(h + z )  
sinh2 kh F = p X L l ( ? ! ) i $  2 COS (hi - at )  ~ C O S  (hi - at) I dz 

(8.34) 
~ C M Z D ~ S ’ H  cosh k(h + z )  

4 4 2  sinh kh 
sin (kxl - at) dz - + 

cos (hi - at) ~ C O S  (kxi - at) I (8.35) 
F =  pCDDH2g (2kh + sinh 2kh) 

4 sinh 2kh 4 
pnD2 H 

4k 2 
+ C M  - - d sin (kxl - at) 

or 

F =  CD DnE cos (hi - at) ~ C O S  (kxl - at)l (8.36) 

+ CMRDE- tanh kh sin (kxl - at) 

where xl is the location of the pile (conveniently, this can usually be taken as 
xI = O),E (= ti pgH2) is the wave energy per unit surface area, and n is the ratio 
of group velocity CG to wave celerity C,  as given by Eq. (4.82b). The ratio 

D 
H 

‘In actual design, a nonlinear theory (see Chapter 11) should be used for horizontal velocity and 
acceleration. 
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D/H can be interpreted in terms of the relative importance of the inertia to 
drag force components. The total moment about the seafloor can be obtained 
similarly by integrating 

M = l : d M  = l:(h + z) dF 
(8.37) 

nDz Du I: 4 Dt 
= J:(h + z ) ~ C D ~ D U  1 u I dz + (h + z)~CM - - dz 

which yields’ 

1 cosh 2kh - 1 + 2(kh)* 
M=CDDnEcos(kxi-Gt) I c o ~ ( k x i - ~ t ) )  h 1 - -  [ [ 2n( 2khsinh2kh 1 [ cash kh - ‘J]  (8.38) D 

H kh sinh kh 
+ CMXDE- tanh kh sin (kxl - a) h 1 - 

in which each of the terms above is recognized as the total force component 
times the respective lever arm (the lever arms are in the braces, { .  }). The 
reader should demonstrate that, as expected from physical reasoning, the 
asymptotes for these lever arms are h/2 and h for shallow and deep water 
conditions, respectively. 

8.3.3 Methodology for Determining Drag and 
Inertia Coefficients 

In practice, the reliable determination of drag and inertia coefficients 
presents a very challenging problem, particularly from field data. The 
required measurements include the time-varying force F,,, at a particular 
elevation on a pile, and the corresponding instantaneous water particle 
velocities and accelerations. Given this information, CD and C, may be 
determined by a variety of approaches. Only until the recent development of 
reliable current meters have the water particle kinematics been available to 
researchers. Previous investigators have had to rely on calculated kinematics 
based on measurements of the water surface profile. Even if the kinematics 
are accurately predicted, which is open to some question, particularly if 
small-amplitude wave theory is used for large waves, then Morison’s equa- 
tion is only one equation with two unknowns, CD and CM. Two methods have 
been used to surmount this problem. The first is to correlate forces with water 
particle kinematics only at times when the velocities or accelerations are 

’The integration again is only carried out to z = 0 as opposed to z = q, for the sake of simplicity of 
the final result. 
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zero. For a small-amplitude wave of a single period, this corresponds to times 
of zero or extreme water surface displacements, respectively. At such times 
either the drag or inertia term is zero and therefore, there is only one 
unknown in the equation. For example, at the wave crest, the acceleration 
(inertia force) is zero and CD would be found as follows: 

(8.39) 

and a similar equation would apply for the inertia coefficient at times when 
the velocity (drag force component) is zero. 

Disadvantages of this approach are that considerable data are not 
utilized: for instance, the data between the crest and the still water crossing. 
With real storm-driven waves, the times are not obvious at which zeros of 
velocities or accelerations occur. This can be seen from Figure 8.7, which 
represents the largest wave measured during Hurricane Carla in almost 100 ft 
of water in the Gulf of Mexico (Dean, 1965). 

A second method, used by Dean and Aagaard (1970), is to minimize the 
mean squared error E’ between measured and predicted forces. This proce- 
dure, in order to account for Reynolds number dependency, involves classify- 
ing the digitized data into groups with approximately the same Reynolds 
number. For each group, then, e2 is minimized with respect to the unknowns, 
CD and CM. 

1 ’  
E’ = - 2 (Fmi - F,J2 

I i=l  
(8.40) 

where the lowercase subscripts rn and p refer to measured and predicted 
forces and I is the total number of data points for the data group. The 

I 1  I I I I I I I I  I I I I  

Time (s) 

Figure 8.7 Largest measured wave from Hurricane Carla, September 1961. (From 
Dean, 1965.) 
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minimization procedure results in two equations in the two unknowns, that 
is, 

(8.41) 

Multiplying through and simplifying, the equations are 

which can be abbreviated as 

(8.43) 

where A, B, D, F, and G are known constants for a given set of data. 
Eliminating unknowns yields 

GB - DF C D  = 
B~ - AF 

and (8.44) 

D B -  GA 
CM = 

B~ - AF 

Once the coefficients have been obtained, the mean squared error can be 
found by expanding Eq. (8.40), 

I 

E2 = 2 pm8 - 2 D c ~  - ~ G C M  + A C i  + ~ B C D C M  + FCL (8.45) 
i=l 

or 
I 

E2 - 2 Fij = ACi - 2 D c ~  + ~ B C D C M  - ~ G C M  + FCL (8.46) 
r=l 

It is interesting to note that the last equation is an equation for an ellipse 
when plotted with CD and CM as axes. This is most readily seen for the case of 
symmetric wave data, in which the constant B would be equal to zero3 due to 
the symmetry of the velocity and antisymmetry of the acceleration about the 

Du 
Dt 

'It is interesting to note that most actual data sets approximate this condition of - u I u I = 0. 
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crest and trough. Rewriting the equation above and completing the square, 

(8.47) 

D2 G2 
i-l A F  

I 

=e2-  C F m i + - + -  

Setting the right-hand side equal to a new constant, J ,  the equation can be 
written in a standard ellipse form: 

(8.48) 

The center of the ellipse is located at CD = D/A and CM = G/F, which are the 
values that give the minimum mean squared error for symmetric data [cf. 
Eq. (8.44) for B = 01. The ratio of the two axes is m. The eccentricity of the 
ellipse is e = Ji--A/F ifA < F or e = J1-I;/A ifl; < A .  For a perfect circle, 
e = 0; for an extremely flattened ellipse, e + 1.0. The eccentricity of the ellipse 
is a measure of the conditioning of the data. If the ellipses are as shown in 
Figure 8.8, the data are well conditioned for the drag coefficient, but poorly 
conditioned for determination of CM, as CM could take on a range of values 
without changing the error appreciably. Obviously, the best conditioned data 
for both coefficients occurs when the ellipses become circles, A = F. In 
practice, when the data are grouped by Reynolds numbers, typically the low 
iQ data are poorly conditioned for the drag coefficient, but they yield good 
results for CM, while the opposite is true for high Reynolds number data. This 
is due largely, for example, for the first case, because the drag forces would 

. -  

I 

o k  (cD)n,m 1 .o 

CD 

Figure 8.8 Illustration of error surface for data that are well conditioned for 
determining CD. 
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Figure 8.9 Drag coefficient variation with Reynolds number as determined by 
Dean and Aagaard (1970). Copyright 1970 SPE-AIME. 

only be a small portion of the total force. Figures 8.9 and 8.10 show drag and 
inertia coefficient results as a function of Reynolds number as obtained by 
Dean and Aagaard (1970). There is a dependency on Reynolds number 
apparent for the drag coefficient; however, the inertia coefficient appears to 
be a constant value, 1.33. Note the reduction of k,,, to 0.33 from 1.0 for 
potential flow. Many other data exist for CD and CM based on different values 
of (D/H) and using other parameters. Because of the complexity of the 
problem no one functional relationship for CD or CM presently is known. The 
values above are recommended for the present for small-diameter vertical 
piling (say less than 5 ft) when the force is drag dominant, as in most field 
data for pile-supported platforms. 

8.3.4 W ~ v e  F O ~ ~ X S  ~ i i  Bipeiincs Resting on the 
Seafloor 

Pipelines are frequently used to convey gas, oil, and other products 
across the seafloor. A knowledge of the wave forces acting on pipelines resting 
on the seafloor is essential to a design that will ensure the stability of the 
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Figure 8.10 Inertia coefficient variation with Reynolds number as determined 
by Dean and Aagaard (1970). Copyright 1970 SPE-AIME 

pipeline. For our purposes here, we will focus on the case of a long-crested 
wave propagating with its crest parallel to the pipeline (see Figure 8.11). 

In earlier sections, we have seen the streamline pattern about a cylinder 
in an infinite fluid medium. The presence of the plane boundary for the 
problem being considered here causes interesting streamline patterns and 
associated forces. Figure 8.12 shows the ideal flow case and it is seen that the 
streamlines above the cylinder are concentrated, thereby resulting in a 
maximum lift force coinciding with the time of maximum velocities. If, 
however, there is a small gap between the cylinder and the seafloor, the 
concentration of streamlines beneath the cylinder causes a negative lift force 
(i.e., directed downward). This phenomenon has been recognized for many 
years and was of considerable concern to dirigible pilots landing in a 
crosswind. As the dirigible would approach the ground a strong downward 
force would occur, only to change to a positive lift force as the craft “touched 
down.” The problem was solved by winching the dirigible down under 
conditions of considerable positive buoyancy. If pipelines are not adequately 
ballasted or anchored, they may experience sufficient lift to be raised off the 
seafloor, then experience a negative lift due to high velocities between the 
pipe and bottom, resulting in a possibly damaging oscillation. 
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- 
-Pipeline of circular 

cross section 

Figure 8.11 
kinematics. 

Pipeline resting on seafloor subject to oscillating water particle 

For the case of ideal flow of a fluid about a cylinder resting on the 
bottom, it can be shown that there are inertia forces in the horizontal and 
vertical directions. In addition, a lift force occurs; but there is no drag force 
due to the symmetry of the streamline pattern. The inertia forces (per unit 
length) in the x and z directions and the lift force FL for the pipeline seated on 
the seafloor are given by 

(8.49) 

(8.50) 

(8.51) 

Streamlines 
\ A 4  

3 -  ---l 

-4 -3 -2 -1 0 1 2 3 4 

xla 

Figure 8.12 Idealized flow field over a cylindrical pipe resting on the seafloor. 
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in which according to potential flow (Wilson and Reid, 1963) 

C M ,  = CMz = 3.29 (8.52) 

c, = 4.493 (8.53) 

It is noted that the vertical acceleration is very small near the seafloor and 
under the crest acts in a direction to stabilize the pipeline. Under the trough, 
both the vertical inertia force and lift forces are directed upward; however, 
for design waves, the velocities under the trough are generally substantially 
less than under the crest. Thus the uplift forces under the crest will usually be 
greater than under the trough. 

For the case of real flow fields about a pipeline, both the Reynolds 
number and relative water particle displacement are of importance. For most 
design conditions, the flow will be fully separated and if the particle displace- 
ment is greater than twice the pipe diameter, drag and inertia coefficients on 
the order of 1.0 appear reasonable. If the relative displacement (water particle 
displacement/cylinder diameter) is less than 1.0, experimental data by Wright 
and Yamamoto (1979) have shown that the potential flow results are applica- 
ble. Valuable experimental results are also presented by Sarpkaya (1976). 

8.3.5 Relative Importance of Drag and Inertia 
Force Components 

In some situations the drag or inertia force will dominate over the other, 
thus simplifying the Morison equation. To determine the condition for which 
this happens, consider the value of the ratio dFIm/dFDm. For wave forces on a 
pile, we know that the maximum velocities occur in the upper portions of the 
water column. As a reasonable estimate, let us examine the ratio at z = 0. 

The maximum value of the inertia force for small-amplitude waves 
occurs at the still water crossing, where du/dt  is a maximum. The maximum 
drag force occurs at the wave crest. If we substitute these values (for z = 0) 
from Chapter 4: v:)max = f~? coth kh 

2 

( u * ) , ~ ~  = (:) a2 coth’ kh 

(8.55) 

(8.56) 
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we obtain 

In deep water, the ratio equals 

In shallow water, 

(8.57) 

(8.58) 

(8.59) 

For the maximum force per unit elevation of the piling then, it is clear that 
since CM and CD are O(l), the ratio D/H is relevant in determining the 
importance of the inertia force. For large structures, with diameters much 
greater than the incident wave height, the inertia force will predominate in 
deep water; in shallower water, where kh becomes small, the importance of 
the inertia force decreases. To determine which force predominates, we will 
determine the curve for which the two forces are equal. Equating Eq. (8.57) to 
1, we have 

H CMR 
= - tanh kh . - 

D CD 
(8.60) 

This curve is shown in Figure 8.13 for CD/CM = 0.5. For ratios of H/D 
above the curve, the drag force predominates. Note that in shallow water, the 
drag force tends to predominate over the inertia force. 

2n 

5.0 

!! 
D 

0 

Figure 8.13 H/D versus h/L, for condition of equal maximum drag and inertia 
force components. 
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It is also instructive to consider the total force expressed in terms of a 

(8.61) 

simple harmonic velocity given by 

u = U m  COS at 

instead of a form related to the wave height. 
The total force on a unit length of cylinder is 

The ratio of maximum inertia to drag force component is 

(dF,)max 1 C M ~ D ~  2 CM 1 
(dFD)max CDUm CD UmT/D 

-I----=X -___ (8.63) 

and from Eq. (8.61), it can be shown that um/a represents the maximum 
displacement S of a water particle from its neutral position. Therefore, 

(8.64) 

The forms above are interesting because of the background and signifi- 
cance of the parameters umT/D and S/D. The parameter umT/D was first 
proposed by Keulegan and Carpenter (1958) and is sometimes referred to as 
the “Keulegan-Carpenter” parameter or the “period” parameter, while S/D 
is referred to as the “displacement” parameter. It is noted that, for small and 
large values of these parameters, the inertia and drag force components 
dominate, respectively. It is very important, but not surprising, that reliable 
values of CD are most readily determined for large values of these parameters 
and reliable values of CM are best determined from data for which these 
parameters are small. Moreover, it is found that if these parameters are 

Phase angle 0 (deg) 

Figure 8.14 Measured force variation for S/D = 2.5. (Based on Keulegan and 
Carpenter, 1958.) 
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small, the form of the wave force time history is well represented by the 
theory; however, if these parameters are large, the form may deviate signifi- 
cantly from that predicted by theory (see Figure 8.14 for the form of a 
measured force record for S/D N 2.5). The reason for the behavior noted is 
that if S/D is small, the particle excursion is so small that friction and wake 
effects do not develop strongly and the flow field resembles that given by 
potential theory. As shown in Figure 8.15, as presented by Sarpkaya and 
Garrison (1963) for a constantly accelerating flow, the inertia coefficient CM is 
approximated quite well by the potential flow value of 2 for S/D values less 
than 0.5. For higher values the inertia and drag coefficients decrease and 
increase, respectively. For S/D values larger than 2.0, the drag and inertia 
coefficients oscillate with time (S/D),  presumably due to eddy shedding. 

Figures 8.16 and 8.17 present drag and inertia coefficients obtained by 
Keulegan and Carpenter (1958) versus the period parameter for forces 
measured at the node of a standing wave system. (The interpretation of the 
inertia coefficient being less than unity is that this occurs for a drag-dominant 
case and that the phasing of the forces are more related to the phases of the 
near cylinder wake kinematics than to those at far field. Since the drag and 
inertia coefficients are correlated to the phasing of the far-field kinematics, 
the inertia force as correlated to the far field is “contaminated by drag force 
effects.) 

8.3.6 Maximum Total Force on an Object 

For an object subjected to simple harmonic oscillations, the time- 
varying total force can be expressed by Eq. (8.36), which can be abbreviated 
as 

F~=FDCOSatICOSatI - FIsinat  (8.65) 

in which FD and F, represent the maxima of the drag and inertia force 
components, respectively, and can be determined readily by comparing 
Eqs. (8.36) and (8.65). 

It is often ofinterest to determine the maximum totd force. Noting that 
the maximum total force will occur for cos at > 0, Eq. (8.65) can be written in 
the following form, from which the maximum can be determined by the 
normal procedures of differential calculus. 

Fr = FD cos’ ot - FI sin at (8.66) 

dFT 
- = 0 = -2FDa cos (at), sin (at),,, - F p  cos (at), 
dt 

(8.67) 

Although not immediately obvious, there are two roots to Eq. (8.67). The 
first is found by dividing through by a cos (at),, yielding 
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Figure 8.16 Variation of drag coefficient with period parameter as determined by 
Keulegan and Carpenter (1958). 
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Fi sin (at), = - - 
2FD 

(8.68) 

which, when substituted into Eq. (8.66), and recalling that cos’ (a), 
= 1 - sin’ (at),, gives US 

(8.69) 

The need for a second root is apparent upon examination of Eq. (8.68) 
and recognizing that if F I / ~ F D  > 1, the first root is no longer possible. The 
second root to Eq. (8.67) is cos (at), = 0, which was discarded by dividing 
this equation by cos (at),. If cos (at), = 0, sin (at), = -1 and the maximum 
total force is 

FT, = FI (8.70) 

The interpretation of this second root can be seen by examining 
Figure 8.18. Because of the inflection of cos2 ot at ot = -n/2, if Fi > 2FD, the 
inertia force term decreases with increasing at more rapidly than the term 
involving cos’ at increases. Hence the maximum total force is pure inertia. 

It is of interest to verify that the cause of the second root is the nature of 
the quadratic drag term. For example, if the drag force component were 
linear, 

FT = FD cos at - FI sin at (8.71) 

then, using the same procedures as before, there is only one root and the 
maximum total force is always given by 

& F ,  = FD cos’ of - F, sin at 

, F,  cos of I cos ot I L 

I 
Figure 8.18 Illustration of force component combination for the case of 
IF11 = - ? ) & I .  
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8.4 INERTIA FORCE PREDOMINANT CASE 

As noted previously, if the structure is large relative to the length of the water 
particle excursion, flow separation will not occur, the drag force component 
is negligible, and the flow field can be treated by the classical methods of 
potential flow. There are sufficient numbers of structures in this class to be of 
practical interest and the applications include both wave forces and impul- 
sive loading (i.e., due to earthquake motions). Two approaches have been 
developed and will be reviewed below.The first is an analytical approach and 
can be applied only for limited geometries. The second is a numerical method 
which is applicable for arbitrary geometries. 

8.4.1 Rigorous and Approximate Analytical 
Methods for Wave Loading on Large 
Objects 

MacCamy-Fuchs diffraction theory. As waves impinge on a vertical 
pile, they are reflected, or scattered, as in the case of a vertical wall, but in 
many directions. The scattering of acoustic and electromagnetic waves by a 
circular cylinder has long been known and understood. MacCamy and Fuchs 
(1954) applied the known theory to water waves. For linear wave theory, their 
results are exact, and can be used to predict CM for a pile for which D/H >> 1. 
The velocity potential for the incident wave can be written as 

-gH cash k(h + z) 
41 = - cos (kx - ot) 

2~ cosh kh 
(8.73) 

(8.74) 

where Re means the real part of the now complex expression. From complex 
variables, i = f i , and e'i(h-uf) = cos (kx - at) f i sin (kx - at). If the prob- 
lem is expressed in terms of polar coordinates where r and 8 are in the 
horizontal plane and z vertical, the incident wave may be written as 

m 

2a cosh kh 
which satisfies the Laplace equation in polar form, and also the linearized 
form of the kinematic and dynamic free surface boundary conditions. 

