Hydrodynamic modelling with Delft3D

Coursed offered within PPGERHA (Graduate Program on Water Resources and Environmental Engineering), PPGEA (Graduate Program of Environmental Engineering) and the Graduate course on Environmntal Engineering (CGEA) from the Federal University of Paraná (UFPR), Curitiba, Brazil.

UFPR students should subscribe via the SIGA system of each program respectively:  PPGERHA (ERHA755 – TÓPICOS ESPECIAIS II Modelling with Delft3D);  PPGEA (EAMB7057 Modelling with Delft3D). CGEA (TEA038B). Limited number of participants.

Coursed offered completely in english.

Créditos: 3 (45 h)
Lecturers: Tobias Bleninger (contact) and Rafael Bueno
Lecture hours: Mondays and Wednesdays: 13:30 – 17:30


Format

Technical requirements are listed as follows:
• Internet connection
• Up to date PC or notebook with Windows Operational System (the course only provides compiled software executables for Windows)
The course will be offered within the platform Microsoft Teams, where files will be provided and shared and chats, conferencing and scheduling will be handled.


Context / Background

Hydrodynamic modelling is an essential method to study scenarios for hydro-environmental problems, such as pollutant or cooling water discharges, sediment transport, lake eutrophication, river training, etc. Delft3D is a world leading 3D modeling suite to investigate hydrodynamics, sediment transport and morphology and water quality for fluvial, estuarine and coastal environments. Since 2011, the Delft3D flow (FLOW), morphology (MOR) and waves (WAVE) modules are available in open source. The hydrodynamic module Delft3D-FLOW is a multidimensional hydrodynamic simulation program that calculates non-steady flow and transport phenomena resulting from tidal and meteorological forcing. The primary purpose of the computational model Delft3D-FLOW is to solve various one-, two- and three-dimensional, time-dependent, non-linear partial differential equations related to hydrostatic free-surface flow problems on a structured orthogonal grid. The equations are formulated in orthogonal curvilinear co-ordinates on a plane or in spherical coordinates on the globe. The hydrodynamic module is based on the shallow water equations. The equations are solved with a robust and highly accurate solution procedure.

Some supported features are:
• Propagation of long waves (barotropic flow);
• Density gradients due to a non-uniform temperature and salinity concentration distribution (density driven flows);
• Transport of dissolved material and pollutants;
• Transport of sediments, including erosion, sedimentation and bed load transport;
• Many options for boundary conditions, such as water level, velocity and discharge boundaries
• Simulation of drying and flooding of inter-tidal flats;
• Turbulence modelling to account for the vertical turbulent viscosity and diffusivity;
• Online visualization of model parameters enabling the production of animations.

Obs.: The course mainly uses the structured grid version, however examples are provided also for the flexible mesh version. 


Topics

Review of governing equations of Fluid Mechanics for environmental systems. Revision of numerical methods and stability, as well as data handling. Introduction into grid generation. Introduction on bathymetry interpolation. Modelling hydrodynamics and density effects. Post processing. Introduction to pre-processing tools for universal model setups for coastal waters. Revision of governing processes of sediment transport and water quality modeling. Applications for coastal waters, rivers and lakes.


Objectives

Create the ability to plan, setup, and execute 2 and 3D hydrodynamic simulations with Delft3D, and using pre and post-processing features.


Recommended pre-requisites: Fluid Mechanics, Hydraulics, Mathematics.


Calendar

Inicio: 15 de setembro 2025

Before the course: Please register for the free Open-Source Licence at: https://oss.deltares.nl/web/delft3d/source-code some weeks before the course. Further instructions on installation will be provided throughout the course. 

Cronograma preliminar:

No. Dia Data Conteúdo
1 seg. 15/09/2025 Apresentação do curso e participantes. Introdução ao Delft3D. Sistema de grades. Interface.
2 qua. 17/09/2025 Geração de grade com RGFGrid
seg. 22/09/2025 sem aula – semana academica CGEA
qua. 24/09/2025 sem aula – semana academica CGEA
3 seg. 29/09/2025 Simulações 2D simplificado para reservatório (vazão entrada e vertimento). Visualizações simples com Quickplot
4 qua. 01/10/2025 Simulações 2D com outras condições de contorno (incluindo vento). Visualizações comparativas com Quickplot e pós processamento.
5 seg. 06/10/2025 Simulações 2D com condições de contorno variadas (séries temporais). Grade retangular e simulações com grades retangulares. Grade z
6 qua. 08/10/2025 Interpolação batimétrica com Quickin. Simulações com batimetria alterada e comparações e simulações com restart file
7 seg. 13/10/2025 Modelagem tridimensional e traçadores e derivas.
8 qua. 15/10/2025 Teoria e simulações de efeitos de temperatura e salinidade, estratificação térmica
seg. 20/10/2025 sem aula – semana SIEPE
qua. 22/10/2025 sem aula – semana SIEPE
seg. 27/10/2025 sem aula – recesso
9 qua. 29/10/2025 Simulações de sistemas fluviais em 2D
10 seg. 03/11/2025 Simulação de aguas costeiras
11 qua. 05/11/2025 Teoria de simulações de transporte de sedimento. Simulações de transporte de sedimento e assoreamento (variações morfologicas).
12 seg. 10/11/2025 Teoria e Simulação de qualidade de agua
qua. 12/11/2025 Aulas de exercício (presença não obrigatória)
seg. 17/11/2025 Aulas de exercício (presença não obrigatória)
qua. 19/11/2025 Aulas de exercício (presença não obrigatória)
seg. 24/11/2025 sem aula – Professores afastados
qua. 26/11/2025 sem aula – Professores afastados
seg. 01/12/2025 sem aula – vestibular
13 qua. 03/12/2025 Apresentação FINAL
seg. 08/12/2025 sem aula – semana finais
qua. 10/12/2025 sem aula – semana finais
seg. 15/12/2025 Prova Final

Exam

The course certificate requires:

  • Written exam P1 / Prova escrita P1 (individual) – trabalho de modelagem
  • Oral exam P2 / Prova oral P2 (apresentação e arguição)
  • Grade N / Nota N = 2/3P1 + 1/3E2
  •         se N ≥ 7   aproved / aprovado com nota final NF = N
  •         se N < 4   failed / reprovado
  •         se 4 ≤ N < 7 final exam / prova final F
  •                    se (F+N)/2 ≥ 5 aprovado com nota final NF = (F+N)/2
  •                    se (F+N) < 5 reprovado
  • Presence / Presença: > 25%
  • Written work will be for a specific simulation project (data provided by course or own data can be used too). The work should be summarized as report, including the following items:
    • site description
    • available data and boundary conditions
    • model description and setup
    • model simulations
    • post-processing (figures, graphs, animations, comparison of scenarios)
    • being summarized in a project report

References and additional information

©2025 - Engenharia Ambiental UFPR
Desenvolvido em Software Livre e hospedado pelo Centro de Computação Eletrônica da UFPR