As this wave impinges on the pile, a reflected wave (which also satisfies 
the Laplace equation) radiates away and is assumed to have the following 
symmetric (about 8) form, 
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(8.76) 
m cosh k(h + z )  

m=O cosh kh 
+R = C A, cos mB[Jm(kr) + iYm(kr)]e-lu‘ 

Equation (8.76) satisfies the Laplace equation and, for large kr, this solution 
has a periodic form which propagates away from the pile, ensuring that the 
assumed form satisfies the radiation boundary condition. Superimposing the 
incident and reflected waves gives the total flow field. The only remaining 
boundary condition is the no-flow condition at the cylinder, - d(@, + @&dr 
= 0 at r = a. Satisfying this condition determines the values of the terms in the 
infinite series A ,  (m = 0, 1,. . . , m). The final velocity potential is 

gH cosh k(h + z )  e-irrr 

20 cosh kh 
@,+R = Re 

rm(ka) 
JL(ku) - i Ym(ka) 

(Jm(kr) + iYm(kr))]}  cos rnB) 

where the primes denote derivatives of the Bessel functions with respect to 
their arguments. 

Using the unsteady form of the Bernoulli equation to obtain the 
pressure, the force per unit length on the pile may be obtained. 

2pgH cosh k(h + z )  
k cosh kh 

dFI= - (8.78) 

where 

Comparing this to the general formula for inertial force, 

(8.80) 

where V = nD2/4 and &/at is calculated at the center of the pile, we find that 
CM = 4G(D/L)/n3(D/L)2. A plot of CM and a versus D/L is shown in Figure 
8.19. Note that CM and a reduce to 2.0 and 0, respectively, for small values of 
D / L ,  as predicted from potential flow theory for a cylinder in an oscillating 
flow. 

Large rectangular objects. In the MacCamy-Fuchs diffraction the- 
ory, the scattering of waves by the pile was included in the inertial force 
expression, thus allowing the determination of CM for that case. If, however, 
the interaction between a structure and waves is not known, approximate 
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Figure 8.19 Variation of inertia coefficient CM and phase angle a of maximum 
force with parameter D/L. 

techniques at least allow the determination of the inertia force due to the 
pressure gradient. Experiments would be needed to determine the added 
mass, k,. 

Example 8.2 
A large rectangular object with dimensions 11, 12, and I 3  in the x, y, and z directions is 
located somewhere within the water column. Calculate the horizontal inertial force on 
the structure due to a wave propagating in the x direction. 

Solution. As before, we would like to integrate the dynamic pressure around the 
object. Figures 8.20 and 8.21 depict the object and S refers to the distance between the 
mean water level and the bottom of the object. The dynamic pressure induced by the 
waves in the absence of the structure is 

In the configurations shown there is no variation of pressure in they direction, as the 
waves are assumed to be long-crested and propagating in the x direction. In this 
example, the object will be considered to be totally submerged (Fig. 8.21). 

Consider first the approximate wave-induced pressure on the face that is in the 
x direction, located at x = xI, face (1). The total pressure force on this face, PI, is 

-s+/3 ls cosh k(h + z )  dz (8.82) IggH cos ( h i  - at) -s+/3 

PI = Is I~P(X, z, t )  dz = 
2 cosh kh 
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z 

X 

Figure 8.20 Dynamic wave pressures on rectangular object. 

or 

- (sinh k(h - S + f3) - sinh k(h - 5')) (8.83) 1 l 9 g H  cos (hi - at) 1 

[ k  
PI = 

2 cosh kh 
Using a trigonometric identity, we get 

Figure 8.21 Wave forces on fixed rectangular object within free surface. 
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On the face at x = x1 + 11, the opposing force is 
r-s+I? 

(8.85) 

cos [ k ( x ,  + 11) - a t ]  cosh k - - 
2 cosh kh 

The net force in the x direction is then P I  - P2, as defined as Fx: 

Fx = Pi - Pz (8.86) 

- l,1213pgHk cosh k(h - S + 13/2) sinh (k1,/2) sin ( k l 1 / 2 )  sin - 
2 cosh kh k13/2 k1,/2 

This can be rewritten in a more familiar form, 

sinh (k13/2) sin (k11/2) du 
k13/2 k11/2 dt 

F x = p V  

where duldt is evaluated at the center of the rectangular object. 
In the limit as the size of the object becomes small, the term 

sinh (k13/2) sin (k11/2) ~ 

k/3/2 k11/2 11~13-Q 

(8.87) 

(8.88) 

as expected from the buoyancy ana10gy.~ Remember, however, that the interaction of 
the structure with the waves was not accounted for, and thus the added mass is not 
included in this derivation. Therefore, the actual CM should be larger than the terms 
above. The vertical force can be calculated in a similar manner (Dean and Dalrymple, 
1972), yielding 

sinh (k13/2) sin (k11/2) dw 
k13/2 k1,/2 at 

F z = p V  (8.89) 

where again awlat is evaluated at the center of the object. If the tank is situated on the 
bottom, such that the wave-induced pressure is not transmitted to the bottom of the 
tank, F, is different. 

coth (k13) sin (k11/2) dw 
k13 k11/2 at 

Fz = -pV (8.90) 

where dwldt is now evaluated at the center of the top of the object. The interested 
reader is referred to model tank experiments ofversowski and Herbich (1974) and to 
Chakrabarti (1  973) for a verification of these formulae. Chakrabarti (1973) has 
developed the inertia force equations for other objects, valid for linear theory, 
such as a half-cylinder on the bottom and a hemisphere. 

Wave forces on and motions of a floating body. There are many naval 
architecture and marine engineering problems which are of importance to 
the ocean engineer. In this section a very approximate treatment will be 

4The functions (sin w)/w and (sinh w)/w are shown in Figure 8.24. 
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presented for forces on and motions of floating bodies; the reader is referred 
to more extensive developments for additional detail and depth. 

Generally, unless a large floating body is propelled, the size and/or 
streamlining are such that the dominant forces are related to the water 
particle accelerations rather than the drag forces which are velocity related. If 
we first consider an unrestrained floating object that is small compared to the 
wave length, since this object displaces its own weight of water, it is clear that 
the forces on the object are exactly those that would have occurred on the 
displaced fluid and hence the motions of the object will be the same as would 
have occurred for the displaced fluid. This result also applies to the case of a 
small neutrally buoyant object at some mean elevation within the water 
column. For objects that are restrained or large such that the kinematics 
change significantly over the object dimension, the situation becomes more 
complex as the object affects the waves. In the following section, a simplified 
case is considered for a rectangular object either fixed or freely floating in the 
free surface. The treatment is similar to, but more general than the analysis 
for the submerged rectangular object. 

Consider the case of a rectangular object fixed in the free surface as 
shown in Figure 8.22. The waves advance at an arbitrary angle 0, measured 

Figure 8.22 Waves propagating with angle (Y past a rectangular barge of draft d. 



Sec. 8.4 Inertia Force Predominant Case 243 

counterclockwise from the x axis. Representing the water surface displace- 
ment as 

H 
2 

v =  - cos (kxx + k,y - at) (8.91) 

where k, = k cos 8 and k, = k sin 8 and d = gk tanh kh, the “undisturbed” 
pressure field due to this wave is given by 

cos (kxx + kyy - at) H cosh k(h + z )  
2 cosh kh P = E -  (8.92) 

The forces due to this pressure field will be examined as a dominant 
contributor; however, it should be recognized that there is considerable wave 
reflection from the object and that this effect could contribute significantly to 
the wave forces. 

The computation of forces will be illustrated in some detail for the surge 
(x) mode of motion. The force is given by 

Fx = s” -‘yD P(  - $, y ,  z )  dz  dy  -J‘y’2 -/,I2 p(  $, y ,  Z )  dz  dy  

(8.93) 

in which d is the draft of the object. Inserting Eq. (8.92) for the pressure and 
carrying out the integration yields 

-4pg(H/2) (sinh kh - sinh k(h - d) )  k,l, kyl, F, = sin - sin - sin at (8.94) 
k, k cosh kh 2 2 

which can be rendered dimensionless by normalizing with respect to the 
displaced weight: 

sinh kh - sinh k(h - d )  sin k,1,/2 sin k,1,/2 H sin at (8.95) 

The interpretation of the equation above is interesting. Considering 

- = - - k ,  F X  

Pg dlx1y 2 kd cosh kh kJx/2 kylyI2 

long waves, Eq. (8.95) reduces to 

-- H .  - - -k, sin at = - F X  

pg dlxl, 2 
(8.96) 

As noted, comparison with Eq. (8.91) will show that this represents the 
instantaneous slope of the water surface in the x direction evaluated at the 
center of the platform. In other words, for very long waves, the horizontal 
wave force component is simply that due to the body tending to “slide” down 
the sloping surface (see Figure 8.23). Also, it is clear that if the wave 
propagation direction is 90”, then k, = 0 and F, = 0. 
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Figure 8.23 Wave forces on a “small” floating object are equivalent to the weight 
of the object acting down a surface slope. 

For the more complete equation, the sin w/w terms are always less than 
unity (unless the argument is zero) and represent the reduction due to the 
finite length of the object; that is, the effective slope over the length of the 
object is less than the maximum slope (see Figure 8.24 for a plot of sin w/w). 

The sway force 0, direction) can be written down by inspection from Eq. 
(8.95), and is 

H (sinh kh - sinh k(h - d))  sin kxlx/2 sin kYly/2 sin at (8.97) -- - - -ky FY 
Pg dlxly 2 kd cosh kh kxW2 kyIyI2 

sin w 
~ 

W 

0 1 .o 2.0 3.0 1 4 . 1  

W 

Figure 8.24 Variation of the functions sin w/w and sinh w/w with w. 
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The computation of the moments is somewhat more complicated than the 
forces. The pitch moment (about the y axis) will first be developed; the roll 
moment (about the x axis) could be written down by inspection. 

The pitch moment about the center of gravity consists of a primary 
contribution due to pressure on the (large) horizontal bottom surface and a 
smaller contribution from the two ends of the object. 

Referring to Figure 8.25 the pitch moment about the center of gravity 
Mo, is 

(8.98) Ma, = I ,  + I2 + 13 
where 

ZI =  so (z - z1)p( - $, y ,  z )  dz dy 
-ly/2 -d 

(8.99) 

(8.100) 

(8.101) 

in which zI  represents the distance of the center of gravity above the mean 
water line, the first two integrals, I ,  and Z2, represent the contributions from 
the two ends, and the third integral is the moment due to the pressures acting 
on the bottom of the barge. The resulting expression for pitch moment is 

Figure 8.25 Definition sketch for pressures acting on a fixed rectangular barge to 
cause pitch moments. 
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(8.102) 

cash k(h - d )  

in which 

sin x 
S(X) = - 

X 
(8.103) 

and 

G = kd sinh k(h - d )  - [cosh kh - cosh k(h - d)]  (8.104) 

+ kz ,  [sinh kh - sinh k(h - d)]  

The roll and yaw moment would be obtained similarly; however, the expres- 
sions will not be presented here. 

8.4.2 Numerical Methods for Wave Loading on 
Large Objects of Arbitrary Shapes 

For problems of this class, Garrison and a number of colleagues (1971, 
1972, 1973, and 1974) have utilized numerical approaches in which the 
surface of the structure of interest is represented as a number of surface 
elements with an oscillating source located at the center of each of these 
elements. These sources, when combined with the incident wave field, satisfy 
the appropriate boundary conditions. In the following sections, the method 
will be outlined briefly and representative results presented; the reader is 
referred to the original papers for greater detail. 

Although the boundary value problem will not be specified in detail, it 
is noted that it consists of the usual no-flow boundary conditions on the 
seafloor and the structure. For purposes of illustration, and since the problem 
is considered to be linear, it may be discussed in two parts. First, consider the 
object to be “transparent” to the flow which is due only to the incident wave 
field. Velocity components would occur normal to the surface of the struc- 
ture. Denote this velocity as VnI(S), that is, the normal velocity through the 
structure due to the incident wave field. The objective then is to determine a 
second velocity potential which satisfies the Laplace equation, all of the 
boundary conditions, and which yields a velocity V,,(S) which is due to the 
Green’s function and exactly cancels the normal velocity on the structure due 
to the incident velocity field, that is, 

Vn&3 = - VnI(S) (8.105) 
Green’s functions, G, are developed which satisfy the Laplace equation 
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and the bottom and free surface boundary conditions, and are denoted by 
G(x,  5) (8.106) 

in which the generalized field vector coordinate is represented as x and the 
surface coordinate as the vector 5. The forms of the Green's functions may be 
found for various problems in Garrison et al. (1971,1972,1973, and 1974).The 
velocity potential at any location, x,  is given by 

in which f(5) represents the proper weighting of all contributions on the 
surface S; this factor is determined in accordance with Eq. (8.105), that is 

(8.108) 

The solution to this equation is carried out numerically by partitioning 
the surface into N area elements and expressing the integral as a matrix with 
N elements such that 

and 

(8.1 10) 

The coefficient matrix is first calculated from Eq. (8.110) and then Eq. 
(8.109) is inverted to find the weighting factor matrixJ. 

Examples. Garrison and Stacey (1977) have presented calculations of 
wave forces on a number of large offshore structures, including several for 
which exact solutions were available and other more complex structures for 
which wave tank experiments were conducted. Figure 8.26 shows a vertical 
cylindrical caisson for which calculations were carried out. The exact and 
approximate results are presented in Figure 8.27 for a caisson with a height- 
to-radius ratio of unity. 

As a second example, consider the case of a CONDEEP structure 

Figure 8.26 Fixed vertical caisson. 
(From Garrison and Stacey, 1977.) 
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Figure 8.27 Horizontal inertia coefficients for vertical caisson for e/u = 1.0. 
(From Garrison and Stacey, 1977.) 
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Figure 8.28 Measured and calculated maximum horizontal forces on 20-m 
CONDEEP platform. (From Garrison and Stacey, 1977.) 
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consisting of 19 cylinders extending upward approximately 47 m from the 
bottom; above this level three tapered cylinders extend up through the water 
surface and support the platform deck. In the idealization of this structure, 
Garrison and Stacey represented the lower caisson structure and portions of 
the three support columns by a distribution of sources; the upper portions of 
the three support columns were represented by the Morison equation [Eq. 
(8.32)]. Comparisons of calculated and measured maximum horizontal and 
vertical forces and moments are presented in Figures 8.28, 8.29, and 8.30. 

8.4.3 Analytical Methods for Impulsive Loading 
on a Large Circular Cylinder 

The forces imposed on a structure due to its motions can be determined 
in some cases from the solution of the wavemaker (Chapter 6 )  problem. For 
example, Jacobsen (1949) has presented the solution for the case of a vertical 
right circular cylinder oscillating in a direction perpendicular to its axis; 
Garrison and Berklite (1973) have also presented this solution with some 
corrections to Jacobsen’s solution. There is no incident wave field and the 
boundary condition on the cylinder is expressed as 

u(a, e) = u cos e cos gt (8.111) 

in which a is the cylinder radius and 8 is the azimuth relative to the line of 
oscillation; the remainder of this “wavemaker” boundary value problem is as 
previously formulated. The solution is somewhat similar to that for the 
MacCamy-Fuchs problem and occurs as Bessel functions; the reader is 
referred to Garrison and Berklite or Dalrymple and Dean (1972) for the 
details. Although the solution is developed for a simple harmonic oscillation 
of the cylinder, it is possible, due to the linearity of the problem, to employ 
linear superposition and represent arbitrary time displacements such as 
those caused by earthquake motions of the seabed. 

8.4.4. Forces Due to Impulsive Motions of Large 
Structures of Arbitrary Shape 

The methodology employed by Garrison and Berklite (1973) for this 
more difficult problem is quite similar to that described previously for the 
case of large objects of arbitrary shape in which the use of Green’s functions 
was outlined. The only differences are that there is no incident wave field and 
the normal velocity on the surface of the structure is now specified in 
accordance with the motions of the structure rather than specified as zero as 
for the case of a motionless structure. The linearity of the equations govern- 
ing the problem allows each of the six motion components’ to be solved 

’Heave, pitch, roll, yaw, surge, and sway. 
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Figure 8.29 Measured and calculated maximum vertical forces on 20-m CON- 
DEEP platform. (From Gamson and Stacey, 1977.) 
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separately and then combined later. For any given structure, the added mass 
coefficients were found by Garrison and Berklite to be frequency dependent, 
and at very high and low frequencies it was possible to simplify the combined 
free surface boundary condition for periodic motion. 

(8.112) 

to 

4 = 0, olarge (8.113) 

or 

a4 
az 
- = 0, osmall (8.114) 

and 

P = d  (8.115) 

The low-frequency limit corresponds to the case of a “rigid lid” boundary; 
that is, the motion is so slow that there is very little displacement at the free 
surface and the high-frequency limit corresponds to the case of standing 
waves iocated near the structure, with very little generation of waves pro- 
pagating away from the structure. 

It is of interest to note that the solutions for the limiting cases repre- 
sented by Eqs. (8.113) and (8.114) do not represent wave-like behavior, but 
rather cases of antisymmetrical flow about the free surface and uniform flow 
as idealized in Figures 8.31 and 8.32, respectively. 

a4 
az 

Figure 8.31 
frequency motions). 

Interpretation of free surface boundary condition - = 0 (for low- 
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Figure 8.32 Interpretation of free surface boundary condition 4 = 0 (for high- 
frequency motions). 

Example 8.3 
Consider the case of a vertical circular cylinder oscillating along the x axis. The added 
mass for the cylinder is presented in Figure 8.33 for the case of a rigid boundary 
(d&dz = 0) and (4 = 0). It is seen that for the case of a rigid boundary, the added mass 
coefficient is unity as expected and that for the solution corresponding to a boundary 
condition, 4 = 0, the added mass approaches unity as h/a becomes large. 
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Figure8.33 Added mass coefficient k,,, versus ratio h/a for oscillating right 
circular cylinder. (Adapted from Garrison and Berklite, 1973.) 
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A second example presented by Garrison and Berklite is that of an oil 
storage tank located on the seafloor as shown in Figure 8.34. The added mass 
and lever arm are presented in Figure 8.35. 

k, = FH/pUA,  A = disp. vol. 

motion 

With rigid boundary - 
With free surface 

- 0'4 t 
01 I I I I I I 

1 .o 2.0 3.0 4.0 5.0 6.0 

Depth, h 

Figure 8.35 Added mass k, and lever arm 1 for an oil storage tank on the seafloor. 
(From Garrison and Berklite, 1973.) 
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8.5 SPECTRAL APPROACH TO WAVE FORCE PREDICTION 

The Morison equation for wave forces on a structural member is nonlinear in 
the water particle velocity u appearing in the drag force component [cf. Eq. 
(8.32)]. A second possible source of nonlinearity for the case of a surface- 
piercing piling is due to the variation in total immersed water depth due to 
the fluctuation of the free surface. However, in cases where the inertia force is 
dominant, the drag force component is negligible and the equation is now 
linear in the water particle acceleration u. In addition, since the maximum 
acceleration occurs for the wave phase corresponding to zero water surface 
displacement, q = 0, there is no contribution at this phase from the second 
possible source of nonlinearity. 

In view of the discussion above, for the case of inertia dominance, the 
local and total force are approximately linear in the wave height H ,  and the 
spectral methods described in Chapter 7 apply directly. From Eq. (8.35) the 
relationship can be expressed as 

(Ff)maX = G(a)H (8.116) 

in which for the total force on a structure, 

pnD2 
8k 

G(a) = C M  - +? (8.117) 

Borgman (1965a), (1965b), and (1967) has investigated the application of 
spectral methods to the problem of wave forces for the case in which the drag 
force components are not negligible. Only the most simple result of Borg- 
man’s approach will be presented here; the reader is referred to the original 
papers for additional detail. The incremental wave force dF on an elemental 
length ds of vertical piling located a distance s above the seafloor can be 
expressed as 

dF = (w uX cos at lcos at I -~ cMpnD2 urn a sin at 
2 4 

in which urn represents the maximum of the horizontal velocity component. 
To apply linear spectral approaches, it is necessary to linearize the above 
equation. An intuitive form is 

dF = (=urn cos at - cMpnD2u,a sin at (8.119) 
2 4 

Borgman shows that the force spectrum SdF(a) is related to the sea surface 
spectrum S,(a) by 

Sdda) = 1 I 2Sq(@ (8.120) 
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in which 

where 

urn cosh ks Xu(o, s) = - = Q- 
I q J  sinh kh 

(8.122) 

and the linearized drag coefficient CDL is defined in terms of the actual drag 
coefficient CD and the root-mean-square velocity Ur,, at the level s by 

That is, CDL has dimensions of velocity and U,,, is defined by 

(8.123) 

(8.124) 

For the case of total wave forces over the entire water depth, the 
integration of Eq. (8.120) is carried out only up to the mean free surface, z = 0, 
and the result is 

in which 

lh U,,,(S) cosh ks ds 

sinh kh GI(@ = 

a‘ 
G~(cT)  = - 

k 

(8.126) 

(8.127) 

Borgman (1967) has extended this method to the computation of moments 
and to multilegged platforms. 
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PROBLEMS 

8.1 The triangular cross section shown below is being considered for underwater 
petroleum storage. The “tank” would be in shallow water, so the waves may be 
regarded as long. 
(a) Develop a relationship for the horizontal wave force on the tank. Express 

your answer in dimensionless form, normalizing by the displaced water 
weight. 

(b) At what position of the wave profile would the horizontal wave force be a 
maximum? 

8.2 What is the maximum uplift force on the slab below due to a wave of 10-m 
height and 12-s period? Assume that the presence of the slab does not interfere 
with the wave motion. At what phase of the motion will be maximum uplift 
occur? 
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8.3 Given the following wave conditions: 

H = 15.6 ft 

T = 1 4 ~  

h=20f t  

(a) Consider the case of a single piling supporting a small observation deck. 
From corrosion considerations, the thickness of the tubular piling is 1 in. 
Assuming that the drag moment predominates, develop an equation for the 
stress 0 in the outer fiber of the base of the piling as a function of the 
diameter D. 

(b) What is the required diameter D if the maximum allowable a is 

a,, = 20,000 psi? 

(c) For the diameter determined in part (b), calculate the maximum inertia 
moment component and express as a percentage of the maximum drag 
moment component. 

(a) Allowing a freeboard for the lower deck elevation of 10 ft, at what elevation 
would this be? 
Equationsfor Calculating Stress 

M 
S 

a = - = stress on outer fiber 

n S = section modulus = +D4 - 0:) 
320 
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8.4 Given 

8.5 

8.6 

8.7 

8.8 

8.9 

H = 15.6 ft 

T =  14s 

h = 2 0 f t  

(a) Calculate and tabulate the maximum total wave force on the two vertical 
cylinders shown above as a function of wave approach direction a for a = 
0", 30", 60", and 90". 

(b) What is the ratio of maximum inertia to drag force for the larger cylinder? 
(c) What would be the total overturning moment for the direction a- of 

Determine the inertia coefficients (horizontal and vertical) for a pipeline 
exactly half buried in the bottom. 
Based on the experimental results presented in Figure 8.4 and using the CD 
versus W relationship presented in Figure 8.5, develop a relationship of the 
separation angle 0, versus Reynolds number W. Use the approach of Eq. (8.1 1) 
and assume that pwake can be taken as p(a ,  0,). Compare and comment on your 
results with those in Figure 8.4. 
Refemng to Eq. (8.13), and accounting for the effect of separation, develop a 
fairly simple equation for the added mass coefficient versus separation angle 0,. 
(Hint: Use the same considerations suggested in Problem 8.6.) 
Discuss the reasons for the decrease in CM with increasing D/L, using the 
results of the MacCamy-Fuchs theory. 
Consider the case of waves propagating past and aligned with the major axis of 
a barge. 
(a) If the dominant forces on the barge are due to being "immersed" in the 

wave pressure field, develop an equation for the surge displacement xg( f )  of 
the barge. 

(b) Demonstrate that xe(f) is exactly the same as the average horizontal 
displacement of the water particles displaced by the barge. 

maximum force? 

8.10 A circular cylinder of diameter D and length 1 is held fixed in a horizontal plane 
at an elevation s above the bottom in a total water depth h as shown below. 
Considering only the inertia force component and a linear wave of height H 
and period T to the propagating in the x direction, develop expressions for the 
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time-varying components of forces in the x and y directions, F,(t) and FY(f), 
and the moment M&) about the z axis. 

i 

8.11 Simplify Eqs. (8.35) and (8.38) for the cases of shallow and deep water. Discuss 
the variation of drag and inertia force and moment components with wave 
period for these two regions. Also evaluate the lever arms implied by the 
results. 

8.12 A circular cylinder is immersed in an idealized flow of free stream velocity U. 
The cylinder is instrumented with strain gages to measure the force at the two 
locations shown. Develop an expression for the force per unit cylinder length 
measured by each of the two sets of strain gages. Interpret the sign of the force. 

8.13 Consider a cylinder with axis horizontal located one-quarter wave length below 
the mean free surface with a wave of height H and period T propagating with 
crests parallel to the cylinder axis. The water depth is h. 
(a) Develop an expression for the time-varying magnitude and direction of the 

(b) Discuss your results for the limiting case of shallow and deep water. 
(c) Specifically for the case of deep water, discuss and interpret the time 

variation of the magnitude and direction of the total wave force. 

total wave force (i.e., drag plus inertia) acting on the cylinder. 
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Dedication 

JOSEPH VALENTIN BOUSSINESQ 

Joseph Valentin Boussinesq (1842-1929) laid the foundations of hydro- 
dynamics, together with Cauchy, Poisson, and St.-Venant. His work in 
waves is largely remembered for the solitary wave theory that bears his 
name and the Boussinesq approximation, which facilitates the study of 
stratified flow. 

Boussinesq was born in St.-Andre-de-Sangonis, France, and 
earned his baccalaureate from a seminary in Montpellier. Despite his 
informal education in the sciences, he produced a paper on capillarity in 
1865 and presented it to theAcademie des Sciences. From 1866 to 1872 
he taught at the Colleges of Agde, Le Vigan, and Gap. His doctoral work 
on the spreading of heat in 1867 won him the attention of Barre de St.- 
Venant. 

In 1873 he became a professor at Lille and subsequently assumed 
the chair of physical and experimental mechanics in Paris. 

Boussinesq’s scientific work ranged over many fields of classical 
physics: light and heat, ether, fluid forces on bodies, waves, hydraulics, 
vortex motions, and elasticity. He also studied philosophical and reli- 
gious matters such as determinism and free will. 

9.1 INTRODUCTION 

Historically, the mathematical treatment of water wave theory by various 
investigators has been carried out with the assumption of a rigid, impermea- 
ble horizontal seabed. In nature, of course, the actual bottom varies drasti- 
cally from locales in the Gulf of Mexico where the muds behave as viscous 
fluids, to rippled porous sand beds, to rough rocky bottoms. The degree ofbed 
rigidity (as measured by the shear modulus, say), the porosity, and the 
roughness all influence the water waves to varying degrees. This interaction 
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with the bed results in wave damping and a local change in wave kinematics. 
Significant wave damping can occur if the bed is very soft, or if the waves 
propagate a long distance; in either case, shoaling formulas developed earlier 
are no longer strictly valid. 

If the presence of the wave over the bed causes significant bed deforma- 
tion and stresses, the possibility exists of soil failure and significant forces on 
buried pipelines and on bottom-mounted structures. 

9.2 WAVES OVER SMOOTH, RIGID, IMPERMEABLE 
BOTTOMS 

9.2.1 Laminar Boundary Layer 

The equations governing the water waves in a viscous fluid are the 
Navier-Stokes equation [Eqs. (2.39a) and (2.39c)], shown here in linearized 
form. 

au i ap a2u a2u 

at p a x  (ax. a,J + v  -+- -= - - -  

(9.2) -= - - -  

where v (= p/p) is the kinematic viscosity. 
It is useful to examine the relative sizes of the various terms in these 

equations; this can be done best by putting them in dimensionless form. 
Therefore, knowing a priori for waves that a length scale is the inverse of the 
wave number and a time scale is the inverse of the wave frequency, we can 
write 

X f  Z’ t’ 
t =-, u=aou’ P =pgap‘ x = -  z = -  

k’ k ’  o 

where a is the wave amplitude and the primed variables are dimensionless. 
Substituting into the equations for the x direction, we get 

(9.3) -=--- 

The two dimensionless quantities that result are of different orders of 
magnitude.The first, the inverse of the square ofa Froude number (C/@) 
is of order unity [written as O(l)], from the dispersion relationship, while the 
second term, vk2/o,  is the inverse of a Reynolds number and O(lO-’ to 
for normal ocean waves. Hence, in general, this term may be neglected-an a 
posteriori justification of something that was already done in Chapter 3. 

Neglecting the frictional stresses implies that there is a slip boundary 
condition at the bottom, z = -h, as from Chapter 3 we know that the bottom 
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velocity is nonzero. However, physically, there is no flow at the bottom, due 
to the presence of fluid viscosity; hence our argument above must be 
modified. 

Consider that near the bottom there is a small region where u varies 
radically with elevation. The vertical length scale there must be different and 
thus, rescaling, we have z = Sz’, where 6 is the thickness of the region over 
which u changes rapidly. Again, the horizontal equation of motion is 

(9.4) 

The last term can become of O(1) if 6 a m. The length scale 6 is a 
convenient measure for the laminar boundary layer thickness and it is very 
small. For example, for a 5-s wave, 6 a 1 mm. 

To summarize the scaling argument, very near the bottom, O(6), 
viscous effects can become very important. It is therefore convenient to 
divide the flow field into two parts, an irrotational and a rotational compo- 
nent, or 

u = up + u, (9.5) 
where u, satisfies the Euler equation, 

au, 1 ap 
at pax 
_-  

and U ,  satisfies the approximate rotational equation 

au, a2u, 
at az2 
_-  -v- (9.7) 

The reader should verify thevalidity ofthis procedure using Eq. (9.1) and the 
principle of superposition. It is expected that u, goes to zero away from the 
boundary. 

For water waves, we know u, from Chapter 3. 

(9.8a) 
Q cosh kh 

or, in complex notation, 

where only the real part. is used here and in the following complex-valued 
expressions. To find u,, separation of variables is used, and keeping only the 
term that decays away from the bed, we find that’ 

’The u, term is exactly the same expression as found by solving the problem of an oscillating 
bottom in a still fluid (Lamb, 1945, Sec. 345). 
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(9.9) u, = AeJ-iu/v(z+h)ei(kX-or) = ~e- ( l - ' )Ju /2 / zv ( z+h)e i (~ -uf )  

The complex nature of the exponent of the ( z  + h) term indicates that there is 
an exponential decay away from the bed modified by an oscillating term. The 
no-slip boundary condition at z = -h, u = up + ur = 0, fixes A ,  

(9.10) gak 1 A = - - -  
a cosh kh 

The real part of the total horizontal velocity u is therefore 

U =  gak [cosh k(h + z )  cos (kx - at) 
a cosh kh 

(9.11) 

- e-Jo/2v(r+h) cos (kx - ot + ( z  + h))] 

which shows there is a phase shift of the viscous term with elevation. The 
horizontal velocity profile near the bed is shown in Figure 9.1, for a given 
wave, with k6 = 0.01 and 6 = Jv/2a. 

The vertical velocity in the bottom boundary layer is most conve- 
niently found from the continuity equation, 

2v 

gak [ sinh k(h + z)ei(v+n/2) 
Q cosh kh 

(9.12) 

r-- 
I k6 =0.01 

-1.0 

7 

4 

0 1 .o 
U 

ub 
-. 

Figure 9.1 Normalized velocity 
profiles for various phase positions y~ in 
a laminar boundary layer. For x = 0, 
the velocity profiles depict the fluid 
motion in the boundary layer as the 
crest arrives. 
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where v /  = kx - at and s is the elevation above the bottom. The vertical 
velocity consists of two terms near the bottom. The first is the wave-induced 
term and the second is the boundary layer correction term, which, inciden- 
tally, is much smaller than u,. 

The instantaneous shear stress exerted on the bed may be obtained 
from the Newtonian shear stress term 

au aw 
7x2 = PV (- az + -) ax 1 z=-h 

of which only the first term is large, 

or 

(9.13) 

(9.14) 

The bed shear stress is thus harmonic in time and lags the free surface 
displacement by 45". The mean bed shear stress is zero. 

A conventional form for a shear stress in an oscillatory flow is 

(9.15) 

where u b  is the bottom velocity given by potential flow outside of the 
boundary layer (i.e., the potential flow value) and f is a friction factor. In 
terms of the maximum value (z,,),a,, we use 

(9.16) 

where [b  is the maximum of the (inviscid) horizontal excursion of the water 
particle at the bottom. Relating the conventional form of the shear stress to 
the previously derived form, 

or, after some manipulation, 

j-- 8 
R 

where R b is the Reynolds number defined as 

R b = -  UbCb 

V 

(9.17) 

(9.18) 

(9.19) 
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Figure 9.2 Stanton diagram for friction factor under waves as a function of R h  

and f h / k e .  The line labeled “Laminar” denotes Eq. (9.18). (From Kamphuis, 
1975.) 

The friction factor is plotted versus R b  in Figure 9.2. For smooth bottoms, the 
expression is valid for R b up to lo4. 

Due to the presence of the shear stress, there is work done by the waves 
against the shear stress within the fluid. The mean rate of energy dissipation 
per unit time is given by 

where the overbar denotes the time average over a wave period and s = h + z .  
The largest term in this expression is 

(9.21) 
= p v  v k m  E 

sinh 2kh 
If in the conservation of energy equation we set 

(9.22) dE 
dt 

where E = pga‘ and a = which is the assumed damping law for the 
wave amplitude, where a = a. at t = 0, we have for a damping coefficient, 

-ED -= 

(Yb = (9.23) 
40 cosh’ kh 2sinh 2kh 

Clearly, since the boundary layer thickness 6 (= m) is in general 
small, the damping is also small. For a 5-s wave in 5 m of water, with a l-mm- 
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thick boundary layer, ab = 4.8 x s-I, or for a wave to decay to e-' = 0.368 
requires I x lo4 s or a propagation distance equal to 126 km. (This is only 
considering the bottom effect.) 
Example 9.1 

Determine the amount ofdamping that will occur after a wave propagates a distance I 
in water of constant depth h. 

Solution. Using Eq. (9.21), we get 

dE dE vk 
dt dx sinh 2kh 
- = C, - = -eD = - ___ E 

Now, since h and k are not functions ofx, we can write this as 

dE _ = -  

Integrating yields 

nu sinh 2kh 

(9.24) 

(9.25) 

(9.26) 

where the boundary condition of E = Eo at x = 0 was used. The wave amplitude at 
x = 1 where I = 100 km will be 

(9.27) 

In the irrotational part of the wave motion, the loss of energy can be 
calculated in the same manner: 

Integrating 

ED = 2pva2gk2 
where 

(9.29) 

For this internal damping, a, = 2vk2. 
If we compare the two damping rates, we find that in deep water the 

latter damping is greater, as the bottom does not affect the waves, whereas in 
shallow water 

(9.30) 
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Since in shallow water, kh < n/lO and kd is much smaller, the bottom 
damping is much more significant. 

At the free surface, there exists another boundary layer which contri- 
butes a small damping (Phillips, 1966), 

vk 
2 tanh kh 

f f f  = (9.31) 

This is always much smaller than the interior and the bottom boundary 
layer damping: 

(9.32) 

(9.33) 

9.2.2 Turbulent Boundary Layers 

When waves become large or the bottom is rough, the boundary layer is 
turbulent. In fact, for most cases in nature, a turbulent boundary layer exists. 
This implies (in analogy to steady flow over flat plates) that the boundary 
layer is thicker, the shear stress on the bottom is larger, and it depends on the 
square of the bottom velocity rather than linearly. 

Experimental work by Jonsson (1966), Kamphuis (1975), and Jonsson 
and Carlsen (1976) as well as theoretical work by Kajiura (1968) has provided 
insight into the nature of the turbulent boundary layer and its dependency on 
Reynolds number and the relative roughness of the bed, which is defined as 
ke/&,, where k ,  is the equivalent sand grain size on the bed and c b  is the 
excursion of the wave-induced water particle motion at the bottom in the 
absence of the boundary layer. Kamphuis (1975) indicates, with some reser- 
vations due to accuracy, that k,  can be related to the distribution of sand sizes 
present on the bottom by 

k, = 2d90 

where d90 is the sand size for which 90% of the sand is finer. Using a Stanton- 
type diagram (as used for pipe friction factors), Kamphuis has plotted the 
friction factorfversus Reynolds number and relative roughness as shown in 
Figure 9.2. As in pipe flow, for rough turbulent flow, there is no effect of &, 
and Kamphuis proposed that 

(9.34) 

and 

(9.35) 1 1 4 k  
- + en - = -0.35 - - en 4 for ke/Cb < 0.02 
2 J f  2 J f  3 cb  
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These equations are valid when 

or, more stringently, 

k, 2200 -2- 
c b  R b  

(9.36a) 

(9.36b) 

which is the condition for rough turbulent flow, when IR b > 5 x lo4. 
The mean bottom shear stress due to the action of the waves is still zero: 

P f  
8 

= -(UbJ2 cos (luc - at) (cos (kx - at) I (9.37) 

= O  
The energy damping however is nonzero and determined by the rela- 

tionship 
- 
r x y u b  = ED 

or 

P f  
E D  = -(ubJ3 COS* (kx - at) (COS (kx - at) I 

8 
Averaging over a wave period, we have 

3 

(9.38) 

(9.39) 

which clearly increases as the depth decreases. 

obtained from the energy equation. 
The decay of the wave height with distance over a flat bottom can be 

or 

a3 1 da2 pf d -pgc -=- -  
2 dx 6nsinh3 kh R 

Solving for the wave amplitude a by separation, we find that 

a0 a (x )  = 
2f k'adc 1 +- 

(9.40) 

(9.41) 
- .  

3n (2kh + sinh 2kh) sinh kh 
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kh 

Figure 9.3 Damping of waves due to damping in a turbulent boundary layer. 

This relationship is plotted in Figure 9.3. The amount of wave height decay 
clearly increases with friction factor as expected and depends on the water 
depth. In deep water a/ao goes to unity as the bottom friction becomes 
negligible, while the shallow water asymptote is 

(9.42) 

The energy loss for a wave with a turbulent boundary layer can be 
compared to the laminar boundary layer case by relation to the two formulas 
(9.21) and (9.39): 

Evk Ja/2v 
(9.43) 

6n sinh3 kh 
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The smallest value off is its laminar value fL. Expressing f as /-ifL for the 
turbulent case where p is  greater than 1, the ratio is reduced to 

(9.44) 

or /3 > 1.66 for turbulent boundary layer to give greater damping. In general, 
this is the case, as can be deduced from the wave friction factor diagram. 

Example 9.2 
A wave of 5 m amplitude propagates a distance 1 with an average depth of 30 m. What 
is the final wave height? Given is h = 30 m, T = 10 s, d~ = 0.3 mm, and I = 100 km. 

Solution. From the dispersion relationship, k = 0.0457 m-’. Next the friction factor 
must be determined. 

= 0.00022 

and 

= 3.3 x 105 [ R b = - = - =  Ubcb a’a 
v v vsinh’kh 

From Figure 9.2,f= 0.004. 
The quantityfk2ao = (0.004) (0.0457)2 (5) (100,000) = 4.18 and 

= 0.956 1 - a 

a0 

_ -  
2 1 
311 

1 +--Cfk2adc) 
(2kh + sinh 2kh) sinh kh 

or 

a = 4.78 m 

(9.45) 

(9.46) 

(9.47) 

This represents a 4% decrease in wave amplitude due to bottom frictional damping 
(over a smooth bottom). 

9.3 WATER WAVES OVER A VISCOUS MUD BOTTOM 

One representation of a soil bottom would be to characterize it as a viscous 
fluid. Examples of this type of bottom exist around the world, particularly 
near the mouths of large sediment-bearing rivers, such as in the Gulf of 
Mexico near Louisiana (Gade, 1958) and the coast of Surinam (Wells and 
Coleman, 1978). The mud bottom often damps out wave energy so rapidly 
that these areas can serve as a harbor of refuge for fishermen caught far away 
from home port by storms. 

The mathematical treatment follows by assuming a laminar flow of a 
highly viscous liquid overlain by an inviscid fluid. The surface water wave 
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Water 

Figure 9.4 Schematic of waves over a mud bottom. 

described by linear theory will drive an interfacial wave on the mud-water 
boundary that induces flows in the lower layer. These flows are rapidly 
damped by viscosity. Figure 9.4 shows a schematic of the waves and fluid 
regions. 

9.3.1 Water Wave Region 

In the overlying fluid, the Laplace equation and the linearized free 
surface boundary condition as discussed in Chapter 3 must be satisfied by the 
fluid motions. Further at the mud-water interface, continuity of pressure and 
vertical velocities must hold across the interface. 

In the upper fluid region, denoted region 1, the velocity potential is 
assumed to be 

4,(x, z ,  t )  = (A cosh k(h + z) + B sinh k(h + z))e'(kx-u') (9.48) 

The c$l is clearly periodic in space and time, and satisfies the Laplace 
equation (3.19). The LDFSBC (3.3313) yields 

A cosh kh + B sinh kh = * (9.49) 

while the LKFSBC (3.29) yields 

(9.50) iaao A sinh kh + B cosh kh = - 
k 

The Bernoulli constant C(t) has been taken to be zero, to ensure a zero spatial 
mean for ~ ( t ) ,  which has been assumed as the real part of ~(x,  t )  = aoe'(k"-ur). 
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With two equations and three unknowns, A,  B, and k ,  we can solve for two of 
them. 

A =  iaO ‘Osh kh (gk - d tanh kh) 
ak  

(d - gk tanh kh) iao cosh kh 
ak  

B =  

(9.51) 

(9.52) 

Now, if we were solving the rigid bottom case, as in Chapter 3, we would 
finally specify that the vertical flow, at z = -h, was zero. This would require B 
to be zero, which implies that the terms within the parentheses must be zero. 
Hence the dispersion relationship, relating k to a, results as before. However, 
in this case, since the bottom is not fixed and its location is unknown a priori, 
two interfacial boundary conditions are necessary to find an equivalent 
dispersion relationship. First, however, the fluid motion within the mud will 
be prescribed. 

9.3.2 Mud Region 

For convenience, we will assume that the mud region is infinite in depth 
(practically, this requires that it be at least as deep as L/2, where L is the wave 
length). Furthermore, a boundary layer approach will again be used; that is, 
the flow will be assumed inviscid except in the boundary layer regions 
(which, of course, can be very large). This is valid (Mei and Liu, 1973) as long 
as the kinematic viscosity v is very small. Therefore, the fluid mud region will 
be described by a solution to the Laplace equation, which is spatially and 
temporally periodic, since it is driven by the water wave. The potential 
function is then presumed to be of the following form, where d is unknown: 

42(x, z, t )  = d e k ( z + W e i ( b - 4  

u2 = fe(l - i )  J ~ / 2 v ( ~ + h ) ~ i ( b - o f )  

(9.53) 

(9.54) 

A boundary layer correction for c$2 is prescribed. 

Recall from the laminar boundary layer treatment for waves that the vertical 
boundary layer velocity correction is very small. 

The vertical velocity in each region must be the same as the motion at 
the interface (this is a kinematic boundary condition), so we have 

(9.55) 

where x(x, t )  is the vertical displacement of the interface, assumed to be 

x(x, t )  = moe i (b -ut )  (9.56) 
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Linearizing the kinematic boundary condition yields 

o n z = - h  -=- - -  ax a41 w2 
at dz 82 

or 

Thus 

and 

-iamo = -kB = -dk 

d = B  

ikB mo=--  
(7 

(9.57) 

(9.58) 

(9.59) 

The continuity of pressure, which states that the pressure must be the same 
on both sides of the interface (since it is free and is assumed to have no 
surface tension, it cannot develop a force), can be written (in linear form) as 

p i  = p 2  on z = -h + x  
or 

on z = -h + x  (9.60) 

Note that the last term on the right-hand side is necessary due to the two fluid 
densities present. Linearizing, we obtain 

(9.61) 

Substituting for 42, and z results in the following equation relatingA to B: 

(9.62) 

We have, however, already developed equations for A and B in terms of k 
[Eqs. (9.51) and (9.52)J and by substituting forA and B, we find the dispersion 
relationship, or 

gk (1 + tanh kh)$ + (gk)2 tanh kh = 0 

(9.63) 

This relationship, relating k to 0, can be factored as 

(I? -gk) d - + tanh kh - -- 1 gk tanh kh = 0 (9.64) (2 1 (;: 1 1 
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Thus two possible roots exist for waves propagating in the positive x 
direction: 

d = g k  (9.65) 

and 

o z =  
+ tanh kh 

PI 

(9.66) 

These two dispersion relationships are plotted in Figure 9.5. The two possible 
wave modes can be distinguished by the ratio of the amplitudes of the surface 
wave and interfacial wave, which is for each case (Lamb, 1945) 

(9.67a) a0 - = ekh 

mo 

0 0.5 1 .o I .s 2.0 2.5 3.0 
kh 

Figure 9.5 The dispersion relationship for waves over an infinitely deep denser 
lower fluid. Note that the deep water asymptotes are $/gk = (p2/pI - 1)@2/pI + 1) 
for the model wave. 
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5 = -e - 1)e-W (9.6 7b) 

Therefore, the two cases are distinguished by which is larger, the surface 
or the interfacial amplitude, and whether the interface is in phase with or 180" 
out of phase with the free surface. 

The first wave mode, c? = gk, is interesting, as from Eq. (9.62), A / B  = 1. 
The expressions for the two velocity potentials are 

+, = +2 = Aek(h+z)el(k.-ct) (9.68) 

Thus the two regions, above and below the interface, are indistinguishable. 
The presence of a lower, more dense layer has no effect on the wave motion. 
This result, which is only true for the case of an infinitely deep mud layer, 
results from the fact that the interface is a constant pressure surface. Heuristi- 
cally, we could remove the overlying water and the interfacial wave could 
propagate as a surface with the same (deep water) celerity. In shallow water, 
this would not be true as the interfacial wave no longer corresponds to a 
constant pressure surface. 

For this mode of wave motion, there is no discontinuity of horizontal 
velocity across the interface and hence there is no boundary layer and no 
associated damping. (There would be damping if the mud were highly 
viscous, as damping would take place outside the boundary layers.) For the 
shallow water case, damping does occur and Dalrymple and Liu (1978) have 
treated this problem. 

The other wave mode with the large out-of-phase interfacial wave 
creates an unusual effect in the upper layer. The free surface displacement can 
be viewed as a right-side-up wave, while the interfacial wave is an upside- 
down wave propagating at the same speed and in the same direction. In 
between the two, it could be intuitively expected that a quasi-bottom might 
exist, and in fact, one does. At the elevation zo in the upper layer where 
w(x, zo) = -dc$/dz = 0, there is no vertical flow and this then is the false 
bottom. For this elevation, it can be shown (Problem 9.1) that the dispersion 
relationship in Eq. (9.66) reduces to 

c? = g k  tanh klzol (9.69) 

The damping in the lower layer is determined by matching the horizon- 

mo 

tal velocities at the interface. 

+u2 a tz=-h  a+, - -=_-  
ax dx 

(9.70) 

yielding f = ik(d - A )  or 

'0 kh 

U 
f = - - e  (a2 - g k )  (9.71) 
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The damping in the boundary layer is found as 

(9.72) 

(9.73) 

Of the two possible wave modes discussed, the problem remains as to 
which mode is more “realistic.” The quotation marks are used as both 
solutions are in fact realistic, but the means by which the waves are generated 
determines the mode. For example, for waves propagating into a muddy 
region, it is probable that the first mode (d = gk)  is the most likely one, as the 
wave lengths associated with the second mode are very short, particularly for 
small values ofp2/pl.  However, asp2/pI becomes large, it is possible that both 
modes are excited. If, on the other hand, the waves are generated at the 
interface by a displacement of the mud, it is more likely the second mode will 
be the only one present. This wave, which exists primarily at the interface, 
propagates very slowly, due to the fact that the restoring force which causes 
the wave to propagate is a result of the density differences between the two 
fluids. 

Example 9.3 
Determine the wave lengths of the two possible modes of wave propagation over an 
infinitely deep mud layer, with p2/pI = 1.2. The overlying water column is 4.6 m in 
depth and the wave period is 8 s. 

Solution. In Figure 9.5, the ordinate may be written as dh /gkh  for convenience. 
d h / g  is computed as 0.287 for this case. For mode 1 we have dh /gkh  = 1 at 
kh = 0.287. This yields a wave length of 100 m. For the second mode, we have to use 
an iterative technique. If we guess kh = 2.0, from the figure we find for kh = 2.0 and 
pz/pI = 1.2 that dh /gkh  1: 0.087. Dividing this number into d h / g  yields kh; 
kh = 3.30. Therefore, an estimate of 2 for kh was too low. Now we estimate kh as 3.0, 
which yields d h l g  = 0.09, or kh = 3.19. Iterating, we find that 3.16 is a good value. 
Therefore, L = 9.1 m. By comparison, the wave length of the wave over a rigid bottom 
at 4.6 m is 51 m. 

9.4 WAVES OVER RIGID, POROUS BOTTOMS 

Sandy seabeds can be characterized as a porous medium, thus permitting 
mathematical treatment. Since Darcy’s experiments in the BOOS, investiga- 
tors have treated soils as a continuum, with spatially averaged flows, rather 
than worrying about the flows in the tortuous channels between the sand 
grains. The solution of this problem will be similar to the preceding case. A 
governing equation will be developed for the flows in the bed; these flows will 
be matched to those induced by the waves in the fluid region, and the 
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damping due to the forced flow in the granular medium will be calculated. 
For a full saturated soil, which is assumed to be incompressible (as is the 

fluid), the conservation of mass leads to 

v . u = o  (9.74) 

where u is the discharge velocity or the average velocity across a given area of 
soil (including both the intercepted areas of the soil particles and the pores 
between them). Darcy's law relates the velocity to the pressure gradients in 
the fluid: 

K u = - - vp, 
P 

where K is a constant called the permeability, which is a characteristic of the 
soil, and p is the dynamic viscosity of the fluid.2 The governing equation for 
the fluid in the soil is obtained by substituting for u into the conservation of 
mass equation, Eq. (9.74), or 

(9.75) 

v . (- ; vp, j = 0 (9.76) 

or 

v2ps = 0 

Thus the pore pressure satisfies the Laplace equation, as does the velocity 
potential in the fluid. In order to match the two solutions, ps and 6, the 
boundary conditions will be that the pressure be continuous across the soil- 
water interface, as are the vertical velocities. 

The assunled progressive wave forms of (b and p s  are 

$(x, z) = [A cosh k(h + z) + B sinh k(h + z)] e'(kr-ur) 

pS(x, t )  = De 

(9.77) 

and 

(9.78) k(h+z) e ~ ( k r - ~ t )  

The continuity of pressure across the interface requires that 

P(X, -h) = P s k  -h) (9.79) 

where the subscript s again denotes the soil region pressure. Rewriting, we 
have 

(9. SO) 

'This equation, which neglects the acceleration terms, assumes that the flow can be treated quasi- 
statically. An order-of-magnitude analysis bears this out for most sand beds. 
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or 

-iupA = D 

For the vertical velocities to be continuous, 

or 

(9.81) KD B = - -  
P 

So far we have two equations for the three unknowns A ,  B ,  and D;  now 
we use the linear free surface boundary conditions to relate them to the wave 
amplitude a and to obtain the dispersion relationship. The linear dynamic 
free surface boundary condition yields 

V = - - -  a4 - - E ( A  cash kh + B sinh kh)e'(k"-"') = &(h-" l )  

g at g 
(9.82) 

Substituting for A and B from above yields 

D = pga (cosh kh [ 1 - (y) tanh MI}-' (9.83) 

Application of the linear kinematic free surface boundary condition 
provides the dispersion relationship, 

(9.84) 

iua = Ak sinh kh + Bk cosh kh 

or, substituting for a, A ,  and B ,  in terms of D, results in 

V 

where v = p/p, the kinematic viscosity. Reordering gives 

d - gk tanh kh = -i - (gk - d tanh kh) (9.86) 

This dispersion relationship is complex, yielding a complex k ,  which may be 
written as k = k ,  + ik,. The real part of k represents the real wave number, 
that is, it is related to the wavelength, while the imaginary component 
determines the spatial damping rate. This follows by examining the free 
surface profile, 

C) 

(9.87) 
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Thus there is exponential damping due to k,  being greater than zero. 
The quantity aK/v  in Eq. (9.86) is generally small. For sand, K ranges 

from about to m2, while the kinematic viscosity is O(10-6). There- 
fore, aK/v ranges from to which is small. 

Approximate solutions can be obtained from the dispersion relation- 
ship. In intermediate depth we can replace cosh kh = cosh k,h + ik,h sinh k,h, 
as a priori we expect k,h << 1 ;  similarly for sinh kh. Substituting into Eq. 
(9.86) for the hyperbolic functions and k,  we can separate it into real and 
imaginary parts. 

Real: (d - Rgk,) - Rgkihkr tanh k,h 
= gk, tanh k,h - (gk, + R d ) k , h  (9.88) 

Imaginary: (d - Rgk,)k,h tanh k,h 
= gk,(R + k,h)  + (gk, + R d )  tanh k,h (9.89) 

where R = aK/v.  Neglecting the small products of Rk, and k; in the real 
expression gives 

c? N gk, tanh k,h (9.90) 

while the second expression, after some algebra, yields 

2(aK/v)k; k ,  N 
2k,h + sinh 2k,h 

(9.91) 

as found by Reid and Kajiura (1957). This result is plotted in Figure 9.6. 
In shallow water, I kh I < z/lO, the dispersion relationship can be written 

as 
d - gk’h = -iRgk 1 - - ( ”g”> (9.92) 

Substituting again k = k ,  + ik, and separating into real and imaginary parts 
gives 

Real: d - g(k;? - kf)h  = Rgk, (9.93) 

Imaginary: 2gkrkih = -Rkrg (1 - $) 
Solving for ki  and k ,  gives us 

(9.94) 

(9.95) 

(9.96) 

These expressions are more accurate in shallow water than the previous 
expressions. The shallow water asymptote for k,  is (1/2h)(Ko/v). 
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Figure 9.6 Dimensionless damping coefficient versus depth. 

Liu (1973) included a laminar boundary layer at the fluid-soil interface, 
so as to eliminate the discontinuity in the horizontal velocity, and developed 
an approximate expression for the combined damping due to the porous 
media and the laminar boundary layer. These can be shown to O(aK/v) to be 
the sum ofthe damping rates due to the porous media, Eq. (9.91), and that due 
to the laminar boundary layer, Eq. (9.27): 

k;  = 2krh + 2kr sinh 2k,h ( ? + k r g )  (9.97) 

The damping rate of energy per unit time and per unit area ED is related 
by k,  by the energy conservation equation, 

(9.98) 
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or approximately for a constant depth and E = pgaie-2kix, 

pg2a2Kkr 
2 v  cosh2 krh 

ED = 

for the porous damping alone and 

ED = -+ -  

(9.99) 

(9.100) 

including the laminar boundary layer. 
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PROBLEMS 

9.1 

9.2 

Show that the dispersion relationship given for waves propagating over a 
viscous mud can be expressed as d = gk tanh k JZO I [Eq. (9.69)]. 
For Example 9.3, find the damping ED for both modes. 
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9.3 Develop and solve the boundary value problem for waves propagating over a 
porous layer of thickness d. 

9.4 The dynamic bottom pressure under a wave can be written as 

pg a cos (kx - at) 
A x ,  -W = 

cosh kh 

With this as the boundary condition at z = -h for the pressure pr(x,  z )  in a 
porous medium, develop the expression for ps(x ,  z).  Compare this solution to 
that obtained in the text. What are the physical differences? 
Relate the laminar damping under a progressive wave with distance [Eq. 
(9.27)] to the damped long wave [Eq. (5.80)]. What isfin terms of for the 
long wave? Why the difference from Eq. (9.18)? 

9.5 
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Nonlinear Proper ties 
Derivable from 

Small-Amplitude Waves 

Dedication 
HERMANN LUDWIG FERDINAND VON HELMHOLTZ 

Hermann Ludwig Ferdinand von Helmholtz (1821-1894) was born in 
Potsdam, southwest of Berlin. The dedication of this chapter to 
Helmholtz is in recognition of his extensive contributions to fluid dynam- 
ics and physics in general. While he did work in the area of waves, his 
major contribution to this text is the Helmholtz equation, which governs 
the motion of waves in harbors. 

Helmholtz entered the Pepiniere Berlin University in 1838 to study 
medicine. During his formal education, Gustav Magnus and others 
influenced him to expand his interest to natural sciences. In 1842 he 
graduated, successfully defending his work on ganglia. From 1842 to 
1845, simultaneous to Kelvin’s activities, he investigated the mechanical 
equivalent of heat. In 1849 he took a professorship in physiology at 
Konigsburg, where he developed an interest in the importance of 
electricity in the working of the human body and studied ophthalmology 
and color vision. In 1855 he moved to Bonn and in 1858 to another chair 
at Heidelberg. There he developed his theories on vortex motion, free 
streamline flows, and the viscosity of water. In 1871 he succeeded 
Magnus at the University of Berlin, where he built a physical sciences 
institute which educated many well-known scientists, such as Heinrich 
Hertz and Max Planck. Planck has been quoted as observing: “Wir 
hatten das Gefuhl, dass er sich selber mindestens ebenso langweilte 
wie wir” (“We had the feeling that he himself was at least as bored as we 
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were”). Clearly, he engendered a testimonial distinct from the one Lamb 
received from his students. 

In 1883 Helmholtz became a Prussian noble in recognition of his 
scientific contributions. In 1888 he assumed the leadership of the 
Physical Technical Government Institute (Reichsanstalt) in Charlotten- 
burg, West Berlin. 

Other areas of interest for Helmholtz included the physiology of 
optics, binocular vision, acoustics, and the physiology of the ear, sound 
(harmony), and electrodynamics. 

10.1 INTRODUCTION 

Wave energy and power, which were derived in Chapter 4, are nonlinear 
quantities obtained from the linear wave theory-nonlinear in the sense that 
they involve the wave height to the second power. In this chapter other 
nonlinear quantities will be sought which have a bearing on coastal and ocean 
design. These quantities, which are time averaged, are correct to second order 
in ak, yet have their origin strictly in linear theory. In Chapter 11 a further and 
more complete study of nonlinear waves is undertaken. 

10.2 MASS TRANSPORT AND MOMENTUM FLUX 

If a small neutrally buoyant float is placed in a wave tank and its trajectory 
traced as waves pass by, a small mean motion in the direction of the waves 
can be observed. The closer to the water surface, the greater the tendency for 
this net motion. This motion of the float, which is indicative of the mean fluid 
motion, is a nonlinear effect, as the trajectory of the water particles from 
linear theory are predicted to be closed ellipses (see Chapter 4). 

There are two approaches for examining this mass transport: the 
Eulerian frame, using a fixed point to measure the mean flux of mass, or the 
Lagrangian frame, which involves moving with the water particles. 

10.2.1 Eulerian Mass Transport 

Examining the horizontal velocity at any point below the water surface 
and averaging over a wave period shows that 

(10.1) 

However, in the region between the trough and the wave crest, the horizontal 
velocity must be obtained by the Taylor series. For example, for the surface 
velocities we have, approximately,’ 

‘Neglecting some contributions from second-order theory. 
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gak cosh k(h + z )  
a cash kh 

-- - 

(10.2) 

ga2k2 tanh kh cost (kx - at) cos (kx - at) + ~ 

Z=O a 

-- - gak cos (kx - at) + a2ka cos2 (kx - at) 
a 

The surface velocity is periodic, yet faster at the wave crest than at the wave 
trough, as the second term is always positive at these two phase positions. 
This asymmetry of velocity indicates that more fluid moves in the wave 
direction under the wave crest than in the trough region. This is, in fact, true. 
If we average u(x, q) over a wave period (an operation denoted by an 
overbar), there is a mean transport of wate? 

a2ku (ka)’C 
u(x, q) dt = ~ = ~ 

2 2 
(10.3) 

To obtain the total mean flux, or flow of mass, we perform the following 
integration, where M is defined as the mass transport 

(10.4) 

a result first presented by Starr (1947). Note that the first term in Eq. (10.4) is 
zero; again, there is no mean flow except due to the contribution of the region 
bounded vertically by q. The depth-averaged time-mean velocity, due to mass 
transport, is 

(10.5) 

10.2.2 Lagrangian Mass Transport 

The Eulerian velocity discussed above is obtained by examining the 
velocity at a fixed point. A Lagrangian velocity is one obtained by moving 
with a particle as it changes location. The velocity of a particular water 
particle with a mean position of (xl, zI) is u(xl + C, z I  + 0, where rand rare  
locations on the trajectory of the particle. An approximation to the instanta- 
neous velocity is 

(10.6) 

’Clearly, u(x, q) is much less than the phase speed of the wave, C. 
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Using the values of the trajectory obtained in Chapter 4 [Eqs. (4.9) and (4.10) 
evaluated at (xl, ZJ], uL can be written as 

gak cosh k(h + z )  
o cosh kh 

UL=- cos (kx - Ct) (10.7) 

+ [cosh’ k(h + z) sin2 (kx - ot) + sinh’ k(h + z) cos’ (kx - ot)] 
sinh’ kh 

The mean value of uL is 
- 

(10.8) 

This mean Lagrangian velocity indicates that the water particles drift in the 
direction of the waves and move more rapidly at the surface than at the 
bottom. 

Integrating over the water column to obtain the total transport and 
multiplying by the density of the fluid yields, as before, 

a’ok cosh 2k(h + z) - ga’k’ cosh 2k(h + z) 
U L  (XI + c, ZI + 4 = - 

2 sinh’ kh o sinh 2kh 

(10.9) 

10.3 MEAN WATER LEVEL 

The Bernoulli equation at the free surface, Eq. (3.13), is 

Expanding to the free surface by theTaylor series yields tofirst order in q after 
time averaging (which is denoted by the overbar), 

( a + / a ~ ) ~ + ( a + / a z ) ~  - a’+ - + gq - q- = C(t) 
2 at az 

(10.11) 

where is a mean displacement in water level from z = 0. Substituting for q 
and 4 from the linear progressive wave theory, we have 

(10.12) 

There are several choices for C(t) here, depending on the problem. Ifthe 
problem is one ofwaves propagating from deep to shallow water, a customary 
boundary condition is i is zero in deep water, which fixes c(t) = 0 every- 
where. Thus i is always negative, becoming more so as the wave enters 
shallow water until breaking commences. This is called the setdown. Alterna- 
tively, we can force the x axis (z = 0) to be the mean water level at some fixed 
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- 
x I  by setting C(t) = A x l ) g  in Eq. (10.12), wherefis now a constant. As another 
example, in an enclosed tank where the amount of water in the tank must be 
conserved, a continuity argument must be invoked for C(t). If the tank is of 
length 1, then 

__ 

1 J' $x) dx = 0 
I 

or, from Eq. (10.12), 

(10.13a) 

(10.13b) 

The mean water level associated with standing waves is 
___ 

(cosh 2kh cos 2kx - 1) - q=- C(t)  + 

g 4sinh2kh 

This is left as an exercise for the reader (Problem 10.3). 

10.4 MEAN PRESSURE 

The mean pressure under a wave can be most easily obtained by time- 
averaging the Bernoulli equation: 

d+ u 2 +  w2 p(z )=p- -p- -pgz+C( t )  
dt 2 

or 

- u2 + wL 
p ( z )  = -p 7 - pgz + C(t) 

(10.14a) 

(10.14b) 
L 

under a progressive wave. I fc( t )  = 0, the case for shoaling progressive waves, 
then it is clear that the mean pressure is decreased from its hydrostatic value. 
As (u, w )  decrease with depth into the water, the mean pressure approaches 
hydrostatic with depth. Substituting into the equation above yields 

pgu2k cosh 2k(h + z )  
2 sinh 2kh p(z) = - - Pgz (10.15) 

Alternatively, if the coordinate system is located at the mean water level such 
that c(t) =f(xl)g and = 0, it can be shown that 

P(Z*) = -pw2 - pgz* (10.16) 

from the z of the other coordinate system (see Fig- 

~ 

where z* differs by 
ure 10.1). 
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.I /-- 

Still water level [~(r) = 01 
Mean water level [@) = fgl 

Figure 10.1 
stants. 

The two vertical reference systems and associated Bernoulli con- 

Under a standing wave of amplitude a ,  

p (z )  = - pga2k [cosh 2k(h + z )  - cos 2kx] - pgz (10.17) 
4 sinh 2kh 

and at the bottom, 

p( -h )  = pgaZk (cos 2kx - 1 )  + pgh 
4 sinh 2kh 

(10.18) 

10.5 MOMENTUM FLUX 

At a point above the trough level, there is a mean momentum flux as well as 
mass flux. The mean vertically averaged momentum flux correct to second 
order in ku is 

(10.19) 

where C, is the group velocity, the speed at which the wave energy propagates. 
The flux of momentum in the direction of the wave past a section and 

the pressure force per unit width is defined as 

I ,  = MC, + l: p ( z )  dz (10.20) 

From Newton’s second law, this quantity is unchanged between any two 
sections unless forces are applied. Evaluating the last integral yields the 
expression 

I ,  = MC, + f pgh’ 

Z, = S, + 4pg(h + $’ 

(10.21) 

(10.22) 
1, can be rewritten as 
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where S,  is the radiation stress in the direction of the waves. 

S ,  P ( Z )  dz - t pg(h + i)’ + MC, = E(2n - i) (10.23) I: 
The difference between the two forms for Z is that the latter explicitly 

includes the mean water level i. Each form is important for different 
applications. 

For the flux of momentum transverse to the wave direction, we have 
____.- rn 

(10.24) 

The sum of momentum flux and pressure force in the transverse 
direction is 

or 

where 

I ,  = 1: p ( z )  dz = t pgh2 

= -pghi to O(ka)2 

= E(n - t )  
If a progressive wave is propagating at some angle 8 to the x axis, then 

S,, and S ,  are modified to the following forms: 

(10.25) 

(10.26) 

in which n is the ratio of group velocity to wave celerity ( n  = CG/C). In 
addition, for this case there is an additional term representing the flux in the 
x direction of the y component of momentum, denoted Sxy: 

v 0 

S,, = Ib puv dz = Ib p(uv) dz (10.27) 

and employing linear wave theory, it can be shown that 

l5 S - - n  sin28 
x y -  2 

(10.28) 
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It is of interest to note that, if the bathymetry is composed of straight and 
parallel contours and if no energy dissipation or additions occur, there is no 
change in Sxy from deep to shallow water. 

For further information on radiation stresses and their uses, the reader 
is referred to Longuet-Higgins and Stewart (1964), Longuet-Higgins (1976), 
and Phillips (1966). 

Example 10.1: Wave Setdown and Setup 
As waves shoal and break on a beach, the momentum flux in the onshore direction is 
reduced and results in compensating forces on the water column. Consider a train of 
waves encountering the coast with normal incidence. For a short distance dx (Figure 
10.2), a force balance can be developed 

I ,  = 1 2  - Rx (10.29a) 

dI dx dI dx 
dx 2 dx 2 

I - - _ =  I + R,  

or finally, 

dI 
dx 
- d X = R ,  

(10.29b) 

(10.29~) 

using the Taylor series expansion, where I is evaluated at the center and R ,  is the 
reaction force ofthe bottom in the ( -x)  direction. Using the radiation stress approach, 

6 = d[sxx + ; pg(h + ij)2] 
dx dx 

(10.30) 

Figure 10.2 Schematic diagram for calculation of wave setup or setdown. 
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For a mildly sloping bottom, the reaction force R is due to the weight of the 
column of fluid and thus 

- dh 
dx 

Rx =pg(h + q) - dx 

Substituting yields 

1 dS,, dt] 
pg(h + t ] )  dx dx 

- ~ _ _ = -  (10.31) 

There is therefore a change in mean water surface slope whenever there is a 
change in S.,. The change in offshore of the breaker line is described by Eq. (10.12), 
which describes a gradual reduction of the mean water level as the shoreline is 
approached. At x = xb, the breaker line, the wave amplitude is a = K ( h  + $12, where K 
is the breaking index (Chapter 4)9 and 6 (in shallow water) is 

as given by Longuet-Higgins and Stewart (1964) or 

(10.32) 

The setdown therefore is less than 5% of the breaking depth for K = 0.8. 

the setup is found from the force balance, Eq. (10.31): 
Inside the surf zone, where a(x )  = K(h + $12, based on a spilling breaker model, 

Simplifying yields 

Finally, 

(10.33) 

(10.34) 

Evaluating the constant at x = xb, the breaker h e ,  where r]  = l]b, gives finally 
- 
Nx)  = tb + 3'/8 [hb - h(x)] 

1 + 3d/8 
(10.35) 

The mean water surface displacement thus increases linearly with depth as the 
shore is approached. This water surface slope provides a hydrostatic pressure gradient 
directed offshore to counter the change of wave momentum by breaking across the 
shoreline. 

(10.36) 
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or, for K = 0.8, i ( 0 )  is about 15% ofthe breaker depth or about 19% ofthe breaking wave 
height. 

Example 10.2: Applied Longshore Wave Thrust 

For waves propagating obliquely into the surfzone, breaking will result in a reduction 
in wave energy and an associated decrease in S,, [cf. Eq. (10.28)], which is manifested 
as an applied longshore wave thrust F,  on the surf zone. For straight and parallel 
bottom contours, thrust per unit area is given by 

F 
Y -  

dX 
(10.37) 

Thus gradients of the momentum flux terms provide a useful framework for the 
driving forces in the nearshore zone. In the present case, the longshore wave thrust per 
unit area is resisted by shear stresses on the bottom and lateral faces of the water 
column (Longuet-Higgins, 1970). 

10.6 SUMMARY 

The results of linear wave theory may be used to calculate nonlinear mean 
quantities, correct to second order in ku. These quantities, such as mass 
transport and mean momentum flux, play a major role in coastal engineer- 
ing. In fact, the mean momentum flux of the waves in the longshore 
direction, relative to a coastline, is related to the currents engendered at the 
coastline and the amounts of sediments transported along the coast. See, for 
an overview, the book by Komar (1976). In the open ocean, the mean 
momentum flux results in the drifting of objects, such as ships, ice flows, and 
oil slicks. 
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PROBLEMS 

10.1 Determine the mean water level due to a wave train impinging on a perfectly 
reflecting vertical wall with an angle 8. 

10.2 Calculate the mean water level associated with an edge wave, 

e cos kx sin at ,#, = -k(yco$-zsinp) 

0 

where y is positive offshore, x is alongshore, and /3 is the bottom slope. 
10.3 Show that the setdown under a standing wave system is 

~ 

V ( X )  = a2k (cosh 2kh cos 2kx - 1) 
4 sinh 2kh 

10.4 Show by two different methods that for the origin of the vertical coordinate 
taken at the mean water line, the mean pressure for a progressive wave system 
is 

~- 
p = -pgz - pw2 

One method is suggested in the paragraph following Eq. (10.15). A second 
method involves integration of the vertical equation of motion from an 
arbitrary depth z up to the free surface, the use of the Leibniz rule, and time 
averaging over a wave period. 

10.5 For the case of straight and parallel bottom contours, combine energy conser- 
vation consideration with Snell's law to demonstrate that S ,  is the same from 
deep to shallow water. 

10.6 Verify Eqs. (10.25) and (10.26) for the radiation stresses developed by a wave 
train traveling at an angle 6' to the x axis. Use &x, y ,  z ,  t )  as developed in 
Chapter 4. 
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Dedication 

SIR GEORGE GABRIEL STOKES 

Sir George Gabriel Stokes (1819-1903) was born in Skreen, Ireland. He 
entered Bristol College at 16 and matriculated at Pembroke College, 
Cambridge, in 1837. He became a Fellow of Pembroke College in 1841 
and in 1849 received the Lucasian Professorship of Mathematics at 
Cambridge-the same professorship held by Airy from 1826. To bolster 
his teaching salary he also taught at the Government School of Mines. 

Stokes's contributions range from optics, acoustics, and hydro- 
dynamics to viscous fluid problems (a unit of viscosity is named for him) 
and to the proof that the wave of maximum height has a crest angle of 
120". He also did a great deal of work related to the concept of ether 
which was hypothesized to exist between the planets and stars. 

In 1842 he solved three-dimensional flow problems by introducing 
an axisymmetric stream function. In 1849 he developed the dynamical 
theory of diffraction using Bessels series and Fourier integral theory, 
and in 1852 he received the Rumford Medal of the Royal Society for the 
discovery of the nature of natural fluorescence. 

His inclusion in this chapter derives from the development of 
Stokes waves, large-amplitude waves that he conceived through a 
nonlinear wave theory. This theory, although usually extended to higher 
orders of accuracy than he was able to achieve, remains in use today. 

In 1845 Stokes produced a number of papers on viscous flow. He 
was unaware that the French scientists Navier, Poisson, and St.-Venant 
had treated these problems, and he independently derived the now- 
called Navier-Stokes equations. 

Stokes received a number of awards and prizes as well as 
numerous honorary doctorates for his work, a process that culminated 
in 1889 when he became a Baronet. 

295 
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11 .I INTRODUCTION 

The water waves that have been discussed thus far have been small-ampli- 
tude waves, which satisfied linearized forms of the kinematic and dynamic 
free surface boundary conditions. We have seen that the linear wave theory 
has been useful in many respects, even when the requirements of linear 
theory, small kH/2 ,  have been violated. In this chapter, extension of the 
linear theory to a second-order Stokes (1847) theory and then an “any”-order 
theory will be developed. The desire is to develop a water wave theory to best 
satisfy the mathematical formulation of the water wave theory. In shallow 
water a different expansion will then be explored, where the classical Stokes 
expansion is inefficient. 

1 1.2 PERTURBATION APPROACH OF STOKES 

Reviewing the periodic water wave boundary value problem for waves 
propagating in the +x direction, we have linear and nonlinear boundary 
conditions applied to a linear governing differential equation. 

11.2.1 Linear Equation and Boundary Conditions 

V 2 4  = 0 governing differential equation (11.1) 

(11.2) _-=  ” 0 on z = -h bottom boundary condition 
az 

&x, z ,  t )  = +(x + L,  z ,  t )  lateral boundary condition 

$(x, z ,  t )  = &x, z ,  t + 7‘) periodicity requirement 

(11.3) 

(11.4) 

1 1.2.2 Nonlinear Boundary Conditions 

Dynamic free surface boundary condition (DFSBC): 

Kinematic free surface boundary condition (KFSBC): 

(11.6) 

It is convenient at this juncture to put the governing equations and the 
related boundary conditions into dimensionless forms. We define the follow- 
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ing dimensionless variables, developed in terms of g ,  a, and k ,  which are 
gravity, the wave amplitude, and the wave number, respectively. 

X =  kx 

Z = kz 

T = & E t  

The governing equation is thus 

a2@ a2@ -+-=o 
ax2 az2 (11.7) 

The periodicity and lateral boundary conditions remain the same in 
dimensionless form; however, the free surface boundary conditions are 
modified to be 

a@ P + (ka)’ + - (ku) - + 2 = Q(t)  on Z = k u n  (11.8) 
2 dT 

where P will be taken as zero on the free surface. (Note that if ku = 0, then 
Z = 0; there are no waves and therefore only a trivial solution exists.) The 
KFSBC becomes 

aadn am an 
dT axax az (ka)  - - = - - on 2 = k u n  _-  (11.9) 

In our previous derivation of small-amplitude wave theory, we 
expanded the nonlinear conditions about Z = 0, the mean water level, and 
then neglected products of very small quantities, such as (da>/~3X)~.  This 
clearly was neglecting terms of order (ku)’ when compared to ku. 

In the perturbation approach, we will assume that the solution will 
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depend on the presumed small quantity ka, which we will define as E .  The 
linear solution will not depend on E, while the second order will, the third 
order will depend on E’, and so on. Therefore, we will decompose all 
quantities into a power series in E ,  which is presumed to be less than unity. 

n=nI+En2+E2n3+ ’ * *  

@ = @ I  + + c2@3 + . . . 

0 = 01 + € 0 2  + € 2 0 3  + * * * 

(I  1.10) 
Q(t )  = EQI(T) + E’Qz(T) + e3Q3(T) + * . * 

Again, as we a priori do not know the location of the free surface 
Z = (ku)n(X, T), we will resort to expanding the nonlinear free surface 
boundary conditions about Z = 0 in terms of ell, retaining the higher-order 
terms up to E’, denoted as O(E’). Using the Taylor series we have 

Q(t)  o n Z = O  

and 

+ € - -  +En- - -+€- -  (1 1.12) ( az axax 
a@ an man) a;( a@ 
az ar axax 

- 0  o n Z = O  
e2n2 a3@ 

2 az3 
where we have accounted for the fact that n and Q(T) are not functions of 
elevation. 

Substituting the perturbation expansions, Eqs. (1 l.lO), into the linear 
conditions, Eqs. (1 1. I) to (1 1.4), we have, retaining only terms of first order in 
E (the others being much smaller) 

(1 1.13) v2@l + €V2@,2 + . . . = 0 

= O  a t Z = - k h  a@, E L + .  a@ . . 
az dz 

@I(X, z,  r )  + €@Z(X, 2, T )  + * . . = @I(X + L,  z,  T )  + E@*(X + L,  z,  T )  

@l(X, Z, T )  + €@2(X, Z ,  T )  + * * * = @I(X, Z ,  T + Tp)  + €@2(X, 2, T + Tp) 

where Tp is the dimensionless wave period, 27~10. At the free surface, we 
obtain for the DFSBC and KFSBC, respectively: 
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(1 1.14) f[ ( 3 7  + (271 - 3 - 3 + n, + 
2 ax aT  aT  aT  az 

- - a2cP I . . . 

= Qi(V + ~ Q 2 ( r )  . * * o n Z = O  

(11.15) 

= O  o n Z = O  

The original nonlinear boundary value problem has now been reformulated 
into an infinite set of linear equations of ascending orders. To visualize the 
manner in which the linear equations are obtained, consider the following 
general form of the perturbed equations: 

Al + € A 2  + €'A3 * . . = BI + E B ~  + €'B3 . 1 * (1 1.16) 

The required condition that the equality holds for arbitrary E is that the 

am an, anZ m,an, a2@ , 
az az aT  aT  ax ax az2 I - " '  - - - €  _ _ _ _ _ _  E-+E---En 

coefficients of like powers of E must be equal. Therefore, 

A1 = B I  

A2 = B2 

A 3  = B3, etc. 

This procedure will now be used to separate the equations by order. 

1 1.2.3 First-Order Perturbation Equations 

If we gather together all the terms that do not depend on E, the linear 
equations result. 

V2@, = 0 

- 0  onZ=-kh  8% 
dZ 

o n Z = O  anl aaI 
aT az 
-- 

@IW, z, r )  = @I(X + 2x, 2, T )  

@i(x, Z, r )  = @i(X, 2, T + Tp) 

These are the equations that were used in Chapter 3. 

o n Z = O  (1 1.17) 
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The solutions are, in dimensionless form, 

n = cos ( X -  OT) 

O: = tanh kh 

Q i ( r >  = 0 
which in dimensional form are Eqs. (3.42), (3.43), and (3.34). 

11.2.4 Second-Order Perturbation Equation 

To the order of E ,  

v2a2 = 0 

- 0  onZ=-kh  aa2 
az 

o n Z = O  am2 anz aa,an, a2al +n,- az ar ax ax az2 
- 0  aaz n, -- - Q 2 ( T )  = ar 

(11.18) 

(1 1.19) 

o n Z = O  

@ 2 ( X  z, r )  = %(X + 2n, z, T )  

@Ax, z, T )  = @2(x, z, T + T p )  

Note that all the equations and conditions are linear in the variables of 
interest, Q2(X,  2, T)  and n 2 ( X ,  T), but the free surface boundary conditions 
have inhomogeneous terms that depend on the first-order solution. Since the 
first-order solution is known, the terms on the right-hand side are known 
also. 

To solve for the second-order solution it is convenient to use the 
combined free surface boundary condition, which is found by eliminating 112 
from the free surface conditions, 

(11.20) 

For convenience, the right-hand side of this expression will be defined as D .  
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Substituting for @, and n, from Eqs. (11.18) into the expression for D and 
using trigonometric identities, it is possible to express D simply as 

3wi 
sinh 2kh 

sin 2(X - oT) (11.21) D =  

As a trial solution for Q2(X, Z ,  T), the following form is taken: 

@2(X, 2, T )  = a2 cosh 2(kh + Z )  sin 2(X - wT)  (1 1.22) 

which satisfies the Laplace equation and the bottom boundary condition. 
Examining the second-order combined free surface boundary condition, Eq. 
(11.20), it is clear that dQz(T)/dT = 0,as it cannot depend on sin 2(X - wT) as 
do all the other terms (being only a function of time), and thus the inequality 
could not otherwise be satisfied. Therefore, Q2(t) = constant, Q2. Substituting 

into the combined condition yields a2. 
3 w  
8 sinh4 kh 

a 2 = - -  (11.23) 

Therefore, 

To determine the corresponding free surface elevation, n 2 ( X ,  T), the 
second-order dynamic free surface boundary condition is used, 

on Z = 0 (11.25) 
dT 

Substituting for Q2 and QI yields, in dimensional form, 

[cash 2kh + cos 2(kx - ~ t ) ]  (11.26) H 2  d 
16 g sinh’ kh 

+Q*- - - I  

H2aZ + 1 [I + cos 2(kx - a)] 
8g 

where H ,  is the first-order wave height ( H I  = 2a). 
There are two options that can be applied to this equation in order to 

proceed. First, as in Chapter 10, we can specify the Bernoulli constant to be 
zero, corresponding to no setdown in deep water and then separating q into a 
mean and a fluctuating 6 term. 

472 = i + $2 (11.27) 
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and from Eq. (11.26), 

H:k 
8 sinh 2kh 

= -  - H;a2 q = -  
16 g sinh’ kh 

(11.28) 

as in Chapter 10, and 

( 1  1.29) - ka2 cosh kh 
4 sinh3 kh 

q 2  = - -(2 + cash 2kh) cos 2 ( h  - at) 

The second alternative is to specify h as the mean water level depth and 
then q has a zero mean. Then the Bernoulli constant is 

H:c? ‘ = 16 sinh’ kh 
(1 1.30) 

and the fluctuating part of q2, as before is given by Eq. (11.29). The resulting 
second-order wave profile is much more peaked at the wave crest and flatter 
at the wave troughs than the previous sinusoidal wave form. This is shown in 
Figure 11.1.  

The velocity potential and water surface displacement, to second order 
then, in dimensional form are 

4 = €4, + E 2 4 2  

( 1  1.31) 

(11.32) and q = cql + e2q2 

1 .o 

0 

-1.0 

-1.0‘ I 

Figure 11.1 A second-order stokes 
water surface profile as composed of q, 
and eq2 contributions where E = ku. 
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H’k ‘Osh kh (2  + cosh 2kh) cos 2(kx - at) HI 
2 16 sinh3 kh 

q = - cos (kx - at) + - 

The dispersion equation relating a to k remains the same, 

d = gk tanh kh ( 1 1.33) 

However, it is noted that a correction occurs to the dispersion equation at the 
third order. 

Convergence. A measure of the validity of the Stokes expansion 
procedure is whether or not the series for 4 converges. This can be checked 
for the second-order theory by examining the ratio of the second-order term 
to the first-order term, which must be less than 1 in order for the series for 4, 
Eq. ( l l . lO) ,  to converge.’ 

( 1 1.34) 
8 cosh kh sinh3 kh 

In deep water, defined as kh > n, the asymptotic forms of hyperbolic 

R = 3e-2khka ( 1  1.3 5 )  

R is thus very small in deep water, particularly since ka has been assumed 
small previously. The highest value in deep water would occur for kh = n, 
ku = n/7, occurring for the wave of maximum steepness, 

or 

€4’ 3 kacosh2kh << 
4, 

R=-=- 

functions can be substituted to reduce R to 

(11.36) 

In shallow water, kh < n/lO, the hyperbolic functions can again be 

3K 
7 

replaced by the asymptotic values, 

R = - e-’” = 0.0025 

R=--=- 3 k a  3 ($)<, 
8 k3h3 64n’ 

(11.37) 

The relative depth kh thus becomes an important parameter in shallow 
water. In fact, ku < 8 ( I ~ h ) ~ / 3 ;  this is a severe restriction on wave height, as this 
can be written as a /h  < (8 /3 )  (kh)’, where kh is small. The maximum that the 
ratio u/h  can obtain is a / h  = 8n2/300 for kh = n/10, or the maximum wave 
amplitude is about one-fourth of the water depth. (In shallower water, this 
ratio must decrease.) However, as mentioned in Chapter 4, the wave ampli- 
tude for breaking is almost 0.4 the water depth. Therefore, for high waves in 

‘Properly for the power series for 4 in terms of E to converge, the ratio test requires that ratio of 
the n + 1 term divided by the nth term be less than unity as n - co. 
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shallow water, the Stokes expansion is not very good, at least when carried 
out to only the second order. 

The term in parentheses in Eq. (11.37) is called the Ursell parameter 
(Ursell, 1953), which, for second-order Stokes theory to be valid, has a 
magnitude 

L2H 64n2 
h3 3 

-<<- ( 1  1.38) 

The value of the Ursell parameter actually should be less than indicated 
above, due to the fact that in shallow water the theoretical wave form will 
develop an anomalous bump in the trough for large waves due to the 
largeness of the second-order term. To investigate this, the free surface 
equation will be examined at the trough and the second derivative will be 
obtained. From the calculus, a negative second derivative indicates a con- 
cave downward curvature, or, for this application, a secondary crest or 
bump. 

H2k ‘Osh kh(2 + cosh 2kh) cos 2(kx - a) (11.39) H 
2 16 sinh3 kh 

V T  = - cos ( k x  - at) + - 

and 

- = - k 2 - -  H 2 k 3  ‘Osh k h ( 2  + cosh 2kh) 
ax2 2 4 sinh3 kh 

for kx - crt = n (11.40) 

Setting the second equation to zero and solving for ka yields 

sinh3 kh 
cosh kh(2 + cosh 2kh) 

ka = (11.41) 

This is the maximum value of ka for which there is no bump in the trough. In 
deep water, the maximum permissible ka from this equation is 4, which is 
greater than the limiting steepness value of n/7; therefore, in deep water a 
secondary crest will not occur in the wave profile, while in shallow water, the 
maximum value of ka is 

(11.42) 

In comparing this rate to that for R, determined previously, this latter 
condition is eight times more stringent. In fact, the Ursell parameter reduces 
to 

L ~ H  8n2 -<- 
h3 3 

(11.43) 

Therefore, for shallow water, the requirement that the wave be single crested 
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should be used as the criterion for the maximum height wave. This idea has 
been used for fifth-order Stokes waves by Ebbesmeyer (1974). 

Kinematics. The velocities under the second-order wave are, in 
dimensional form, 

3 H2ak  cosh 2k(h + z )  cos 2(kx - at) 
16 sinh4 kh 

+- 
(11.44) 

w=--=-- ’6 gk sinh k(h + z ,  sin (kx - at) 
dz 2 a cosh kh 

3 H2ak  sinh 2k(h + z )  sin 2(kx - at) 
16 sinh4 kh 

+- 

The presence of the second-order term increases the velocities, but in a 
manner that varies along the wave due to the 2(kx - at) phase function. For 
the horizontal velocity the velocities are greater under the crest but are 
reduced under the trough when compared to linear wave theory. 

The total horizontal acceleration is, to second order, 

(11.45) 
Du H cosh k(h + z )  H 2  sin 2(kx - at) -=- 
Dt 2 gk cosh kh 4 sinh 2kh 

sin (kx - oi) - - gk2 

+ -  H2dk cosh 2k(h + z )  sin 2(kx - at) 
8 sinh4 kh 

The total vertical acceleration is found similarly (see Problem 11.1). 

11.3 THE STREAM FUNCTION WAVE THEORY 

Should the reader have followed through the details of the second-order wave 
theory, it would have been quite arduous. Clearly, higher-order Stokian wave 
theories [third order, Borgman and Chappelear (1958); fifth order, Skjelbreia 
and Hendrickson (1961)l become quite difficult. Expanding to even higher 
orders becomes extremely formidable. For this reason, it was desirable to 
have wave theories that could be developed on the computer to any order. 
The first such theory was developed by Chappelear (1961) involving the use of 
the velocity potential. Dean (1965) used the stream function to develop the 
stream function wave theory, which was computationally simpler than 
Chappelear’s technique. 
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Cokelet (1977) has extended the method originally developed by 
Schwartz (1974) to allow a very accurate calculation of the characteristics of 
water waves, including heights ranging up to near breaking. The procedure 
involves expressing the complex potential solution in a Fourier series and 
represents the Fourier coefficients as series in terms of a perturbation 
parameter. An interesting result is that the wave speed, wave energy, and 
wave momentum all exhibit maxima at wave heights slightly smaller than the 
breaking height. 

At present, the Cokelet method appears to yield the most accurate 
results for nearly breaking waves; however, the differences from the numeri- 
cal theories (Chappelear and Dean) are generally small and the Cokelet 
approach is not known to have been applied to design. 

11.3.1 Formulation and Solution 

In Chapter 3 the linear form of the stream function for water waves was 
given as 

or if the coordinate system is moved with celerity of the wave, C, thereby 
rendering the system steady, as 

Hg sinh k(h + z )  cos 
20 cosh kh 

‘(X, z )  = c z  - - (11.47) 

The advantage of moving the coordinate system with speed C is that the 
problem is rendered steady, thus reducing the number of terms in the 
boundary conditions. 

The boundary value problem for progressive water waves is, in stream 
function form, 

V2y/ = 0, throughout the fluid (11.48a) 

![ (*>’ + (z>’] + gq = eB, a constant, on z = ‘ ( x ) ,  
2 az the DFSBC 

(1 1.48b) 

-=---  ” ” ” on z = ‘(x), the KFSBC (11.48~) 
ax az ax’ 

Using the stream function, the latter condition is true by definition; that is, 
the free surface, wherever it is, is a streamline. This condition, therefore, is 
satisfied exactly. 

a’ 
ax 
- = 0  onz=-h ,  BBC (11.48d) 

‘ ( X ,  z )  = ‘ ( X  + L,  z) ,  lateral boundary condition (1 1.48e) 
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Now, from analogy to the second-order wave theory, we might assume that 
the Nh-order stream function might look like 

and 
(I 1.50) 

Note that for the linear theory, we must have the coefficient 

Eis 1 X(1) = - - ___ 
CT sinh kh 

The only condition not satisfied by this assumed form is the dynamic 
free surface boundary condition. The X ( N )  are, therefore, chosen to satisfy 
this condition. On the computer, this condition is satisfied at I discrete points 
along the wave profile, each point being denoted by i. The DFSBC is thus 
evaluated at each i point along the profile, giving QB,. According to the 
DFSBC, all the QB, must be equal to QB, where QB is a constant. 

(:I:+ (9: + gilt = QB (1 1.51) 

However, to get the QBI, the X(n)’s ( n  = 1, 2,. . ., N) must be known to 
calculate dy//dz, dV/ldx, and q. The procedure then must be an iterative one; 
values ofX(n) are used to determine the QB,, the QB, are then used to get new 
X(n), and so on, until the boundary condition is satisfied. 

The measure of the satisfaction of the boundary condition will be 
defined as E l ,  which is the mean squared error to the boundary condition 

2 QB, = 

(1 1.52) 

where 

For an exact solution, E ,  must be zero. 

different from zero, q(x) must have a zero mean, that is, 
As occurred with the second-order analytical solution for which Q B  is 

( 2 / L ) S L ”  0 q(x) dx = 0 
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Further, for design purposes, it is desirable to be able to prescribe the wave 
height a priori. These last two conditions can be considered as constraints to 
the condition that E l  be zero, or at least very small. To solve for the X(n)’s, E l  
must be minimized, subject to the constraints. Note that there are two 
additional unknowns, due to the necessity of also determining the wave- 
length L and the value of the free surface streamline y(x, u), which is a 
constant. Using the method of Lagrange multipliers (Hildebrand, 1965), we 
minimize the objective function 0,: 

O f = E l + -  V ( X ) ~ X + A ~  [ ~ ( O ) - V  (;) - - H  ] (11.53) 
2A1 L O  S“’ 

where 1, and A2 are Lagrange multipliers. The objective function is nonlinear 
and in order to facilitate the solution, it is expanded by a truncated Taylor 
series: 

(1 1.54) 

where AX(ny’ is a small correction to X(n) :  

X”l(n) = X’(n) + AX’(n) (1 1.55) 

and the superscriptj indicates the number of iterations that have been made. 
Minimizing the expanded objective function with respect to all the X(n), plus 
AI  and 12 yields a series of linear equations for the A F ( n )  for fixed j .  

Solving the equations for AX(n)  in matrix form yields the solution for 
iteration, j + 1. This process is repeated for several iterations until 0;’ is 
acceptably small. This technique is simply a Newton-Raphson procedure, 
but applied to a set of nonlinear equations (see, e.g., Gerald, 1978). 

The stream function wave theory has been used to generate 40 represen- 
tations of nonlinear waves by Dean (1974) and the results tabulated in 
dimensionless form. Using these tables, most designs using nonlinear wave 
theory can be carried out without the use of a computer. 

Chaplin (1980) has developed an improved approach to that of Dean 
(1965) for calculating the stream function coefficients, although it is not clear 
that his method is an improvement over that of Dalrymple (1974), which is 
presented above. Chaplin formulates the problem in dimensionless form 
with h,  H, and T as the independent parameters and the dimensionless 
surface displacements as the unknowns. The method, which is more com- 
plex, but yields greater accuracy, particularly for nearly-breaking waves, 
commences by determining a set of orthonormal functions representing the 
terms in the series given by Eq. (11.49). These functions then allow a more 
direct solution of the stream function coefficients which satisfy the dynamic 
free surface boundary condition [Eq. (11.48b)l. The method has the advan- 
tage that, in contrast to that originally developed by Dean, a maximum in 
wave length (or celerity) is represented at wave heights slightly smaller than 
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breaking. Chaplin carried out comparisons of a number of parameters and 
concluded that for waves up to 75% of the breaking height the errors in the 
tables of Dean were less than 1% except in extremely shallow water. For waves 
of 90% of the breaking height the errors were less than 5% in most cases. 

Extension of the theory to waves on vertically sheared currents has 
been done by Dalrymple (1974) and Dalrymple and Cox (1976), and for 
irregular measured water surfaces by Dean (1965). The latter procedure 
involves determining the best-fit stream function to a given water surface 
profile. 

11.4 FINITE-AMPLITUDE WAVES IN SHALLOW WATER 

In the Stokes perturbation procedure, the perturbation parameter was ku, the 
wave steepness. In very shallow water the Stokes wave profile [Eq. (11.32)] 
becomes (using shallow asymptotic expansions for the hyperbolic functions) 

~ ( x ,  t )  = a cos (kx - at) + - 3ka2 cos 2(kx - at) 
4(kh)3 

(11.56) 

The second term is a function of wave amplitude and length, as well as the 
water depth, being proportional to the Ursell number or (u/h)(L2/h’), which 
will be defined as the ratio alp, where a 5 a/h,  /3 = h2/L2. In fact, the 
Stokian wave profile for higher orders in shallow water is an expansion using 
the ratio alp as the perturbation parameter. This implies that alp must be 
much less than unity or a << p. In shallow water, this requires quite a short 
wavelength or a small-amplitude wave, as discussed previously. It would be 
desirable for design purposes to have a perturbation expansion in shallow 
water which would at least allow a and p to be of the same magnitude. This 
can be achieved with a different perturbation procedure than that used 
previously. 

First, the shallow water wave will be assumed to be propagating without 
change in form; thus, by moving with the wave celerity C, the motion 
becomes stationary, and a stream function approach becomes convenient, as 
in the preceding section. 

The free surface boundary conditions are 

(Ey + ($y + 2g(h + q) = Q on z = h + rj (11.57a) 

and 
y = C h  o n z = h + q  (11.57b) 

In this context, the coordinate system is taken to be on the bottom and Q is 
the Bernoulli constant. At the bottom, 

y = O  o n z = O  (1 1.57~) 
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This condition ensures that there is no flow through the horizontal bottom, as 

o n z = O  w = - = o  ay/ 
ax 

For a wave propagating on a quiescent fluid, Q = Cz + 2gh, which is deter- 
mined from the dynamic free surface boundary by moving far upstream of 
the wave, where the wave motion is negligible. 

It is again convenient to express the equation in nondimensional form 
prior to the perturbation procedure. In contrast to the Stokes expansion, 
however, the x, z coordinates will be nondimensionalized differently, recog- 
nizing the fact that there will be larger gradients in the vertical direction than 
the horizontal. 

n = -  tl 
a (1 1.58) 

The governing Laplace equation, in terms of the nondimensional variables, 
is written as 

azY a2Y p-+-=o ax2 azZ (1 1.59a) 

where, again, p = (h/L)'. 
The two free surface conditions are 

o n Z =  1 +all ( 1 1.5 9b) C Y=-- 
diG 

where 

and 

a 
h 

a = -  (1 1.59~) 
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By differentiating2 with respect to X, we can eliminate the constants to obtain 
the form we will use: 

(1 1.60) 

= O  o n Z = l + d  

Using a Frobenius power series solution technique, we will assume a solution 
in terms of a series in Z (see, e.g., Wylie, 1960): 

aYa2Y aY a2Y an aY a2Y aYa2ulan an p- - + ap - - - +-- +a---+- axax' axaxazax azaxaz azaz2ax ax 

m 

(1 1.61) 

To satisfy the bottom boundary condition,fo must be zero. Substituting the 
assumed solution into the dimensionless Laplace equation and grouping 
terms yields 

(11.62) 

For this equation to be satisfied for any Z, the coefficients of the z" terms 
must be zero. Therefore, 

h=O 
f P d2fr 

6 dX2 
3 -  

& = O  

j-----=-- P d'f3 P' d"fi 
20dX2 120dX4 

f6=0 

5 -  

and so on. Therefore, the series may be written 

Y = Z f , - - z  P 3dY-l -+--- P2Z5 dYI+ . . . 
6 dX2 120 dX4 

or 

(11.63) 

(11.64) 

'Since Z at the free surface is a function of X, the total derivative is used. 
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Clearly, we now have a series in terms ofb, the relative depth parameter. The 
objective is to determine the functional form offi in order that Y satisfies the 
two free surface boundary conditions. Substituting the expansion for Y into 
the kinematic and dynamic free surface boundary conditions yields 

(11.65) 1 d2fi C (1 +arIf i - -P( l  +arI)’-+O(p)=-- 
6 dX2 4G 

d !  d2fi dfi P d f 3  drI (1 1.66) P -0 +an)2--++fi---(1 +arI)2fiL+-++o(p‘)=O 
2 d X d X 2  d X  2 dX3 d X  

First, examining the zeroth-order solution for Y in P, that is, the solution 
depending on p”, it is clear that the horizontal velocity, U = - dY/dZ, is 
uniform over depth, asfi is not a function of Z .  In this case, the kinematic 
boundary condition reduces to 

C ( l+dI)f1=-  
4G 

fi = - (1 + an)-’ 
or 

(11.67) C 

Substituting into Eq. (11.66) will yield, to order p”, an expression for C: 
4G 

C’a(drI/dX) d n  - +-=O 
gu(1 d X  

or 

(1 1.68) 

(1 1.69) 

For this last equation to be true everywhere, the term within the parentheses 
must be zero. Therefore, 

c2 = gh(1 + any 
or3 

(1 1.7Oa) 

C N @ (1 + y) to order (a2, $) (11.70b) 

To the first approximation. in a, we have the usual shallow water wave 
celerity, which depends solely on the mean water depth, C = m. The wave 

’Recall the binominal series approximation: 

€2 
n(n - 1) ( l + l $ = I + n € + -  

2! 
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form ll can be arbitrarily chosen for this case. The next approximation, to 
@a2, p"), provides a correction term, $an, which indicates that the larger the 
local water surface displacement, the faster the local wave speed. This result 
was first due to Airy (1845). The difficulty is that we originally postulated that 
we were moving the coordinate system with wave speed C, which was 
assumed to be constant for the wave. Clearly, this is not the case, so we expect 
the wave to deform as it propagates, with the higher portions of the wave 
profile moving faster than the lower portions, so that, in fact, the wave profile 
continually steepens in front until our assumption of a being small is 
violated. Physically, the wave eventually breaks in the form of a bore. 
Theoretically, we must find a better solution, one that yields a constant 
celerity. 

To a higher order, O(a2, an, the solution is assumed to be 

(1 1.71) 

where A is an unknown function of x .  Substituting into the kinematic free 
surface boundary condition and retaining terms 0 0  yields the following 
equation for A in terms of ll and its derivatives: 

A = - - -  a c [W _ _ _ ~  2a (">'I - (1 1.72) 

Substituting5 and A into the dynamic free surface boundary condition yields 
a very complicated expression, which, however, to O(a2, an reduces to this 
nonlinear equation: 

c f i= - ( l  +an)-'+/3A 
G 

6 &j dX2 l + a n  dX 

g [ l  dX -$(1-3all)  

or 

(11.73) 

(11.74) 

This equation is the steady-state form of the Korteweg-DeVries (1895) 
equation. The solution to the linearized form of this eq~a t ion ,~  which is of 
O(a, a/?), is 

n = cos 2KX 

with the following equation for the wave celerity: 

(1 1.76) 

That  is, neglecting the second term. 



314 Nonlinear Waves Chap. 1 1 

The effect of including the parameter p is to reduce the celerity, just the 
opposite of the parameter a. In fact, by introducingp, the relative depth (i.e., 
making it different from zero, the infinite wave length case), we have 
developed a wave moving at constant C, a wave that does not form a bore as 
did the solution when p = 0. This wave is equivalent to the small-amplitude 
wave theory we have developed in the first eight chapters. In fact, it is easy to 
show that the celerity given above is equal to the first two terms in the 
shallow water expansion of Eq. (3 .35) .  

11.4.1 The Solitary Wave 

We will now seek a solution containing both a and p such that their 
influence results in nonlinear waves of permanent form. The equation above 
can be solved without the necessity of linearization. The procedure is to 
integrate once with respect to X. 

(1 1.7 7) 

Multiply by dn/dX and integrate again to yield 

(11.78) 

where D and E are constants of integration. If we solve this equation for the 
case of a single wave which has no influence at infinity, then ll = dn/dX = 0 at 
X =  co. Clearly, D and E must be zero, from Eqs. (11.77) and (11.78). The 
remaining equation is, therefore, 

For the wave form to be symmetric about the X axis, dll/dX must go to zero 
at ll = 1, the wave crest. Thus 

(1 1.80) 

or 

(11.81) 
1 - a  

and the equation becomes 

(1 1.82) 
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The solution is 

ll = s e c h 2 e  X 

or in dimensional form 

q = a  s e c h 2 G x  

(11.83) 

(11.84) 

This is called the solitary wave of Boussinesq (1872). Munk (1949) has 
advocated the use of superimposed solitary waves to describe waves in the 
surf zone. The solitary wave form is shown in Figure 11.2. The entire wave 
profile is positive for this wave; there is no q less than zero. The a therefore 
represents the height of the wave and h the depth at infinity. The volume of 
water contained in a solitary wave, V, over a distance -I < x < I, that is, the 
amount of water above the mean water level, is found by integrating the 
profile. 

For I equal to infinity, the hyperbolic tangent is unity and 

Vm=4h - E 

(1 1.85) 

(11.86) 

Clearly, for engineering use, an infinitely long wave has no value; however, 
the effective length of the solitary wave is much less. For example, 95% of this 
volume is contained within the distance 

2.12h I=- 
43 

(1 1.8 7) 

0.6 

0.4 

0.2 

- 
- 
- 

0 " ' t ' t " l ' ' " " ~ ' ' ~ ~  
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0.2 0.4 0.6 0.8 1.0 1.2 1.4 

95% 

"I 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 I 2.0 2.2 2.4 
-4 

95% 

Figure 11.2 Dimensionless free surface profile of a solitary wave. 
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For example, if u/h = 0.5, then 95% of the volume is within a space of about 
six water depths. 

The water particle velocities under the solitary wave are found by 
U = -dY/dZ and W = d Y / d X  from Eqs. (11.64), (11.71), and (11.72). 

(11.88) 

( 1 1.89) 

Substituting for fi 
yields 

U = - [  C 

JG -I 

from Eqs. (11.71) and (11.72) for the horizontal velocity 

+cm-(cUrI)2+aj? z2 - d2n toO(a2,aj?) 
(6  2 )  dX2] 

or 
" j  

where ll is given as a function of position by Eq. (11.83). The first term in 
brackets, that is, the minus 1, is to account for the speed of translation of the 
coordinate system. For a fixed observer, this term would be neglected. The 
remainder of the expression for U consists of terms proportional to n; 
therefore, away from the crest the velocity becomes small. Under the crest of 
a solitary wave, n = 1 and the expression for U is greatly simplified: 

(11.91) 

or in dimensional form, 

For the vertical velocity 

(11.92) 

1 C Olp d311 
4G dx 6 dX3 

W = -Fa  q2an - 1) - - -(Z - Z3)  to 0((r2, afl (11.93) 
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or 

where ll is given by Eq. (11.83) and 

= -2ll e tanh % X 
dX 

(1 1.95) 

In dimensional form 

(1 1.96) 

For applications of the solitary wave theory, the reader is referred to the 
extensive work of Munk (1949). 

1 1.4.2 Cnoidal Wave Theory 

In 1895, Korteweg and Devries (1895) developed a shallow water wave 
theory which allowed periodic waves to exist. These waves have the unique 
feature of reducing to the solitary wave theory at one limit and to a profile 
expressed in terms of cosines at the other limit, thus spanning the range 
between the linear and solitary theories. The wave profile is developed in 
terms of a Jacobian elliptic integral, cn(u), and they called the theory 
“cnoidal” to be consonant with the sinusoidal, or Airy theory. 

The development of the periodic theory follows the previous perturba- 
tion procedure for solitary waves with the exception that in Eq. (11.78) we 
cannot force the unknown constants D and E to be zero. If, however, for our 
cnoidal waves we force ll = 0 at Z = 1, defined as the wave trough, then 
dll/dX should be zero there also, as the wave form is periodic. Therefore, E 
must be zero and the integrated equation becomes 

l d l l ’ a  llz 
2 

6(dx)  + % r 1 3  - F -  +on = 0 (11.97) 

where 

(1 1.98) 
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At the wave crest, n = 1 and again dn/dX = 0; thus D can be readily found: 

The equation is now 

or 

(11.99) 

(1 1.100) 

(1 1.101) 

where 

S = l - F -  P (1 1.102) 
a 

The substitution II = cos2 x will be used to transform this equation into 
a more tractable form, involvingx. From the imposed conditions on l7 at the 
crest and trough, the values ofx are seen to be 0 and n/2 for the crest and first 
trough, respectively. Substituting, we obtain 

= dX ax 

1 + S - sin2X 

or 

F(k.9 x) (1 1.103) 1 1 X =  

4 P  
where 

( 1 1.104) 

and where F( k, x) is the notation for the elliptic integral of the first kind with 
modulus k and amplitude X.The amplitude ofx is then given, from the theory 
of elliptic functions, as 
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or 

II = cn2 ( X  @) mod(k) 

31 9 

( 1  1.105) 

(1 1.106) 

or in dimensional form, 

v = a cn2 (x V E )  = a cn2 [F( k, x)] ( 1  1.107) 
4h3k2 

To be consistent, the parameter a has been used in the definition for 7; 
however, in this connection, a is the wave height, as in the solitary wave 
theory. 

The Jacobian elliptic function cn is a periodic function with a period of 
4K, where K is the complete elliptic integral of the first kind, K = F( k, lc/2), 
as shown in Figure 11.3. The function cn’u is periodic with period 2K. The 
wave length of the cnoidal wave is found by setting X equal to unity in the 
argument of cn u. Therefore, 

G l = 2 K  

or 

(11.108) 

(1 1.109) 

The parameter k is uniquely related to wave amplitude a,  the length L ,  and 
the water depth h. A graph of k versus the Ursell parameter U,, K(k) ,  and 
E( k),  the complete elliptic integral of the second kind, is shown in Figure 11.4. 
For shallow water (Chapter 3 )  h / L  < 1/20, and therefore the Ursell parameter 
has a minimum value of U, = 400(a/h).  For nearly-breaking waves, a (the 
wave height) is about 0.8h. This gives an Ursell value of 320 and a k value of 

1 

0 

Figure 11.3 The Jacobian elliptic -, - 
function, cn u. 
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0 100 

Figure 11.4 Complete elliptic integrals of the first and second kinds and the 
Ursell parameter as a function of the modulus k. 

0.999999 or larger for shallow water. Various water surface profiles are shown 
in Figure 11.5 for various values of k. 

The parameter h refers to the water depth at the wave trough. To 
determine the mean water depth, the wave profile is averaged and denoted n. 

- n = l' cn2(2KX) dX 

or 

(1 1.110) 

(1 1.11 1) 

where E is the complete elliptic integral of the second kind. The total depth is 
then (h  + 6). 

The cnoidal wave celerity can be found using the definition for F, S,  
and k following Eqs. (11.98), (11.102), and (11.104). Solving for C, we have 

(11.112) 

To find the related wave period, we use the definition of L (C = LIT), 

C 
(1 1.113) 

from Eqs. (11.109) and (11.112). 
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Several interesting asymptotic features of the cnoidal wave should 
be pointed out. As k -, 1, the wave length becomes infinite, as K(1) - og and 
cn2 (x) - sech2 (x), the solitary wave.5 On the other hand, as k - 0, cn(x) -, 
cos(x), and K - n/2, and the wave form changes: 

q = a cn2(2KX) -, a cos2 ( x v - )  = a cos2 ($) (11.114) 

which can be written in terms of elevation from the bottom as 

(1 1.115) 

where h + 4 2  denotes the elevation of the mean water level above the 
bottom. This also follows from Eq. (ll.lll), as the ratio of E / K  goes to 
(1 - k2/2) for K - 0. Thus cnoidal wave theory spans the range from sinusoi- 
dal or Airy theory in deep water to solitary wave theory in shallow water. 

The velocities under a cnoidal wave can be found as for the solitary 
wave, Eqs. (11.90) and (11.96). 

(1 1.1 16) 

+ 2(2k - 1) (x>’- 3*’(;)lh’]} 

where 

The leading terms for u and w are, as might be expected, the same as those 
developed for the long waves in Chapter 5 [see Eqs. (5.2) and (5.3)]. 

11.5 THE VALIDITY OF NONLINEAR WAVE THEORIES 

It is important to know which of the various water wave theories to apply to a 
particular problem, where the wave characteristics and water depth are 
specified. For example, is the linear wave theory suitable or must cnoidal 
theory be used? In order to address these problems, the validity of the various 

jIwagaki (1968), using this asymptotic behavior, has developed the hyperbolic wave theory (valid 
for K > 3), which means that k > 0.98, which is a blend of solitary and cnoidal theory having the 
mathematical advantage of the solitary theory and some of the properties of the cnoidal theory. 
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theories must be known. This "validity" is composed of two parts: thc 
mathematical validity and the physical validity. The first is the ability of an) 
given wave theory to satisfy the mathematically posed boundary valut 
problem. For example, all the theories in the book satisfy the bottom 
boundary condition exactly, but the cnoidal and solitary wave theories onlj 
approximately satisfy the Laplace equation within the fluid. All of thc 
theories only satisfy the dynamic free surface boundary approximately, whilc 
the kinematic free surface boundary condition is satisfied (to the numerica 
accuracy of the computer) by the stream function theory. On the other hand 
the physical validity refers to how well the prediction of the various theorie: 
agrees with actual measurements. This part of the validity has been difficull 
to obtain due to the problem of wave tank design and measurement require. 
ments. The interested reader is referred to Dean (1974). 

The analytical validity of many wave theories was examined by Dear 
(1970) (see also Dean, 1974). Figure 11.6 shows the results of the comparisor 
of the theories, denoting the regions for which each theory provides the besi 
fit to the dynamic free surface boundary condition. As would be expected, the 
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Figure 11.6 Periodic wave theories providing best fit to dynamic free surface 
boundary condition (analytical theories only). 
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cnoidal wave theory does well in shallow water, while in deep water, the 
Stokes V wave theory proved to be more applicable. Somewhat surprisingly 
the linear wave theory did well for the intermediate water depths. However, 
when high-order stream function wave theory is used, it provides the best fit 
of all the theories, even in shallow water (although quite high orders, such as 
twentieth order, are necessary). 
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PROBLEMS 

11.1 

11.2 

11.3 

11.4 

11.5 
11.6 

11.7 
11.8 

Verify that the total horizontal acceleration given in Eq. (1 1.45) for the Stokes 
wave theory is correct to second order. Determine the total vertical accelera- 
tion. 
Develop the horizontal and vertical velocities, correct to O(a, cup) for 
r]  = a cos kx, Eq. (1 1.75). Compare with linear (Airy) theory. 
For shallow water waves, develop the equation correct to O(a2, afl for the 
pressure under the waves. 
Determine the region of validity for the second-order Stokes theory. Which 
value of the Ursell parameter is more restrictive? 
Calculate the pressure under Stokes waves, correct to second order. 
What is the a’, /3” order solution of Eq. (1 1.74)? What is the physical signifi- 
cance of this flow? 
Verify Eqs. (1 1.90) and (1 1.96). 
Assuming equipartitioning of the energy and finding the potential energy, show 
that the total energy in a solitary wave per unit crest width is 
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A Series of Experiments 
for a Laboratory Course 

Component in Water 
Waves 

12.1 INTRODUCTION 

There are several important reasons to include a laboratory component as a 
portion of a course in water waves. First, since the field of water waves is 
evolving rapidly with new significant developments, the experience in labo- 
ratory techniques will develop a student’s capability to test new analytic 
results and will provide a better basis for evaluating the validity of experi- 
mental results reported in the literature. Second, and probably of greater 
significance, is the confidence (hopefully) and perspective gained by the 
student in conducting measurements and assessing the associated theoretical 
results. 

12.2 REQUIRED EQUIPMENT 

Most of the equipment required for the experiments to be described is usually 
available with wave tank facilities. 

12.2.1 Wave Tank 

The size of the wave tank is not critical, but should be of a sufficient size 
that capillary waves are not significant and that a plane beach of small slope 
(say 1:15) can be placed in the tank and still allow room for measurements. It 

326 
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assists greatly if a portion of the tank is glass- or Lucite-walled. Also, a 
movable carriage mounted on level rails is useful for transporting the wave 
gage and possibly other equipment. The tank at the University of Delaware is 
approximately 24 m long, 1 m deep, and 0.5 m wide, although a smaller tank 
would be suitable. The experiments to be described will be based on a 
capability to generate monochromatic waves; however, the range of experi- 
ments would be greatly expanded with the availability of a spectral-generat- 
ing capability. 

12.2.2 Wave Gages and Recording Equipment 

Laboratory wave gages and recording oscillographs are quite standard 
and will not be described in detail. Either capacitance or resistance gages are 
suitable. It is helpful to mount the wave gages on a point gage support to allow 
static calibrations to be carried out readily (see Figure 12.1). Generally, two 
wave gages are required with output on the same oscillograph and as noted 
previously, it is desirable if one of the gages is movable on a level surface. 

12.2.3 Velocity Sensor 

A small laboratory version of a biaxial electronic current meter is useful 
in conducting measurements of the water particle velocity field. If an 
equivalent current meter is not available, it is possible to measure water 
particle excursions visually. 

Mount for point gage 

To signal conditioning A 

and oscillograph 

Figure 12.1 Wave gage mounted on graduated point gage support. 
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Manifold 
El -i / ,Total head pressure 

Streamlined 
strut 

Plan view 
section AA 

Elevation view 

Figure 12.2 Two possible arrangements for measuring pressure field in waves: (a) 
permanent taps through Lucite wall of wave tank; (b) movable pressure port with 
pressure tubing housed in movable streamlined strut. 

12.2.4 Pressure Sensor 

A reasonably sensitive pressure sensor is desirable. A strain gage total 
head sensor with a range of 0.005 to 1 psi is very satisfactory. If the observa- 
tional section of the wave tank is made of Lucite it may be possible to drill 
ports and connect these to a manifold as shown in Figure 12.2a. If the walls 
are glass or it is not desired to tap through the walls, a somewhat streamlined 
strut can be placed flush with the tank wall (see Figure 12.2b). With either 
system it is essential to be able to bleed any air from lines connecting the port 
to the sensor. 

12.2.5 Wave Forces 

A “portal-type’’ force gage is inexpensive to construct and useful since it 
responds to forces and is insensitive to moments. Figure 12.3 portrays the 
main features of a portal gage. The upper and lower plates are rigid relative to 
the side plates. The sensing is by four strain gages connected to a full bridge 
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attachment t o  

Strain gage 

Strain gage 

Can be made of  various 
thicknesses for different 

Portal gage 

sensitivities 

E %b Moment sensor 

Support rod 

@ t T o s T i  

conditioning 
and recorder 

Strain bridge for forces 

Object on which forcLs and 
moments are t o  be measured 

Fiked / 
resistors 

Strain bridge for moments 

Figure 12.3 Force and moment sensors. 

circuit as shown. For purposes of measuring a wide range of forces with good 
sensitivity, different sets of web plates can be constructed. The strain E at the 
extremes (top and bottom) of the web plates can be shown to be 

3 Fl 
2 Ewt2 

€ = - -  (12.1) 

in which F is the applied force, 1, w, and t are the plate length, width, and 
thickness, respectively, and E is the modulus of elasticity of the material. The 
natural frequency u,, of the system is 
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MT 
(12.2) 

in which Mr is the total mass of the system, including any added hydro- 
dynamic mass. The natural frequency should be significantly higher than the 
highest excitation frequency. 

If, in addition to the total force on an object, it is desired to determine 
the location of the effective force, a set of strain gages can be added to the rod 
to yield moments, as shown in Figure 12.3. 

Note that it is extremely important to have firm connections or the 
natural frequency will be too low. 

12.3 EXPERIMENTS 

Following is a list of nine experiments that can be carried out. It should be 
possible to complete the experiment and a substantial portion of the report 
documentation during the class time allotted to each experiment. 

Experiment No. Description 

1 

2 

3 

4 
5 
6 

7 
8 
9 

Wave length, profile, and group velocity as a function of wave period, 

Wave profiles and particle trajectories as functions of wave height, water 

Pressure variations as a function of wave height, water depth, and wave 

Wave height transformation in shoaling water; wave breaking 
Wave reflection from beach; comparison with Miche’s theory 
Wave reflection from a partial vertical barrier; comparison with approxi- 

mate theory 
Wave forces on cylinders and spheres 
Plane wavemaker 
Approximate wavemaker theory for a perfectly reflecting “beach” 

water depth, and wave height 

depth, and wave period; progressive and standing waves 

period; progressive and standing waves 

The report describing the laboratory experiment should be fairly con- 
cise. A reasonable format for the reports is as follows: 

1. Purpose-stating the objectives of the experiment. 
2. Background and/or theory-describing the problem and present- 

ing theoretical relationships to be tested. 
3. Equipment description-this section can be quite brief, especially 

if the equipment has been used previously and is described in an 
earlier report. 

4. Procedure-describing the experimental, data reduction, and/or 
analysis procedures. 
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5. Results (and conclusions)-presentation of results and possible 
reasons for any significant differences between theory and experi- 
ment. Can you suggest a procedure (experimental or analytical) 
that would verify or disprove your suggested reasons for any 
differences noted between theory and experimental results? 

The report, excluding graphs and data sheets, should not exceed several 
pages. Items 1 through 4 and any graphs for item 5 can be a laboratory group 
effort; the conclusions and interpretation of results in item 5 should be an 
individual effort. The “group effort” portions of the report can be copies; 
however, each group member should turn in a complete report. 

Each of the experiments above is described briefly in the following 
sections. 

12.3.1 Experiment 1 : Wave Length, Profile, and 
Group Velocity as a Function of Wave 
Period, Water Depth, and Wave Height 

The purpose of this experiment is to compare measured wave profiles, 
wave lengths, and group velocities with the corresponding values as pre- 
dicted by small-amplitude wave theory. 

Small-amplitude wave theory. 
Wave Profile q. The wave profile q generated by a simple harmonic 

wavemaker is 

2nt 2nx q=-cos(I-t) H 
2 

(12.3) 

where H, T,  L, x ,  and t are the wave height, wave period, wave length, and 
distance and time coordinates, respectively. 

The small-amplitude relationship for wave length L 
is 

Wave Length L. 

h L = Lo tanh 2n - 
L 

(12.4) 

where h is the water depth and Lo is the “deep water” wave length expressed 
by 

gT2 Lo = ~ 

2n 
(12.5) 

The quantity L/Lo is plotted against h/Lo in Figure 3.9. 

The group velocity Cc is the speed at which the 
wave energy propagates and is also the speed of propagation of the leading 

Group Velocity Cc. 
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edge of a train of waves. The group velocity can be expressed as 

sinh 4n(h/L) 
CG = 9 tanh ( 2 2 )  [ 1 + 

2 
where Co is the deep water celerity, that is 

gT C0=- 
2n 

(12.6) 

(12.7) 

The ratio CG/CO is also plotted against h/Lo (Figure 3.9). 

Measurements. The major piece of equipment for this experiment is 
the wave tank. Two capacitance wave gages connected to a two-channel 
oscillograph are used to sense and record the moving water surface. 

For each of the runs, the water depth, wave height, and wave period 
should be observed. 

Wave Length. The wave length can be established by first spacing the 
two wave gages approximately one wave length apart along the channel. A 
final spacing can be established by adjusting the position of one gage until the 
oscillograph traces are observed to be in phase. 

The group velocity is determined by spacing the two 
wave gages 5 to 10 m apart and then starting the wave generator. The “leading 
edge” or front of the wave train will travel at the group velocity. The group 
velocity can be calculated from the known separation distance between the 
two gages and the observed difference in “leading edge” arrival times at the 
two gages. 

It is desirable to obtain a reasonably high speed oscillo- 
graph record of one or two wave periods. 

Group Velocity. 

Wave Profile. 

12.3.2 Experiment 2: Wave Profiles and Particle 
Trajectories as Functions of Wave Height, 
Water Depth, and Wave Period; 
Progressive and Standing Waves 

The purpose of this experiment is to compare measured and theoretical 
profiles and water particle trajectories of progressive and standing waves. 

Background. The maximum water particle displacements I [I and 
I <I in the x and z directions, respectively, can be expressed as functions of the 
incident and reflected wave heights, the mean position of the particle in the 
waves (both horizontally and vertically), and the wave period and water 
depth (see Figure 12.4). 
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z + 

Figure 12.4 Definition sketch for experiment 2: (a) progressive wave; (b) pure 
standing wave. 

H 
2 

q = - cos(kx - Ct) 

H cosh k(h + z) 
2 sinh kh 

H sinh k(h + z )  
2 sinh kh 

l C l = -  

ltl =- 

H 
2 
H cosh k(h + z )  sin kx 
2 sinh kh 

q = - cos kx cos a2 

lCl =- 

cos kx H sinh k(h + z )  
2 sinh kh l<l =-  

tan kx 

(12.8) 

(12.9) 
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Measurements 

Progressive Waves. With the barrier removed, generate a progressive 
wave system. 

1. Measure the wave characteristics 
2. Using approximately neutrally buoyant particles, measure I C I 

and I I at two depths within the wave. 

Standing Waves. Establish a standing wave system using the vertical 
barrier as a reflector. 

1. Measure the characteristics of the standing wave system. 
2. Using approximately neutrally buoyant particles measure the 

maximum water particle displacement components I C l  and I < I  
and inclination of streamlines at any depth at the node and 
antinode positions and also at a position intermediate to these 
positions. 

Reference: See pp. 80-89. 

12.3.3 Experiment 3: Pressure Variations as a 
Function of Wave Height, Water Depth, 
and Wave Period; Progressive and 
Standing Waves 

The purpose of this experiment is to compare measured and theoretical 
pressure variations within progressive and standing waves. 

Background. The pressure deviations from hydrostatic pressure as 
derived for small amplitude waves is 

cosh k(h + z )  
p = p g r l  cosh kh 

(1 2.10) 

in which q(x, t )  can be the water surface displacement for either progressive, 
standing, or partially standing waves. 

Measurements. Measure the pressure fluctuations near the bottom 
and at three additional elevations along a tank wall, for a progressive and a 
standing wave system. Also measure simultaneously the water surface dis- 
placement at the longitudinal position (x) of the pressure sensor. Both the 
amplitudes and phases of these measured pressure fluctuations are to be 
compared with theory. For the standing wave system, conduct the measure- 
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ments at two different positions along the standing wave envelope. Waves of 
two different periods should be used. 

Equipment. The equipment consists of a wave gage, a total head 
pressure sensor, and a recording oscillograph. If the wave tank is Lucite- 
walled, it may be worthwhile to drill and tap several permanent pressure taps 
to be used in conjunction with a manifold. If the tank is glass-walled, a 
streamlined pressure strut support can be placed along the side of the tank at 
the desired location (see Figure 12.2). 

12.3.4 Experiment 4: Wave Height 
Transformation in Shoaling Water; Wave 
Breaking 

The purpose of this experiment is to investigate the characteristics of progres- 
sive and standing breaking water waves and to compare these results with the 
available theory. 

Theory for breaking waves 

Progressive Water Waves. The breaking characteristics of progressive 
water waves have been studied theoretically in deep and shallow water. In 
shallow water, for beaches of mild slope, the relationship is 

(12.11) H 
- = 0.78 
h 

and it is remarked that slopes greater than about 1 : 40 increase this ratio 
substantially. For deep water, the deep water steepness (Hb/L,) at breaking 

( 2)max = 0.142 (12.12) 

where Lo  = 1.2(gT2/27r) for breaking waves, including nonlinear effects. These 
asymptotes and some data are presented in Figure 12.5. Additionally, for 
deep and shallow water, it is predicted that at the inception of breaking, the 
“interior” angle of the wave is 120” as shown in Figure 12.6. 

For relatively steep slopes in shallow water, there is considerable scatter 
of the data, as shown in Figure 12.7. 

Standing Waves. For standing waves the limiting theoretical steep- 

( = 0.218 (12.13) 

ness is 
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Figure 12.5 Breaking index curve. (From Reid and Bretschneider, 1953.) 

and the maximum qc and minimum ql water surface displacement at break- 
ing are 

qc = 0.6478 

qr = 0.3538 
(12.14) 

and the “interior” angle of the wave is 90”. 

developed, although the experimental results indicate the following ratio: 
For shallow water, no theory for the limiting standing wave has been 

( f ) b  = 1.37 (12.15) 

I 
a =  120° 

Figure 12.6 Crest angle at maximum 
steepness. 
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Figure 12.7 Experimental observations ofdb/Hb versus breaker steepness HblT2. 
(From Weggel, 1972.) 

Measurements 

Progressive Waves. Due to the difficulty of measuring kinematics, our 
experimental study will concentrate on the ratio of wave height to water 
depth in shallow water. For three wave periods and one water depth (in the 
uniform depth section), measure the wave height and water depth at which 
breaking occurs. Also attempt to observe the location of incipient instability. 
Comment on any extraneous effects in the wave tank, such as reflections 
from the beach and the effect that these may have on this breaking ratio.You 
should observe the breaking process carefully to provide a description in 
your report. 
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Standing Waves. For standing waves, using a barrier to provide wave 
reflection, the experimental efforts will concentrate on measuring: 

1. Breaking wave height as a function of water depth and wave 

2. The downward acceleration at the antinode. At breaking this 
length. 

value should be equal to the gravitational acceleration. 

Again careful observations of the breaking process should be made of 
standing waves in order to provide a perceptive description in the report. 

12.3.5 Experiment 5: Wave Reflection from 
Beach; Comparison with Miche’s Theory 

The purpose of this experiment is to compare measured and “theoreti- 
cal” beach reflection coefficients and to investigate the “wave height enve- 
lope” for standing wave systems. 

Background; 

Standing Wave Systems. The wave system incident on and reflected 
from the beach can be represented schematically as shown in Figure 12.8, 
where, according to small-amplitude wave theory, the incident and reflected 
wave systems are 

Hi qi =- cos (kx- at) 

qr = - cos (kx + at + s) 
2 (12.16) 
Hr 
2 

t Reflected wave, q, 

+ Incident wave, q, Wave helght envelope 

Figure 12.8 Experimental arrangement for experiment 5 .  
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in which HI and Hr are the incident and reflected wave heights, respectively, 
and 

27l 
T 

(JE- 

The combined wave system qc is 

q c  = r l i  + r l r  ( 12.1 7) 

The total vertical displacement, 2 I qc 1, of the combined wave system can be 
shown to be 

2 lqcl = JfZ? + 2HlH, cos (2kx + 6) + H,Z (12.18) 

Equation (12.18) defines a quantity referred to as the “wave height envelope” 
as a function of distance along the channel. The maximum and minimum of 
this expression are 

2 I ~c I max = Hi + Hr (12.19) 

and 

2 I q c  I min = Hi - Hr (12.19) 

The reflection from the beach can be defined in terms of a reflection 
and occur at positions along the channel separated by L/4. 

coefficient, 

(12.20) &=-=  Hr 2 I ~c lmax - 2 I ~c lmin 

2 I ~c lmax -t- 2 I ~c I mm Ht 
The minimum and maximum values of the reflection coefficient are 0 and 
1.0, respectively. 

A very approximate “theory” for the reflection 
coefficient from a plane smooth beach has been developed by A. Miche. 
Miche defines a critical deep water wave steepness (Ho/Lo)cnt in terms of the 
beach slope j?: 

Miche’s “Theory”. 

(12.21) 

Miche’s results predict that the beach reflection coefficient will vary with 
deep water wave steepness, H,/L,, in the following manner: 

K, = 1, 
(12.22) 
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K, = 
HdLO ’ L O  crit 

The deep water wave height referred to in these equations is that of the 
incident wave. The relationship between the deep water wave height and the 
incident wave height is 

(12.23) 

where the ratio C&, is plotted versus h/L, in Figure 3.9. 

Measurement. For two wave periods, the wave height envelope is to 
be established by moving a wave gage along the channel over a distance of at 
least one wave length. From these envelopes, the measured beach reflection 
coefficients can be determined and compared with those of Miche’s theory 

12.3.6 Experiment 6: Wave Reflection from a 
Partial Vertical Barrier; Comparison with 
Approximate Theory 

The purpose of this experiment is to derive an approximate theory for 
the wave height transmitted past the vertical partial barrier shown in Fig- 
ure 12.9 and to test the theory for various wavelengths and a fixed “gap 
opening” of height A. 

Background and theory. A portion ofthe wave energy incident on the 
barrier will be reflected as a reflected wave component and a portion will pass 
beneath the barrier and form a transmitted wave component. As a first 
approximation to determining the height of the transmitted wave compo- 
nent, one could assume that all the progressive wave energy being propagated 
at those levels below the lower edge of the barrier is transmitted past the 

Reflected wave Incident wave - Transmitted wave - 

Figure 12.9 Experimental arrangement. 
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barrier and results in a transmitted wave. Develop an approximate theory on 
this basis and express the result in the form of transmission coefficient IC,, 
where 

K~ = function of (kA,  kh)  (12.24) 

For a ratio A / h  = i, plot IC, as a function of kh for the range n/lO < kh < n. Also 
plot the deep and shallow water asymptotes for K~. If no energy is lost in the 
reflection-transmission process, then 

Hf + H: = H: (12.25) 

or defining a reflection coefficient, 

Hi K[  = - 
Hi 

(12.26) 

then rc: + $ = 1. 

Measurements. For A/h = i, measure the wave envelope for x < 0 
and the transmitted wave height Ht for x > 0. From the wave envelope, 
determine H ,  and H, and compare your experimental values of xt with the 
approximate theory. 

Calculate the sum I$ + # for your individual experiments and deter- 
mine the percentage energy loss in the reflection-transmission process. 

Carry out the measurements and calculations described above for four 
different wave lengths. 

12.3.7 Experiment 7: Wave Forces on Cylinders 
and Spheres 

The purpose of experiment 7a is to measure wave forces and moments 
on a circular cylinder and to determine the “best fit” drag and inertia 
coefficients associated with these measurements. Experiment 7b will consist 
of the measurement of wave forces on a sphere with the prior calculation of 
wave forces based on drag and inertia coefficients obtained from the litera- 
ture (see, e.g., Grace and Casciano, 1969). 

Measurements. The measurements will be conducted using a portal- 
type force gage and a cantilever moment gage (see Figure 12.10). In addition, 
the wave profile near to the object should be measured. 

Theory of wave forces. The Morison equation for horizontal wave 
forces is written for an elemental length of a cylinder as (see Figure 12.11) 

dF = CDpA, ds + C,pd Vu 
2 

(12.27) 
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Piston 
-“Portal” force gage wavemaker 

4--+ Moment gage 

Figure 12.10 Test arrangement for measuring wave forces and moments. 

in which 

CD = drag coefficient 
CM = inertia coefficient 

A, = cylinder area per unit length projected onto a vertical plane 

ds = elemental length of cylinder 
dV = elemental volume in length, ds 

acceleration, respectively 

p = mass density of water 

perpendicular to the velocity vector 

u, u = horizontal component of water particle velocity and 

For a circular cylinder, Eq. (12.27) becomes 

E D 2  dF = CDpD ~ u l u l  ds + CMp- u ds 
2 4 

which, for linear water wave kinematics, can be integrated to 

H 2  kh cos at 1 cos at I 
8 sinh 2kh 

F = y C J I -  

(12.28) 

(12.29) 

-sinh2kh I + -  + 1 + -  -yCM-- lrD2 sin at [ sinh kh( 1 + x)] 
[2Lh ( l) ( l)] 8 coshkh 

Figure 12.11 
cylinder. 

Elemental force on a 
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and the total moment about the bottom of the tank is 

H 2  hkh cos at lcos at I M=yCDD- 
8 sinh 2kh 

[" +:lh)* +- + ' I h  sinh 2kh( 1 + x> + --&( 1 - cosh 2kh( 1 + x>)] 
2kh (2kh) 

(12.30) 

- Y c M  - 7cD2Hh sin gt [ (1  + z )  sinh kh( 1 + :) + &( 1 - cosh kh( 1 + f))] 
8 cosh kh 

For a sphere, the equation is 

(12.31) 7cD2 u l u l  + C,p- 7cD3 u . F =  Cop------- 
4 2  6 

Scope of measurements. For a sphere and/or cylinder, measure the 
waves, wave forces, and moments for two wave periods of approximately 1.0 
and 2.5 s. Measure the wave reflection in the tank. 

For the two combinations of experimental wave conditions, calculate 
the waves, wave forces, and wave moments on the object and compare with 
those measured. 

12.3.8 Experiment 8: Plane Wavemaker 

The purpose of this experiment is to evaluate the wavemaker theory for 
the piston-type wavemaker used in our studies. Although the beach is a fairly 
efficient energy dssipator, the wave envelope should be measured to remove 
the effect of the reflected wave in the measurements. 

Wavemaker theory for a piston-type wavemaker. The wavemaker 
theory for a piston-type wavemaker (as presented in Chapter 6) is 

H ~ ( C O S ~  2kh - 1) -=  
S sinh 2kh + 2kh 

See Figure 12.12 for a plot of H/S versus kh. 

(12.32) 

Measurements. Measure the wave generated for approximately 10 
wave periods (say 0.8 < T < 2.5 s) for which the waves are well behaved. 
Evaluate the effect of reflection by measuring the wave envelope. 
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Figure 12.12 Test of wavemaker theory for small wave steepnesses. 0, experi- 
ments corrected for reflection; 0, experiments not corrected for reflection. (From 
Ursell et al., 1960.) 

12.3.9 Experiment 9: Approximate Wavemaker 
Theory for a Perfectly Reflecting "Beach" 

The purpose of this experiment is to develop an approximate theory for 
the waves in a wave tank with perfectly reflecting boundaries and to conduct 
measurements to evaluate this theory. 

Theory. The approximate theory will be developed for the case below. 
Although this problem is for shallow water waves in order to satisfy the 
boundary condition requirements, in comparing the results with measure- 
ments, the actual wave characteristics (particularly the wavelength) appro- 
priate to the water depth and period should be used. 

Consider the vertical barrier located at an arbitrary distance 1 from a 
piston-type wavemaker (see Figure 12.13). Assuming that shallow water 
waves are generated, calculate and plot the ratio H/S as a function of l/L. For 
this problem 0 = 1 rad/s and h = 1 ft. 

Measurements. With a rigid vertical barrier located in the tank, 
conduct sufficient wave height measurements at the barrier over as wide a 
range of wave periods as possible to verify the approximate theory. Note that 
it will be helpful (perhaps in locating the barrier) if the theory is developed 
and incorporated in the planning phase of the experiment. 
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Piston-type - 
wavemaker 

s = S/2 sin at 

Figure 12.13 Experimental arrangement for experiment 9. 
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